

Underground Water Impact Report ATP 688

WestSide Corporation Ltd

24th August, 2017

Version	Date	Author	Reviewed	Issued by		
Final	24 th August 2017	R Martin	Jim Kelly Dr G Ritchie	Jim Kelly		
	Created by	Arris Pty Ltd	Bld 11b, Gate 2c Hartley Grove URRBRAE SA 5064 t 08 8313 6706 f 08 8313 6752 ACN 092 739 574			
	Client	WestSide Corporation	Ltd			
	Name of Organisation					
	Name of Project	Underground Water Impact Report ATP688				
	Name of Document					
	Project Number					
	Document Version	Final				
	Cover					
	Sensitivity	technologies and othe property of Arris Pty L	e information, ideas, concepts r material it contains remain td. The document is not to be at least one of the above part	the intellectual copied without the		
	Disclaimer	This report is presented "as is" without any warrantees or assurances. Whilst all reasonable efforts have been made to ensure the information provided in this review is current and reliable, Arris Pty Ltd does not accept any responsibility for errors or omissions in the contents.				
	Document Delivery	format or both. Arris of electronic format is pr Ltd requests that the of information is maintai at a minimum comply Electronic Transaction Where an electronic o	this document in either printe considers the printed version ovided for the client's conven client ensures the integrity of ned. Storage of this electroni with the requirements of the s Act (ETA) 2000. Inly version is provided to the can be provided by Arris Pty	to be binding. The lience and Arris Pty this electronic ic information should Commonwealth client, a signed hard		

Table of Contents

Li	List of Tables					
Li	List of Figures					
Α	Abbreviations					
1	Execut	ive Summary	1			
2		uction				
2	2.1	Background				
	2.1	Purpose of This Report				
	2.1.1	Project Area				
	2.2	Legislative Requirements				
	2.3.1	Petroleum Act 1923 - Queensland				
	2.3.1	Petroleum and Gas (Production and Safety) Act 2004				
	2.3.3	Water Act 2000 - Queensland				
	2.4	Summary of Methods				
3	Part A	: Underground Water Extractions				
	3.1	Quantity of Water Already Produced				
	3.2	Quantity of Water to be Produced in the Next Three Years				
4	-	Geological and Hydrogeological Setting				
•	4.1	Geological Setting				
	4.1	Hydrogeological Setting and Aquifer Descriptions				
	4.2.1	Tertiary Basalt and Quaternary Alluvium				
	4.2.2	Triassic Clematis and Rewan Formations				
	4.2.3	Permian Blackwater Group				
	4.2.4	Lower Permian Back Creek Group				
	4.2.5	Hydrogeological Properties				
	4.3	Conceptual Hydrological Model				
	4.3.1	Groundwater Flow Directions	17			
	4.3.2	Aquifer Recharge and Discharge	18			
	4.3.3	Groundwater Level Trend Analysis	20			
	4.3.4	Aquifer Connectivity	20			
	4.3.5	Summary				
5	Part C	Predicted Impacts for Affected Aquifers	22			
	5.1	Modelling Methodology	22			
	5.1.1	Modflow-Surfact	22			
	5.1.2	Model Domain	22			
	5.1.3	Model Grid				
	5.1.4	Model Layers				
	5.1.5	Boundary Conditions				
	5.1.6	Calibration				
	5.1.7	Prediction Methodology				
	5.1.8	Predicted Water Use Used in the Model				
	5.2	Underground Impact Affected Areas				
	5.2.1	Predicted Water Level Decline Maps				
	5.2.2	Water Bores in the Immediately Affected Area				
	5.3 5.3.1	Sensitivity to Model Parameters Best Case Scenario				
	5.3.1	Worst Case Scenario				
	5.3.2 5.4	Model Limitations				
	5.4 5.5	Key Findings				
6		: Impacts on Environmental Values				
5	6.1	Identifying and describing environmental values				
	0.1	ומכוונו אווא מוום מבזכו אווא בוזאו טווווכוונמו אמועכז				

6	.2	Nature and extent of the impacts on the environmental values	54		
6	.3	Impacts to formation integrity and surface subsidence	54		
7	Part E	: Water Monitoring Strategy	55		
7	.1	Water monitoring strategy	55		
7	.2	Water monitoring rationale	55		
	7.2.1	Monitoring Threshold criteria	56		
	7.2.2	Critical data gaps	56		
7	.3	Monitoring strategy and frequency	57		
	7.3.1	Extracted underground water	57		
	7.3.2	Water level monitoring	57		
	7.3.3	Water quality monitoring	58		
7	.4	Reporting	59		
8	Part F	: Spring Impact Management Strategy	60		
8	.1	Spring Inventory	60		
8	.2	Management of Impacts to Springs			
9	Conclu	usions	61		
10	Refere	ences	63		
Appendix A Summary of Bores 10 km Surrounding ATP 68865					
Appendix B UWIR Groundwater Monitoring Checklist84					

List of Tables

Table 1	Wells plugged and abandoned across ATP 688	2
Table 2	Historical Water Production (kL), ATP 688 (Data supplied by WestSide Corporation)	7
Table 3	Water produced during 2011 to 2016	8
Table 4	Generalised stratigraphic sequence of northern Bowen Basin (after Reeves and O'Neil, 1989 and QCoal, 2010)	
Table 5	Summary of hydraulic properties for the major HSUs in the Bowen Basin (after CDM Smith 2013)	16
Table 6	Stratigraphic representation in model layers	25
Table 7	Coal seam and interburden thickness in Moranbah Coal Measures	27
Table 8	Calibrated model hydraulic properties	29
Table 9	Projected average water production rates in 2017 to 2019 (kL/year)	30
Table 10	Existing bores identified to be suitable monitoring locations	58
Table 11	Water monitoring analytical suite	59

List of Figures

Figure 1	ATP 688 Locality Plan4
Figure 2	Registered Water Bores within 10 km around ATP 688 and WestSide Testing Wells9
Figure 3	Diagrammatic representation of rock unit correlation Bowen Basin stratigraphic column (<i>source: Satins and Koppe, 1980</i>)
Figure 4a	Geological map of the study area11
Figure 5	Cross section through ATP688 (source Paine and Cameron (1972))13
Figure 6	Available water table hydrograph data (after CDM Smith 2013)19
Figure 7	Cumulative departure from mean rainfall analysis for four bores where aquifer is known (after CDM Smith 2013)20
Figure 8	Model Domain and Boundary Conditions24
Figure 9a	Cross sections through the model domain Mt. St Martins gas field (row 25)
Figure 10	Simulated Steady State Water Table Layer 1 Quaternary Alluvium
Figure 11	Calibration scatterplot of simulated hydraulic head versus observed hydraulic head for steady state model29
Figure 12	Predicted water level decline end 2017 in Upper Goonyella Coal Seam (Layer 3)
Figure 13	Predicted water level decline end 2018 in Upper Goonyella Coal Seam (Layer 3)
Figure 14	Predicted water level decline end 2019 in Upper Goonyella Coal Seam (Layer 3)
Figure 15	Predicted water level decline end 2017 in Upper Goonyella P Seam (Layer 5)

Figure 16	Predicted water level decline end 2018 in Upper Goonyella Coal Seam (East Layer 5 and West Layer 12)
Figure 17	Predicted water level decline end 2019 in Upper Goonyella Coal Seam (East Layer 5 and West Layer 12)
Figure 18	Predicted Water Level Decline (Worst Case) end 2017 in Upper Goonyella Coal Seam (Layer 3)42
Figure 19	Predicted Water Level Decline (Worst Case) end 2018 in Upper Goonyella Coal Seam (Layer 3)43
Figure 20	Predicted Water Level Decline (Worst Case) end 2019 in Upper Goonyella Coal Seam (Layer 3)44
Figure 21	Predicted Water Level Decline (Worst Case) end 2017 in Upper Goonyella P Seam (Layer 5)45
Figure 22	Predicted Water Level Decline (Worst Case) end 2018 in Upper Goonyella P Seam (Layer 5 and Layer 12)46
Figure 23	Predicted Water Level Decline (Worst Case) end 2019 in Upper Goonyella P Seam (Layer 5 and Layer 12)47
Figure 24	Predicted Water Level Recovery (Worst Case) end 2020 in Upper Goonyella Coal Seam (Layer 3)48
Figure 25	Predicted Water Level Recovery (Worst Case) end 2020 in Upper Goonyella P Seam (Layer 5 and Layer 12)49
Figure 26	Mount Saint Martin (MSM4L) showing cleared grazing land (Source: AECOM, 2012)
Figure 27	Mount St Martin (MSM2L) showing renant woodland with heavy under grazing (Source: AECOM, 2012)53
Figure 28	Mount Saint Martin (MSM5L) showing lands cleared for grazing and non remnant vegetation regrowth (after AECOM, 2010)53

Abbreviations

Abbreviation	Explanation	
	Degree	
%	Percent	
ATP		
BAP	Authority to Prospect	
	Baseline Assessment Plan	
BoM	Bureau of Meteorology	
CDMR	Cumulative departure from mean rainfall	
CSG	Coal Seam Gas	
DEHP	Department of Environment and Heritage Protection	
EIS	Environmental Impact Study	
ERA	Endangered Regional Ecosystem	
ESA	Environmentally sensitive area	
ET	Evapotranspiration	
FCCM	Fort Cooper Coal Measures	
HSU	hydrostratigraphic unit	
IAA	Immediately Affected Area	
IESC	Independent Expert Scientific Committee	
K _h	Hydraulic Conductivity	
kL	Kilolitre	
kL/d	Kilolitre per day	
kL/year	Kilolitre per year	
km	Kilometre	
km ²	Kilometre squared	
K _v	Vertical Conductivity	
L Litre		
L/s	Litres per second	
LTAA	Long Term Affected Area	
m	Metre	
m ³	Cubic metre	
m/a	Metres per annum	
m bgl	Metres below ground level	
MCM	Moranbah Coal Measures	
m/d	Metres per day	
m²/d	Square metre per day	
mm/a	Millimetre per annum	
mg/L	Milligrams per litre	
OGIA	Office of Groundwater Impact Assessment	
PCG	Preconditioned conjugate gradient	
RMS	Root mean square	
RN	Registered Number	
Ss	Specific Storage	
Sy	Specific Yield	
T	Transmissivity	
ТА	Tenement Area	
μS/cm	MicroSiemens per centimetre	
μg/L	Micrograms per litre	
UWIR	Underground Water Impact Report	
	Year	
yr	1001	

1 Executive Summary

The registered holders of Authority to Prospect (ATP) 688 are WestSide Corporation (ABN 74 117 145 516) and BNG (Surat) Pty Ltd (ABN. 97 090 629 913). The Underground Water Impact Report (UWIR) for ATP 688 was approved (with conditions) by the Chief Executive of the department of Environment and Heritage Protection (DEHP) on 20 September 2013. Since that time, no new production or production testing has been undertaken. Activities on ATP 688 post approval of the 2013 UWIR have included the abandonment of several exploration bores. In the immediate short-term (next two to three years) no further production testing or drilling is programmed in ATP 688. However, events may occur that result in activities resuming across ATP 688.

Although no activity is planned, predictive modelling has been completed to define the extent of Immediately Affected Areas and Long Term Affected Areas above the trigger levels in accordance with the *Water Act* (Qld), 2000. By predicting drawdowns caused by underground water extractions this modelling presents a conservative estimate of potential impacts that may result in the unlikely event that activities in ATP 688 resume within the life of this Underground Water Impact Report.

Modelling has been carried out to provide estimates of declines in water level in response to the extraction of groundwater associated with pilot testing in ATP 688. For this model, future groundwater extraction has been estimated from historical pumping during production testing. Two additional wells MSM04L1 and MSM04L2 have been proposed in the Mount St Martin's however, there is no certainty that these wells will be constructed.

Under the applied assumptions predictive modelling identifies two consolidated aquifers (The Upper Goonyella Coal Seam and the Goonyella P Seam) are likely to be affected by the exercise of underground water rights. There are no reportable impacts in the overlying alluvium and basalt aquifer.

Pursuant to section 376 of the Water Act, 2000 (Qld), this report forms the UWIR for ATP 688. There is no production or production testing currently forecast in ATP 688. Based on this, where relevant the UWIR provides a summary of information presented in the previous UWIR for ATP 688 which was approved (with conditions) by DEHP on 20 September 2013.

2 Introduction

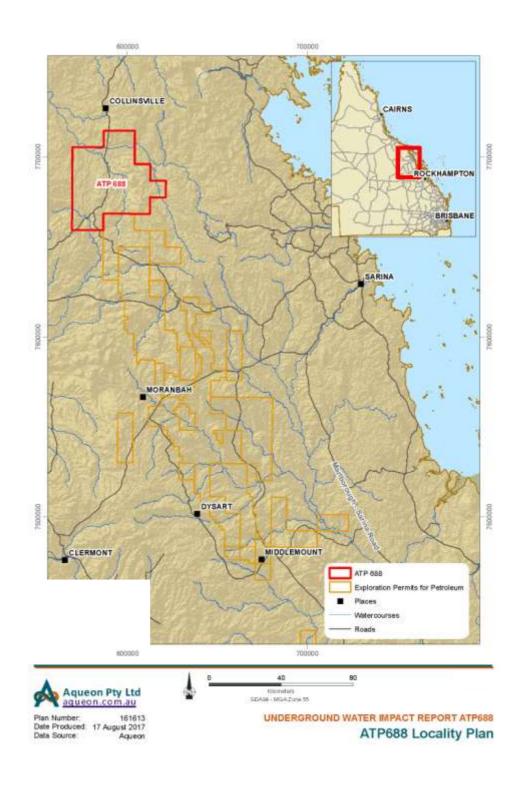
2.1 Background

The registered holders of Authority to Prospect (ATP) 688 are WestSide Corporation (ABN 74 117 145 516) and BNG (Surat) Pty Ltd (ABN. 97 090 629 913). ATP688 is located 110 km west of Mackay (Figure 1), with target coal seams located at depths of approximately 150 m below ground level (m bgl).

The Underground Water Impact Report (UWIR) for ATP 688 was approved (with conditions) by the Chief Executive of the Department of Environment and Heritage Protection (DEHP) on 20 September 2013. Since that time, no new production or production testing has been undertaken. Activities on ATP 688 post approval of the 2013 UWIR have included the abandonment of three exploration bores (Table 1).

Well Name	Easting	Northing	Latitude	Longitude
MSM-1	594167.5996	7703290.599	-20.767764	147.904658
BH-01	585243.6748	7679474.096	-20.983373	147.8201
Mt Saint Martins -6	600282.3219	7694077.804	-20.850678	147.963924
Mt Saint Martins -7	599125.265	7699441.212	-20.802284	147.952499
Mt Leslie 8	598760.6173	7685138.953	-20.931518	147.949807
Tilbrook 1	582536.2672	7671135.884	-21.05883	147.794454
Tilbrook 2	587321.0916	7676500.462	-21.010141	147.840235
Tilbrook 3	582838.5846	7675238.179	-21.021753	147.797167
Tilbrook 4	584303.9454	7671319.916	-21.057087	147.811459
Tilbrook 5	584822.4193	7674318.626	-21.02997	147.816301
Tilbrook 6	585261.9476	7671801.368	-21.052692	147.820655
Tilbrook 8A	584201.3093	7670902.491	-21.060863	147.810491
Tilbrook 8LA	583857.9771	7670739.404	-21.062352	147.807195
Tilbrook 8B	584665.8225	7670501.373	-21.064465	147.814982
Tilbrook 8LB	584531.9017	7670137.537	-21.067758	147.813711
Tillbrook 9A	584157.6064	7671089.813	-21.059172	147.810062
Tilbrook 10B	585736.4052	7672988.416	-21.041946	147.825163

Table 1 Wells plugged and abandoned across ATP 688


2.1.1 Purpose of This Report

Pursuant to section 376 of the *Water Act*, 2000 (Qld), this report forms the UWIR for ATP 688. Under the Water Reform and Other Legislation Amendment (WROLA) Act 2014 (which commenced on 6 Dec 2016) additional matters are required to be addressed in the UWIR. Specifically, impacts on Environmental Values which is addressed in Section 5 of this Report.

There is no production or production testing currently forecast in ATP 688. Therefore, there are no changes to the predictions in the UWIR as approved 20 September 2013. Based on this, where relevant the UWIR provides a summary of information presented in the previous UWIR

for ATP 688 which was approved (with conditions) by DEHP on 20 September 2013. The purpose of this report is to address chapter three, division four, section 376 of the Queensland *Water Act*, 2000 which stipulates that the UWIR must include:

- Part A: Information about underground water extractions resulting from the exercise of underground water rights.
 - o Quantity of water already produced.
 - o Quantity of water to be produced in the next three years.
- Part B: Information about aquifers affected, or likely to be affected.
 - o Aquifer descriptions.
 - o Underground water flow and aquifer interactions.
 - o Underground water level trend analysis.
- Part C: Maps showing the area of the affected aquifer(s) where underground water levels are expected to decline.
 - o Maps of affected areas.
 - o Methods and techniques used in building a computer based hydrogeologic model, and the associated water level maps and predictions.
 - Water bores within Immediately Affected Areas.
 - Annual review of maps produced.
- Part D: Impacts on Environmental Values
 - \circ $\;$ Identification and description of environmental values
 - o Nature and extend of any impacts on the environmental values
 - o Impacts to formation integrity and surface subsidence
- Part E: A water monitoring strategy.
 - Rational behind water monitoring strategy.
 - Timetable for the water monitoring strategy.
 - Reporting program for the water monitoring strategy.
- Part F: A spring impact management strategy.
 - Spring inventory and values.
 - Connectivity between the spring and aquifer.
 - Management of impacts.
 - Timetable for strategy.
 - Reporting program.

Figure 1 ATP 688 Locality Plan

2.2 Project Area

ATP 688 is located within the Bowen Basin approximately 110 km west of Mackay covering an area of approximately 72 km² (Figure 1).

2.3 Legislative Requirements

2.3.1 Petroleum Act 1923 - Queensland

The authority to prospect ATP 688 was granted under the *Petroleum Act,* 1923 (Qld). Under the *Petroleum Act 1923* (Qld), the petroleum tenure holder may take or interfere with groundwater to the extent that it is necessary and unavoidable during an activity authorised under the petroleum tenure. The Act requires tenure holders to comply with underground water obligations specified in the *Water Act,* 2000 (Qld).

2.3.2 Petroleum and Gas (Production and Safety) Act 2004

The *Petroleum and Gas (Production and Safety) Act,* 2004 (P&G Act, 2004 (Qld)) regulates coal seam gas activities and governs groundwater management in relation to coal seam gas development. ATP 688P was granted under the P&G Act. Under the P&G Act, the petroleum tenure holder may take or interfere with groundwater to the extent that is necessary and unavoidable during an activity authorized under the petroleum tenure (Section 185 Underground water rights). The P&G Act, 2004 (Qld) requires tenure holders to comply with the underground water obligations specified in the Water Act, chapter three.

2.3.3 Water Act 2000 - Queensland

The *Water Act*, 2000 (Qld) provides a comprehensive regime for the planning and management of all water resources including vesting to the State

- The rights over the use, flow and control of all surface water, groundwater, rivers, and springs) in Queensland.
- Regulates water use and the obligations of coal seam gas production and pilot testing in relation to groundwater monitoring, reporting, impact assessment and management of impacts on other water users.
- Provides a framework and conditions for preparing a Baseline Assessment Plan (BAP) and outlines the requirement of bore owners to provide information the petroleum holder reasonably requires to undertake a baseline assessment of any bores.
- Sets out the process for assessing, reporting, monitoring, and negotiating with other water users regarding the impact of coal seam gas production, and pilot testing on aquifers.
- Provides a framework for the petroleum tenure holder to undertake an UWIR once they have started pilot testing.
- A UWIR will identify whether an "Immediately Affected Area" (IAA) will result from CSG activities. An IAA is defined as an area where the predicted decline in water levels within three years is at least:
 - a. 5m for a consolidated aquifer.
 - b. 2m for an unconsolidated aquifer.

UWIRs are published to enable comments from bore owners within the area. Submission made by bore owners will be submitted by Eureka Petroleum Pty Ltd (a 100% owned subsidiary of Blue Energy Limited) to DEHP. UWIRs are submitted for approval to DEHP two months after the consultation date. The OGIA may also advise DEHP about the adequacy of these reports. The OGIA will maintain a database of information collected under monitoring plans carried out by petroleum tenure holders in accordance with approved UWIRs. The database will also incorporate bore baseline data collected by petroleum tenure holders.

2.4 Summary of Methods

Production testing has not been undertaken since the previous UWIR. In addition to this, further production testing is currently not forecast for ATP 688. Based on no further programmed testing, the UWIR for the period 2016 to 2019 provides a summary of

information presented in the previous UWIR for ATP 688 which was approved by the Department of Environment and Heritage Protection (DEHP) on 20 September 2013.

Whilst no extraction activities are planned in the near future, the model presented in Section 5 of this report has been updated to reflect past activities and a predicted future water demand if exploration activities should resume at ATP 688. The modelling has been completed to identify any potential impacts should extraction activities resume during the life of this UWIR. The modelling presents a conservative (worst case) outcome as it assumes extraction activities are continuous from 2016.

3 Part A: Underground Water Extractions

3.1 Quantity of Water Already Produced

A total of seven pilot wells have been completed in the Mount St Martins area (refer inset Figure 2) and initial production testing from three wells (MSM2, MSM3, and MSM4) occurred from December 2007 through January 2008 (Table 2). A total of six kilolitres (kL) of water was produced from MSM4.

In the Tilbrook area (refer inset Figure 2) a total of 13 wells have been installed targeting the Moranbah Coal Measures and production testing occurred between December 2007 and August 2010 on two wells (T7 and T8). A total of 19,332 kL of water was produced (Table 2) from the two bores (T7 and T8) over the period of testing.

Month Ending	MSM4	Т7	Т8
12/2007	6	0	5
01/2008	0	0	49
02/2008	0	0	71
03/2008	0	0	0
04/2008	0	5	0
05/2008	0	10	11
06/2008	0	27	49
07/2008	0	34	9
08/2008	0	31	10
09/2008	0	30	7
10/2008	0	26	9
11/2008	0	32	8
12/2008	0	92	16
01/2009	0	113	13
02/2009	0	97	40
03/2009	0	103	42
04/2009	0	98	40
05/2009	0	100	6
06/2009	0	94	1
07/2009	0	98	992
08/2009	0	97	1,171
09/2009	0	94	1,920
10/2009	0	96	1,682
11/2009	0	93	1,484
12/2009	0	79	1,422
01/2010	0	48	1,290

Table 2 Historical Water Production (kL), ATP 688 (Data supplied by WestSide Corporation)

Month Ending	MSM4	т7	Т8
02/2010	0	0	1,121
03/2010	0	66	1,090
04/2010	0	106	0
05/2010	0	103	801
06/2010	0	98	1,598
07/2010	0	0	1,299
08/2010	0	0	1,206
Total (kL)	6	1,870	17,462

3.2 Quantity of Water to be Produced in the Next Three Years

ATP 688 is still in the exploration stage and with cessation of pilot testing in August 2010, Westside Corporation have no immediate plans to continue exploration in ATP 688. Therefore, the predicted water production for the next three years (2016 to 2019) will be zero (0) litres (Table 3). Whilst no testing activity is currently programmed over the period 2016 to 2019, this could change. In the unlikely event that it might change, modelling has been completed assuming that some activity will occur to present a conservative estimate of what impacts may occur should a testing programme resume.

Year	Estimated Produced water in litres per year per well			
Tedi	MSM4	Т7	Т8	
Sept 2011 - Sept 2012	0	0	0	
Sept 2012 - Sept 2013	0	0	0	
Sept 2013 - Sept 2014	0	0	0	
Sept 2014 - Sept 2015	0	0	0	
Sept 2015 – Sept 2016	0	0	0	
Sept 2016 - Sept 2017	0	0	0	
Sept 2017 - Sept 2018	0	0	0	
Sept 2018 - Sept 2019	0	0	0	
Total per Well (litres)	0	0	0	

Table 3Water produced during 2011 to 2016

With minimal initial water production and cessation of pilot testing in August 2010 the Immediately Affected Area predicted by the groundwater numerical modelling in the UWIR prepared in 2013 for the period 2013 to 2016 did not eventuate. Current legislation under the *Water Act,* 2000 (Qld) requires Westside Corporation to publish an updated UWIR for public consultation advising the predicted water production for the next three years.

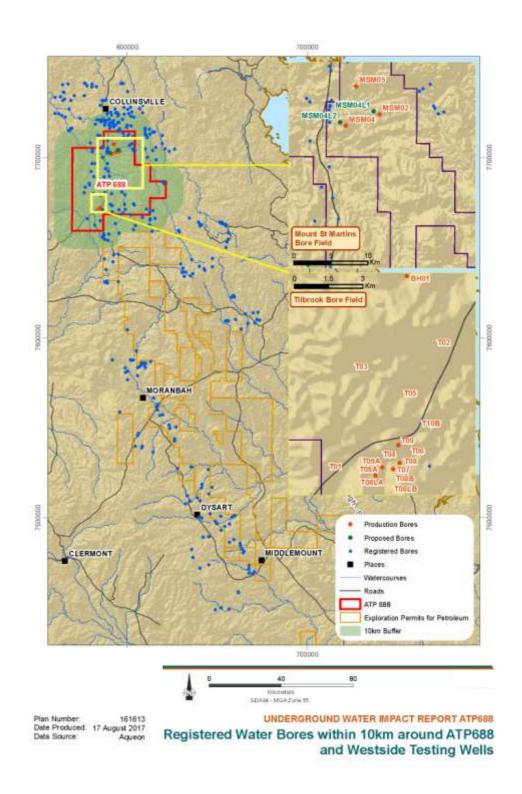


Figure 2 Registered Water Bores within 10 km around ATP 688 and WestSide Testing Wells

4 Part B: Geological and Hydrogeological Setting

4.1 Geological Setting

Changes in the tectonic setting influenced the paleogeography and depositional environment of the Bowen Basin (Fielding et.al, 2000). Early Permian extensional subsidence and igneous activity resulted in a basin-and-range topography with infrabasins hosting thick accumulations of mainly non-marine, fluvial and lacustrine deposits with occasional marine incursions. Figure 3 presents a diagrammatic representation of the rock unit correlation across the Bowen Basin (after Satins and Koppe, 1980).

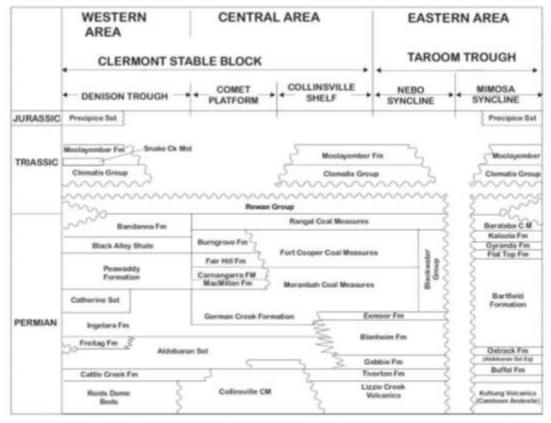


Figure 3 Diagrammatic representation of rock unit correlation Bowen Basin stratigraphic column (*source: Satins and Koppe, 1980*)

ATP 688 is located within the Collinsville Shelf and Nebo Syncliniorium of the eastern Bowen Basin and comprises Permian, Triassic, and young Tertiary and Quaternary sediments (Cadman et al., 1998). Figure 4a provides a geologic map of the area, Figure 4b presents the legend for the geological map and Figure 5 presents a cross-section through the northern tenement area.

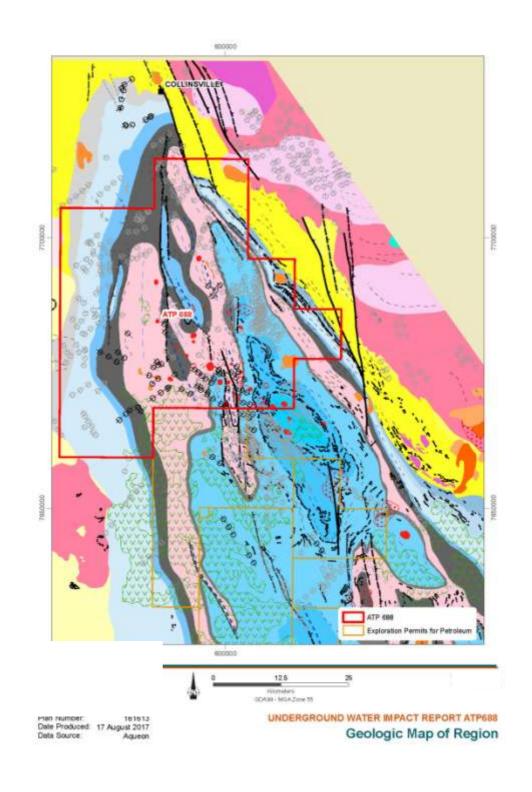
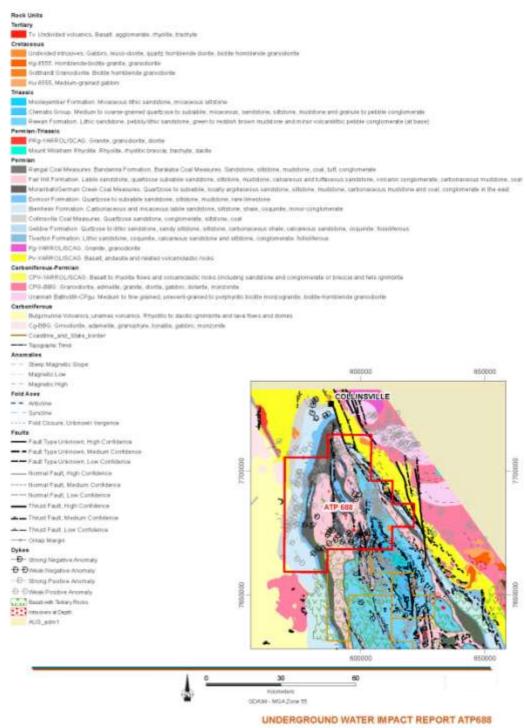



Figure 4a Geological map of the study area

Legend for Geological Map

Figure 4b Geological map legend

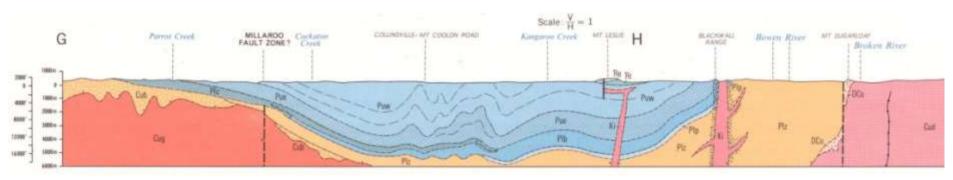


Figure 5 Cross section through ATP688 (source Paine and Cameron (1972))

The oldest outcropping rocks (in the north of the project area) are part of the middle to upper Permian Collinsville Coal Measures of the Back Creek Group. The freshwater sediments of the Blackwater Group overly the marine Back Creek Group. The Triassic Rewan Formation and Clematis Group conformably overlie the Blackwater Group. Superficial alluvium and basalt flows overlie these consolidated rocks.

The stratigraphic sequence within ATP 688 is shown in Table 4. In ATP 688 the primary target are the Moranbah Coal measures which are intersected in drill holes approximately 150 m bgl.

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Age Formation		Sub Unit		
Quaternary		Alluvium		
Tertiary		Duaringa Formation, Sutton Formation, Basalt		
		Moolayember Formation		
	Clamatic Crown	Expedition Sandstone		
Triassic	Clematis Group	Glenidal Formation		
	Power Crown	Arcadia Formation		
	Rewan Group	Sagittarius Formation		
		Rangal Coal Measures		
Late Permian	Backwater Group	Fort Cooper Coal Measures		
		Moranbah Coal Measures		
Middle Permian	Pack Crack Craws	Exmoor Formation		
wilddie Permian	Back Creek Group	Blenheim Formation		

Table 4Generalised stratigraphic sequence of northern Bowen Basin (after Reeves and O'Neil, 1989
and QCoal, 2010)

The most prominent structure in the project area is the steeply dipping eastern flank of the Bowen Syncline. It is outlined by the Back Creek Group, striking north-northwest, and dipping to the west- southwest at angles of 40° or more. The axis of the syncline is in the eastern part of the project area. Here, the syncline is characterised by great thickness of sediment and strong folding. Mesozoic granite intrusion just east of the Blackwall Range, separates this area from the older lower Permian volcanics which form the basement. Further to the south and southeast of the project area the Triassic Rewan and Clematis group outcrop.

The regional tectonic setting of the Bowen Basin is compressive, characterised by numerous folds and thrust faults developed during the Triassic Hunter-Bowen Orogeny (Gilliam, 2004). The Jellinbah thrust fault system is a major north to south striking fault system that runs along the length of the Bowen Basin, with maximum throw in the order of 600 to 800 m (Gilliam, 2004). A series of subsidiary thrust faults occur within the project area. The fold and fault axis in the project area generally trends north-northwest, which is parallel to the regional Bowen Basin trend and axis of Bowen Syncline to the east.

The geological cross section (Figure 5) indicates the dipping of the layers and the whole sedimentary sequence towards the axis of the syncline at around 10 to 30 degrees, and the presence of SW to NE trending faults in the area.

4.2 Hydrogeological Setting and Aquifer Descriptions

CDM Smith (2013) conceptually divides the sub-surface beneath ATP 688 into four distinct hydrostratigraphic units (HSUs). From the youngest to the oldest the units comprise:

- 1. Tertiary basalt and minor Quaternary alluvium;
- 2. Triassic Clematis Group and Rewan Formation;
- 3. Permian Blackwater Group including Rangal, Fort Cooper and Moranbah Coal Measures; and
- 4. Lower Permian Back Creek Group.

On a regional scale, the Triassic and Permian sediments are generally not regarded as a significant groundwater resource. The fractured sandstone interbeds and coal seams have generally higher competence and permeability than the interburden material. The most productive aquifers locally are the Quaternary alluvium and the Tertiary basalt.

Within ATP 688, the superficial unconsolidated alluvium and the Blackwater Group are the most significant formations. All formations except the Quaternary alluvium are consolidated.

4.2.1 Tertiary Basalt and Quaternary Alluvium

CDM Smith (2013) report the alluvium is typically associated with present day channels and flood plains, comprising layers of fine grained highly transmissive material. The oldest alluvial plains have been partially dissected to form gently rolling country. Monitoring data suggest the alluvial aquifer is unconfined and connected to surface water features such as streams and rivers. Based on the available data from well stratigraphic logs, the thickness of the alluvium is generally between 10 m to 30 m.

The basalt appears to be less weathered in the eastern part of the project area, but this may reflect greater erosion, such that the weathered upper parts have been removed. In this area, the basalt represents one of the major aquifers. Flow through the basalt occurs mainly via fractures therefore, this aquifer system has considerable local variability between vertical and horizontal conductance. Assigning a bulk unit average value is considered appropriate for this project. The primary source of water to the aquifer results from rainfall recharge and surface water features act primarily as discharge points, with localised variations due to topographic elevation. The thickness of this unit is typically around 20 m.

4.2.2 Triassic Clematis and Rewan Formations

The Lower to Middle Triassic Clematis sediments comprise mainly quartz sandstone with minor siltstone and mudstone. They form a major aquifer within the Great Artesian Basin but locally this is a less reliable source of water due to increasing depth of cover and small outcropping area. Flow via primary porosity is limited, with most flow occurring through fractures. Within a regional framework, a single horizontal and vertical hydraulic conductivity can be assigned to represent the flow domain. The average porosity of the sandstone is reported to be 21% (Gray, 1968). The thickness of this unit is about 150 m at the eastern edge of Bowen Basin, but does not appear in ATP 688 and is not represented in the numerical model.

The Lower Triassic Rewan Formation comprises argillaceous mudstone, siltstone and labile sandstone and is generally believed to have low permeability due to diagenesis (Bashari, 1998). Gray (1968) reports the average porosity of the sandstone in the Rewan Formation is 16 to 17%.

Although both formations are represented across ATP 688, neither outcrops significantly in the area.

4.2.3 Permian Blackwater Group

The Blackwater Group hosts the economically important Late Permian fluviatile to fluviodeltaic coal-bearing sediments of the Bowen Basin: Rangal, Fort Cooper Coal Measures (FCCM) and Moranbah Coal Measures (MCM) in stratigraphic order from youngest to oldest. The thickness of the Blackwater Group exceeds 1500 m at the axis of the Bowen syncline, with FCCM approximately 400 m thick and MCM 250-300 m thick in the project area. The coal measures comprise consolidated, very low permeability interbedded layers of sandstone, siltstone, carbonaceous shale, coal, locally cherty mudstone, and minor conglomerate. These interbedded layers are very poor at transmitting and storing water, and therefore are not used in the area for stock or domestic purposes.

The coal seams within the MCM, from oldest to youngest, are referred to as A Seam, B Seam (Lower Goonyella), C Seam, E Seam (Middle Goonyella), P Seam, P Rider and Q Seam (Upper Goonyella) (QCoal, 2010). The coal seams of interest present within the project area are the A Seam, B seam, P Seam and Q Seam. The E seam is thin and/or discontinuous in the test areas and has been omitted from the model; the E seam thickness is incorporated into interburden thicknesses.

4.2.4 Lower Permian Back Creek Group

Two Lower Permian formations are significant in the ATP 688 region and form the Back Creek Group. The basal formation is the Lizzie Creek Volcanics comprising black shale and siltstone characterised by a hard-siliceous appearance, and form massive outcrops along the eastern margin of project boundary. This unit represents the low permeability basement within the project area.

Overlying the Lizzie Creek Volcanics is the Exmoor Formation. It consists of sandstone, siltstone, and mudstone with rare marine fossils (Draper, 1985a and b).

4.2.5 Hydrogeological Properties

A limited amount of permeability testing has been undertaken over the project area, and has mostly targeted the coal seams. For other HSUs, the data was obtained from literature and recent EIS studies in the Bowen Basin. A summary of values is provided in Table 5 along with the source of information. For this table, the relative conceptual behaviour of the hydrostratigraphic units in the lease area has been considered when identifying the formation type.

Formation	Туре	K _h [m/d]	K _v [m/d]	T [m²/d]	Sy [-]	Ss [-]	Data Source
Quaternary Alluvium	Aquifer	1 to 40	0.2-2		0.05-0.18	0.0005	2
		100	10		0.25	0.001	1
		0.7-1.5		6 to 15			3
		10	1		0.2	0.0001	7
		0.088-0.38					5
Tertiary Basalt	Aquifer	0.005-0.19					5
		0.05	0.005		0.05	0.00005	2
Clematis Sst	Aquifer	5-438			0.2		8

Table 5Summary of hydraulic properties for the major HSUs in the Bowen Basin (after CDM Smith
2013)

Formation	Туре	K _h [m/d]	K _v [m/d]	T [m²/d]	Sy [-]	Ss [-]	Data Source
Rewan Formation	Aquitard	0.00001 to 0.0001	0.000001 to 0.00001		0.005	0.000001	1
		0.00075	0.0000001		0.05	0.00005	2
		0.1			0.05	0.000005	6
Fort Cooper Coal Measures, Moranbah Coal measures and Rangi Coal Measures	Coal Seams, Aquifers	0.0028 to 0.47		0.008 to 1.9			4
				0.3 to 178.6			3
		0.000001 to 1	0.000001 to 1		0.01	0.000001	1
		0.000041 to 0.16	0.0000083 to 0.082		0.01	0.0000002	2
		0.111-0.9			0.08	0.0004	7
		5			0.05	0.000005	6
	Interburd en Aquitard	0.0001	0.0000000 7		0.05	0.00001	2
		0.1			0.05	0.000005	6
Back Creek Group		0.01-0.001	0.001 to 0.00001		0.03 0.18	5E-4 to 5E- 6	9

Source of data is 1: AGE (2006), 2: Ausenco-Norwest (2012), 3: JBT (2012), 4: Parsons Brinckerhoff (2011), 5: URS (2009), 6: BHP Billiton Mitsubishi Alliance (2009), 8: GSQ (1968), 9: URS (2012).

4.3 Conceptual Hydrological Model

4.3.1 Groundwater Flow Directions

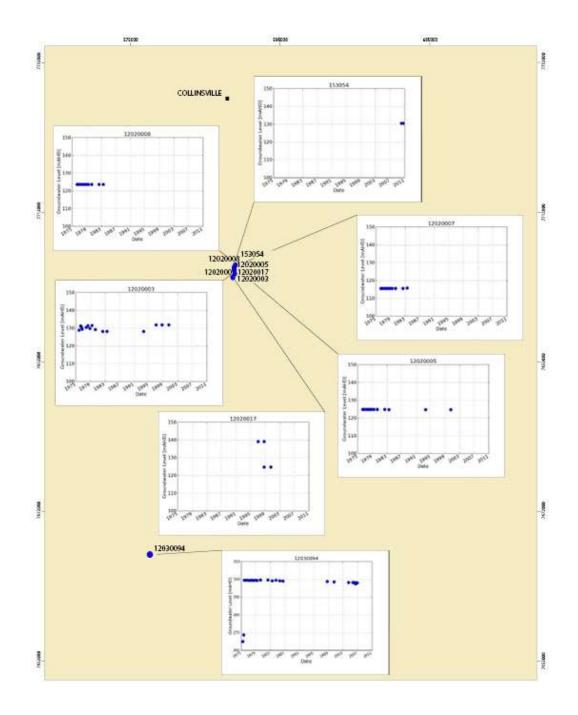
There is a total of 403 DEHP registered bores within 10 km of the ATP 688 boundary, completed in different aquifers. The bore locations are shown on Figure 2. Bores located near the active area in ATP 688 are presented in Appendix A. Of the total number of registered bores within the 10 km of the ATP 688 boundary, only 64 bores have installation details and depth to water measurements. For these bores, the ground elevations were interpreted from a detailed topographic contour map, and the groundwater level calculated by subtraction from the elevation. The accuracy is within ± 2m which is considered acceptable for this project.

CDM Smith (2013) noted that the water levels used to provide the base conditions have been acquired over an extended period and depth to water is assumed to be measured from an interpolated ground surface. Therefore, the data may not reflect current conditions and cannot be considered to have high accuracy. Nevertheless, the general flow directions in some aquifers can be interpreted based on the available information.

Within the shallow alluvium, water level elevations from different alluvial systems were mapped. The contoured water table reflects topographic elevations and the flow is associated with the valley alluvium. Available water level time-series data for the Alluvial aquifer is shown in Figure 6.

Insufficient groundwater data are available to contour potentiometric surfaces for other deeper units, such as the Blackwater Group, within the project area. Data available from

further south of the project area indicates a decline in potentiometric head within the Blackwater Group over the period 2007 to 2008, with a drop of over 5 m. Based on the available information in the deeper Tertiary and Permian units, the general groundwater flow direction is from the northwest to the southeast.


4.3.2 Aquifer Recharge and Discharge

Recharge to shallow alluvium occurs directly via rainfall recharge, with small volumes of leakage from the losing/ephemeral stream systems. Groundwater in the shallow alluvial aquifer is most likely connected to surface water drainage system. Vertical leakage and through-flow from the basalt aquifer may also contribute to groundwater recharge of the shallow alluvial aquifer.

Groundwater recharge to Triassic and Permian units occurs via direct recharge where these units crop out or are covered by a thin veneer (<5m) of surficial sediments over the central and southern regions of the project area. Where these are covered by younger basalt flows and Tertiary units, vertical leakage is possible.

The cumulative departure from mean rainfall (CDMR) method is often used to identify whether observed water level fluctuations are due to rainfall recharge or other processes. CDMR is the accumulated difference between the actual rainfall recorded (e.g. in a month or a year) and the long-term mean. If there is poor correlation between groundwater level hydrographs and the CDRM, it may be concluded that rainfall recharge is not significant, or that some other recharge processes are dominant (e.g. regional inflow, upward leakage from the deeper aquifer systems etc.).

The closest Bureau of Meteorology (BoM) rainfall station (Station number 033013) is located at Collinsville. The mean rainfall is 718.5 mm over the period of record from 1939 to 2013 (BoM, 2013b). The data from this station was used in the CDMR analysis, along with long term groundwater level data from four bores completed in the shallow volcanic and Back Creek group aquifers. These bores are located outside ATP 688, in the southern part of the ATP coverage.

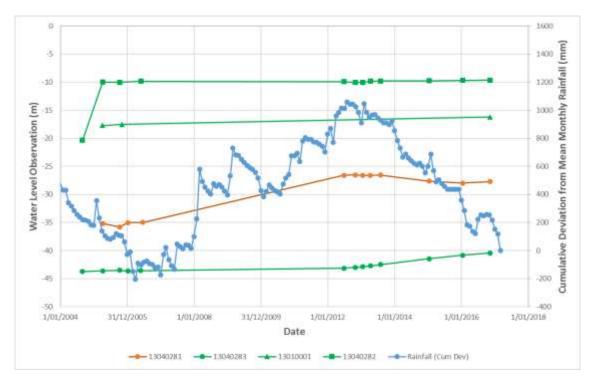


Figure 6 Available water table hydrograph data (after CDM Smith 2013)

The hydrographs available for the shallow volcanic and Back Creek Group bores have been plotted with yearly rainfall residual mass in Figure 7 to show the dependency of water levels on rainfall. The data for registered bores installed in the Back Creek Group indicate that the changes in shallow water levels are minor and the fluctuations over the past seven years have not exceeded 1-2 m on average. Bore 13040281, installed in basalt, shows a good correlation with rainfall trends exhibiting a rise in the standing water level of about 10 m following the period of higher than average rainfall during 2008 to 2013 and slight declines from 2013 to 2017 in response to a period of lower mean monthly rainfall. The water table in this unit is a subdued representation of topography and is controlled by evapotranspiration in low lying areas.

Trends in the observation bore 13040283 show a rising water level from 2013 to 2017, counter to the below average rainfall over the corresponding period. This trend may result from a

greater thickness of the overburden therefore infiltration takes considerably longer (>4 years) to reach the aquifer. Alternatively, the recovery in groundwater levels recorded in bore 13040283 may be associated with a lower pumping demand from this aquifer in the immediate area.

Figure 7 Cumulative departure from mean rainfall analysis for four bores where aquifer is known (after CDM Smith 2013)

The main groundwater discharge processes are regional lateral flow along hydraulic gradients, and evapotranspiration in addition to other minor discharge processes such as groundwater pumping.

4.3.3 Groundwater Level Trend Analysis

Limited data is available to enable analysis of the long-term groundwater trends within ATP 688 or nearby areas. Some analysis of trends has been provided in section 4.3.2. Around the lease area, temporal sequences of water level observations are available in a few cases, but the screened aquifer interval is not listed. For the most part, water level trends are stable over time and vary by less than 2 m.

4.3.4 Aquifer Connectivity

Northwest to southeast trending faults run through the project area resulting from tectonic activities after the Early Permian (Silwa et al. 2008). These faults exhibit significant throw and are thought to act as barriers to groundwater flow east-west across the faults. A review of groundwater levels in monitoring water bores on each side of the fault in the project area was inconclusive in determining whether the faults truly are sealing, as insufficient data exists.

Connectivity between underlying and overlying aquifers has not been assessed through pumping tests nor detailed isotopic analysis or hydrogeochemical characterisation. Generally, the shallow alluvial aquifer is separated from the Blackwater Group Coal Seams by low conductivity interburden and in some locations by the intervening Triassic formations. Review of water level observations was inconclusive, as many bores unfortunately do not list the screened interval or aquifer unit over which they have been completed.

4.3.5 Summary

The hydrogeological characterisation for ATP 688 can be summarised by the following key points, with reference to Figure 4a, Figure 4b and Figure 5:

- The sedimentary sequence comprises four hydraulic units (superficial Quaternary/Tertiary, Triassic, Permian coal seam groups, and lower Permian) with various hydraulic conductivities.
- The older Permian units outcrop over the central and northern part of ATP 688, while the Triassic units occur to the south.
- The presence of the Bowen Syncline in the centre of ATP 688 results in the whole sedimentary sequence dipping relatively steeply towards the syncline axis at about 10 to 30 degrees.
- The project area is bound to the northeast by the Collinsville Fault which extends along a north south axis (like other structures in the Bowen Basin), and further south by Cretaceous granite intrusions.
- To the west, the basement Carboniferous Bulgonunna Volcanics outcrop. Formations are strongly offset across faults and it is considered that the major faults represent barriers to groundwater flow.
- Groundwater flow in the low permeability Triassic and Permian strata is relatively slow and has long residence times; therefore, the groundwater quality is generally poor as the water slowly flows through the rock dissolving soluble salts. Available groundwater data indicate that the groundwater in the Permian and Triassic strata is saline.
- Groundwater flow in the shallow basalt and alluvium follows the topography. The flow in the Blackwater group is in a south-easterly direction. This interpretation is based on data collected over different time periods and within the outcrop zone only, and may not be entirely accurate.
- Water level contouring of the heads in alluvium and basalt demonstrates that heads correlate with topography, indicating recharge at higher outcrop areas and discharge at low-lying areas.
- In areas where the Permian strata outcrops and are not overlain by alluvium or basalt, the aquifer is unconfined to semi-confined. With depth, underlying units such as the Rewan Formation and Coal Measures become confined.
- The shallow aquifer system is recharged mainly through rainfall infiltration. Groundwater recharge occurs in areas of high relief where strata outcrops, as well as through better drained soils in the mid and lower slopes and in the valley where Permian rocks subcrop. Deeper hydrogeology units are recharged where they crop out at surface.
- Where the water table is shallow (<5 m bgl), evapotranspiration is considered a major aquifer discharge process.
- The aquifers which are most likely to be affected by underground water extraction include the Permian coal seams where pumping occurs, and the overlying superficial alluvial and basalt aquifers.

5 Part C: Predicted Impacts for Affected Aquifers

5.1 Modelling Methodology

Numerical groundwater modelling has been undertaken to provide estimates of decline in water level in response to the extraction of groundwater associated with pilot testing in ATP 688. The focus of the modelling is to identify aquifers likely to be affected by CSG pumping including impacts which occur above trigger drawdown levels in the Immediately Affected Area and Long Term Affected Area. The model developed by CDM Smith (2013) has been used to support this updated UWIR and the methodology and approach is largely reproduced from the UWIR for ATP 688, 2013.

5.1.1 Modflow-Surfact

The groundwater modelling package MODFLOW-SURFACT (Hydrogeologic Inc., USA) was selected to construct the required numerical model. SURFACT is an enhanced version of MODFLOW developed by the United States Geological Survey. MODFLOW is the most widely used code for groundwater modelling and is considered an industry standard.

The requirement of MODFLOW to retain laterally continuous model layers can result in numerous thin and mostly dry cells that can be problematic in areas where the water table extends across multiple layers, particularly in areas of steep topographic gradient. SURFACT is chosen in this study because it is better able to simulate these conditions and provides better numerical stability. SURFACT incorporates additional computational modules to enhance the simulation capabilities and robustness. The additional features include:

- The modelling of variable saturation conditions (allowing for complete desaturation conditions) thus avoiding dry-cell problems.
- Fracture porous media simulation with dual porosity.
- An adaptive time-stepping scheme automatically adjusts time-step size to the nonlinearities of the system to optimize the solution stability.
- Prevents water table build-up beyond a specified recharge-ponding elevation.
- More robust and efficient PCG matrix solver.
- Comprehensive mass budget based on mass-conserving algorithm.
- Available time-varying properties for hydraulic conductivity and storativity.

For predictive simulation, a pseudo-steady state model was constructed and calibrated to verify model conceptualisation and attain reasonable parameter ranges aligned with field measurements. The outcome of the steady-state model was used as initial conditions for the transient predictive model. Uncertainty analysis was conducted for predictive simulations through several predictive simulations to further quantify impacts from parameter uncertainty.

5.1.2 Model Domain

Numerical groundwater modelling was completed in the region surrounding the active exploration areas within ATP 688, where current and planned activities are focused. The model has been constructed to focus on potentially affected aquifers and to present conservative (worst-case) results. As the Bowen Basin is a syncline, the model domain was selected to encompass the outcrop of the Moranbah Coal Measures and the overlying superficial sediments (refer Figure 4a).

Significant faulting occurs in the region and sediments to the east of the faults are upthrown. In the east of ATP 688, the large faults are conceptually assumed to act as no-flow barriers and bound the active model domain, as no Coal Seam Gas production or testing occurs east of the fault. In the centre of the model domain, a mid-Triassic thrust fault extends through the active region. The south-eastern boundary of the transfer zone between the middle and eastern bounding faults has been selected to act as a conservative no-flow barrier. This no-flow assumption will cause the model to predict the largest drawdown in the immediate area of the production testing bores, as additional extraction water cannot be obtained from surrounding formations on the opposite side of the faulting.

5.1.3 Model Grid

The model domain covers a total area of 3,149 km² and has an active area of 1,622 km². The model grid comprises 67 rows, 47 columns and 18 layers, giving a total of 56,682 cells (29,196 active cells). The grid and associated boundary conditions is shown in Figure 8. A uniform column and row spacing of 1 km is assigned. The model grid discretisation is coarse and is considered commensurate with the current understanding of the site hydrogeology. Refinement of the model grid is not considered warranted at this stage as it would not be expected to increase the confidence level of model predictions without additional site specific data.

5.1.4 Model Layers

The distribution of model layers is designed to approximate the presence of key geological structures and their control on the regional groundwater flow system. These include north-south striking, low angle thrust faults and associated duplication of stratigraphy.

A significant fault is aligned along a northwest - southeast axis through the model domain. Considerable geologic offset occurs across this unnamed mid-Triassic thrust fault. The presence of low angle thrust faults is simulated using separate model layers to represent the duplication of the same hydrostratigraphic units. Due to the requirement of SURFACT to maintain laterally continuous layers, a larger number of "dummy" layers with reduced thickness are generated in areas where the hydrostratigraphic units are interpreted to terminate against the faults or pinch out.

The hydrostratigraphic units represented by each of the 18 model layers are summarised in Table 6. The term "pinched out" refers to where the model layer is reduced to a minimum thickness.

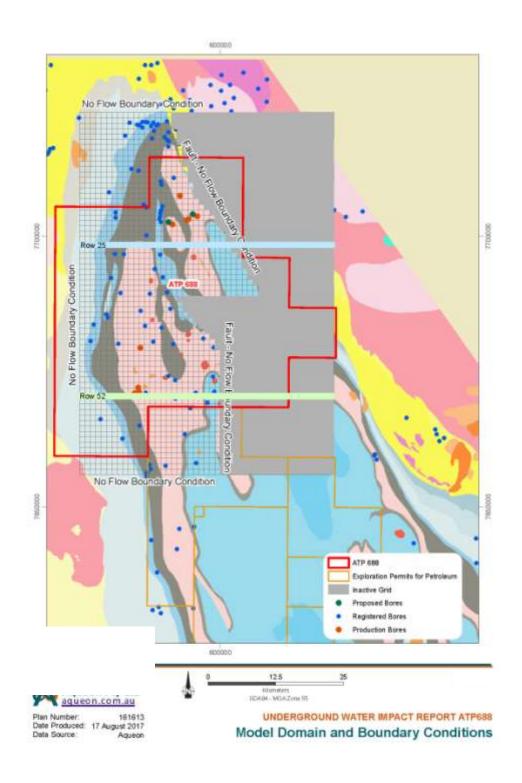


Figure 8 Model Domain and Boundary Conditions

Table 6 Stratigraphic representation in model layers

1	Stratigraphic Unit					
Layer	West of Fault	East of Fault				
1	Alluvium/Basalt	Alluvium/Basalt				
2	Pinched out	Rewan Formation Blackwater Group (Moranbah / Fort Cooper / Rangal Coal Measures) above Upper Goonyella Coal Seam				
3	Pinched out	Upper Goonyella Coal Seam				
4	Pinched out	Interburden 1				
5	Pinched out	P Seam				
6	Pinched out	Interburden 2				
7	Pinched out	Lower Goonyella A Coal Seam				
8	Pinched out	Interburden 3				
9	Pinched out	Lower Goonyella B Coal Seam				
10	Pinched out	Interburden 4				
11	Interburden 1	Back Creek Group (Exmoor)				
12	P Seam	Back Creek Group (Exmoor)				
13	Interburden 2	Back Creek Group (Exmoor)				
14	Lower Goonyella A Coal Seam	Back Creek Group (Exmoor)				
15	Interburden 3	Back Creek Group (Exmoor)				
16	Lower Goonyella B Coal Seam	Back Creek Group (Exmoor)				
17	Interburden 4	Back Creek Group (Exmoor)				
18	Back Creek Group (Exmoor)	Back Creek Group (Exmoor)				

To determine the extent of the Goonyella aquifers, a combination of the geological map and available borehole logs from Mount St Martins and Tilbrook gas wells were used to infer the base of the Moranbah Coal Measures. The borehole logs were averaged to determine the thickness of the associated coal seams and the interburden, which were laid on top of the MCM base. The model includes four coal seams of interest to the project and their assumed thickness to the west and east of the faults is summarised below. The stratigraphic pile was then filled in with the overlying interburden and Rewan Formation. The horizontal extent of the coal seam aquifer is shown in maps of the predicted drawdown (refer Section 5.2).

The top layer of the model is intended to represent the water table aquifer, comprising alluvium and Tertiary basalt. A uniform thickness of 20 m is assumed for this layer, based on bore log stratigraphy. The unconsolidated aquifer extends across the entire model domain. Figure 9a and Figure 9b present model cross sections, where the locations of the cross sections are indicated in Figure 8. The cross section, Figure 9a shows numerical representation of the duplication of hydrostratigraphic units associated with thrust faulting.

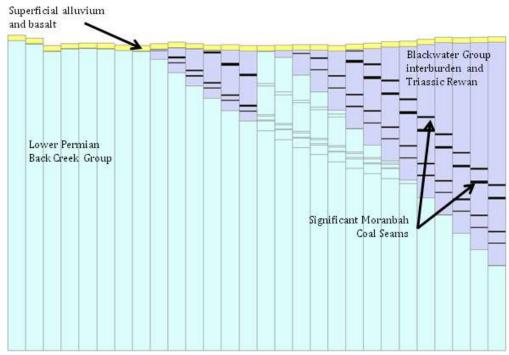


Figure 9a Cross sections through the model domain Mt. St Martins gas field (row 25)

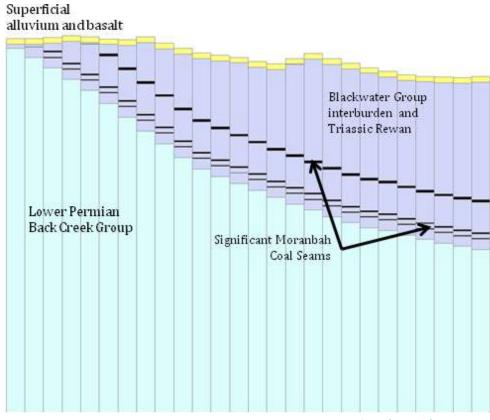


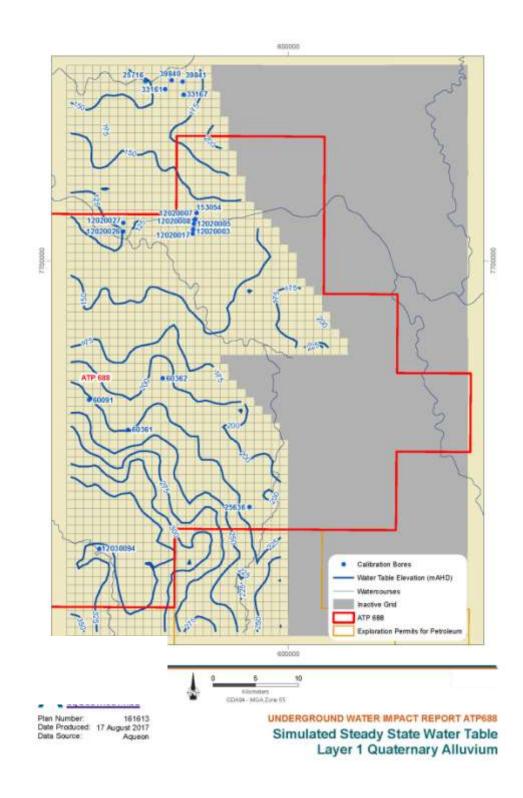
Figure 9b Cross section through the model domain Tilbrook gas field (row 52)

Lover	Thickness			
Layer	West	East		
Upper Goonyella Coal Seam	Absent	8		
Interburden 1	Absent	40		
P Seam	10	10		
Interburden 2	107	117		
Lower Goonyella A Coal Seam	6	6		
Interburden 3	15	40		
Lower Goonyella B Coal Seam	4	4		
Interburden 4	36	81		

Table 7 Coal seam and interburden thickness in Moranbah Coal Measures

5.1.5 Boundary Conditions

A no flow boundary condition is assigned around the perimeter of the model. It is assumed that there is limited hydraulic connection across the fault to the east of the Mount St Martins and Tilbrook gas field, as shown in Figure 8. The assumption of no flow boundary is conservative and is considered appropriate given the uncertainty in the site hydrogeology and broader hydrogeology beyond the model domain.


A uniform recharge rate of 36.5 mm/a is assigned to the uppermost active cells to represent the background rainfall derived recharge, which represents 5% of average annual rainfall (BoM, 2013a). Evapotranspiration is simulated using MODFLOW's Evapotranspiration (ET) Package. An ET rate of 2 m/a. was assigned to the top layer of the model with an extinction depth of 5 m. The evaporation rate is like the annual areal potential rate of 1.8 m/a. (BoM, 2013b).

The implication of the selected boundary conditions is that under baseline conditions, all the recharge into the model is balanced by ET. Any water removed from simulated production activities will derive from aquifer (and bounding aquitard) storage. The volume of water removed by ET will change if the simulated production activities result in drawdown at the water table where the water table lies within the specified ET extinction depth. Hence these boundary conditions create a conservative model where CSG production will directly impact water levels.

5.1.6 Calibration

The available groundwater level data indicate that the water table is a subdued reflection of topography, with recharge occurring in areas of topographic high and discharge in areas of topographic low. The interpreted groundwater flow direction is to the north. Few groundwater level data from deeper hydrostratigraphic units were available for calibration.

The groundwater table elevation as simulated in the model at the end of 2012 is shown in Figure 10. Calibration to 2012 groundwater levels has been used to be consistent with the initial 2013 UWIR. The topographical control on the baseline water table is simulated by ET.

Figure 10 Simulated Steady State Water Table Layer 1 Quaternary Alluvium

Due to the choice of boundary conditions, the simulated water table is not strongly sensitive to the assumed hydraulic properties and does not assist in constraining the hydraulic properties. Rather, the objective of the steady state calibration presented here is to establish a set of initial conditions for predictive simulations that are consistent with the available hydraulic head information and assumed hydraulic properties.

Figure 11 presents the scatterplot of observed hydraulic head against simulated hydraulic head for the steady state model. No transient model calibration was undertaken as part of this assessment due to insufficient observed data.

The calibration statistics (RMS Error = 14.8% and residual mean = -13.46) result in a good fit between the observed and predicted water levels indicating that the model is fit for the intended purposes. The mass balance of the steady state calibration model reports total inflows from recharge of 162200 m3 and total outflows from evapotranspiration of 162209 m3 for the entire model domain. This is a very low discrepancy of 0.006% and is considered acceptable for this model.

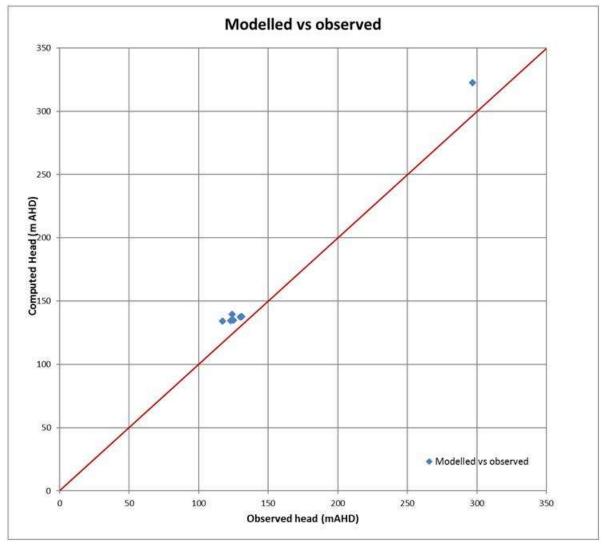


Figure 11 Calibration scatterplot of simulated hydraulic head versus observed hydraulic head for steady state model

The calibrated estimates of hydraulic properties are presented in Table 8. All values fall within the range presented in Table 5 Section 4.2.5.

Unit	К _н (m/d)	K _v (m/d)	Ss	Sy		
Alluvium / Basalt	1	0.1	1 x 10 ⁻⁶	0.05		
Interburden	1 x 10 ⁻⁴	⁻⁵ 1 x 10	1 x 10 ⁻⁶	0.01		

Table 8 Calibrated model hydraulic properties

Coal Seams (Upper Goonyella Seam, P Seam, Lower Goonyella A and B Seams)	0.05	0.005	1 x 10 ⁻⁶	0.01
Back Creek Group	1 x 10 ⁻⁴	1 x 10 ⁻⁵	1 x 10 ⁻⁶	0.01

5.1.7 Prediction Methodology

The predictive simulations consider the potential impacts to groundwater due to the proposed production testing program. The coal seams are interpreted to subcrop beneath the alluvium/basalt to the west, following the surface of fault planes. The production tests will drawdown the water levels within the targeted coal seams and bounding hydrostratigraphic units. Possible pathways of drawdown impacts to the water table include lateral flow via coal seams and vertical flow via overburden.

The transient model covers the period from 2008 onwards. The initial conditions are the steady- state water levels described in Section 5.1.6. Historical produced water (Table 2), as described in Section 3.1, is included in the transient model. With the cessation of pumping, post 2010 zero values for water produced have been assigned to each production well in the model for the period 2011 to 2016 (Table 3). Table 1 lists those exploration wells that have been plugged and abandoned across ATP 688 and therefore these wells have not been included in the modelling as active.

There are no immediate plans to resurrect exploration activities in ATP 688 for the purposes of this model. However, a production testing program comprising seven gas wells in the Mount St Martins gas field and three gas wells in the Tilbrook gas field has been applied (Table 9). Testing is assumed to recommence in both the Mount St Martins and Tilbrook gas fields in 2017. Production testing at both gas fields is simulated to the end of 2019 at an average estimated water production rate of 13 m³/d (kL/d) for each well except for Tilbrook 7 and 9. The water production rates are averaged derived from the historical pumping rates described in Table 2.

Water production from gas wells is simulated using MODFLOW's WELL package by prescribing the production rate. The wells are assumed to be fully screened across the thickness of the target coal seams. It is understood that some, if not all, of the proposed production wells will be completed as horizontal wells, extending some 600 to 700 m laterally into the target coal seams. This length is less than one cell discretisation. Whilst it is recognised that the lateral extensions may traverse across cell boundaries, the use of vertical well is considered sufficient for simulating the regional effect of water production due to the coarse grid discretisation adopted in this assessment.

Well	Easting	Northing	2017	2018	2019
Mount St Martins 2	595719	7703783	4,770.9	4,770.9	4,770.9
Mount St Martins 4	591205	7702246	4,770.9	4,770.9	4,770.9
Mount St Martins 3	593824	7703118	4,770.9	4,770.9	4,770.9
Mount St Martins 1	594168	7703291	4,770.9	4,770.9	4,770.9
Mount St Martins 5	592560	7707579	4,770.9	4,770.9	4,770.9
Mount St Martins 04L2 ^[1]	590406.7	7702730.5	4,770.9	4,770.9	4,770.9
Mount St Martins 04L1 ^[1]	594931	7704194.7	4,770.9	4,770.9	4,770.9
Tilbrook8	584934	7671295	4,770.9	4,770.9	4,770.9

Table 9 Projected average water production rates in 2017 to 2019 (kL/year)

Well	Easting	Northing	2017	2018	2019
Tilbrook 7	584642	7671022	1,176.4	1,176.4	1,176.4
Tilbrook 9	584874	7672065	1,176.4	1,176.4	1,176.4
Total (kL)			40,520.0	40,520.0	40,520.0

Note: [1] New production wells that may be installed in the future if exploration activities with ATP 688 resume within the next 3 years.

Several combinations of coal seams may be targeted depending on the thickness of seams encountered at the test locations. As there is some uncertainty in the coal seams proposed to be targeted at each location, pumping has been prescribed to the top two coal seams (Q/Upper Goonyella and P Seams) at Mount St Martins gas field and to the uppermost coal seam (P Seam) at the Tilbrook gas field. These coal seams are interpreted to be thicker than the underlying seams and pumping from these shallower seams would provide more conservative estimates of the potential groundwater impacts.

The transient model continues simulating in time to investigate any long-term effects of the proposed pumping.

It is acknowledged that the current generation of regional groundwater flow models, including this model, are not capable of simulating localised drawdown at production wells and the associated two-phase flow of water and gas in the near-area of the wells. The implication of neglecting two- phase flow is that drawdown at the wells is likely to be underestimated at the well bore, but may be more appropriate for the well grid cell. The assessment of localised two-phase flow effect is beyond the scope of this project and is not considered warranted for assessing the regional scale impact to groundwater due to the proposed production tests.

5.1.8 Predicted Water Use Used in the Model

Modelling to predict the Immediately Affected Area and the Long Term Affected Area if exploration activities should resume within the next three years uses the same assumptions as the model constructed by CDM Smith (2013) with the addition of two new wells (Table 9).

The projected water production rates at each well have been derived by averaging historical water extraction measured during pilot tests in the high water-yielding Tilbrook wells. Note that coal seam gas wells normally produce less water after the first few years as the reservoir pressure decreases and gas production increases. The theoretical production rates for 2017 to 2019 are shown in Table 9 with extraction volumes listed in kilolitres per year. The maximum total extraction from 2017 to 2019 if exploration activities resume across both the Mount St Martins and Tilbrook gas fields is estimated to be 121,560 kL.

These extraction volumes are used in the numerical model. This model presents a very conservative estimate of the impacts as it assumes activities will commence late in 2017; however, under current plans for ATP 688 this is unlikely to be the case.

5.2 Underground Impact Affected Areas

Model outputs of predicted water level decline for each affected aquifer are provided in Figure 11 to Figure 16. In Section 5.2.1, water level decline contours are presented for the Immediately Affected Area, associated to the pumping period (from 2016 to 2019). The effects remaining after the end of pumping in 2019 are then discussed.

5.2.1 Predicted Water Level Decline Maps

The Water Act defines the trigger threshold in the water level decline as 5 metres for a consolidated aquifer and 2 metres for an unconsolidated aquifer. In the groundwater model, the Quaternary Alluvium in layer 1 is defined as unconsolidated. All other aquifer layers are classified as consolidated. The results from simulations are divided in two categories:

- the Immediately Affected Area and
- the Long Term Affected Area.

The Immediately Affected Area shows zones impacted in the next three years in this case 2016 to 2019. The Long Term Affected Area shows the zones impacted at any time following the three-year period.

5.2.1.1 Immediately Affected Area

The groundwater numerical modelling has been carried out to provide estimates of declines in water level in response to the extraction of groundwater associated with pilot testing in ATP 688. For this model, future groundwater extraction has been estimated from historical pumping during production testing. Two additional wells MSM04L1 and MSM04L2 have been proposed in the Mount St Martin's area (refer Figure 2); however, there is no certainty that these wells will be constructed now. For completeness, these additional two wells have been included in the modelling. Pumping is assumed to commence in 2017 at the same rates as Mount St Martin's model of from 2017. If these new wells are not installed the present model results over-predict the affected area.

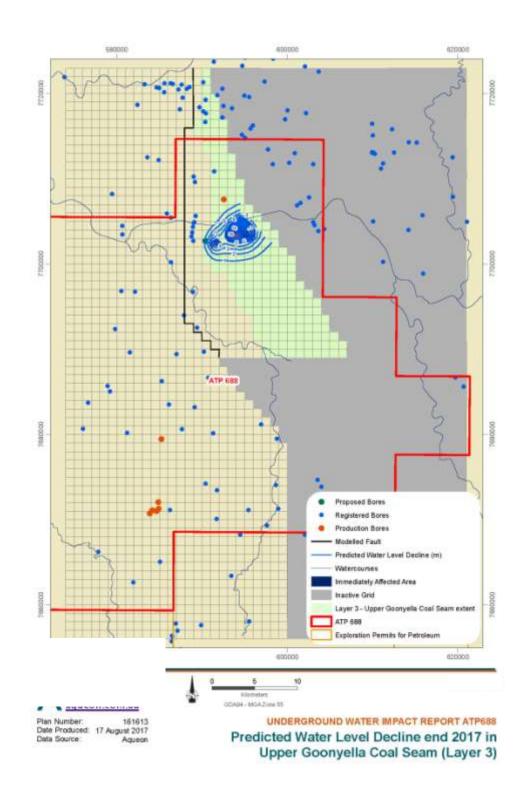
As expected, the addition of the two new wells in the Mount St Martins area pumping at annual rates of 4770.9 kL/a for the period 2017 to 2019 result in a larger Immediately Affected Area than the previous the previous modelling predictions (CDM Smith, 2013).

During CSG pumping, water level decline is observed in three different aquifers, all of which are coal seams: Upper Goonyella Coal Seam, Goonyella P Seam and Lower Goonyella A Coal Seam. No drawdown is present in the Quaternary Alluvium during that period. Water level declined caused by pumping in the impacted layers (where drawdown is greater than 5 m) at the end of years 2017, 2018 and 2019 is presented on Figure 12 to Figure 17.

Bores at Mount St Martins are pumping in the Upper Goonyella Coal Seam and Goonyella P Seam east of the fault. Maximum drawdown is observed at the end of pumping in 2019 in all impacted layers. In both the Upper Goonyella Coal Seam and the Goonyella P Seam (refer Figure 15 to Figure 17), the drawdown is predicted to be greater than 5 m for the first three years under the assumed pumping regime. Drawdown in aquifers caused by extraction at the Mount St Martins bores is localised in both coal seams. No registered water bores are located within these Immediately Affected Areas.

Tilbrook wells begin underground water extraction later than the Mount St Martins bores. Tilbrook 08 continues extraction during 2017 and Tilbrook 07 and 09 commence extraction in 2017. All wells are pumping from the Goonyella P Seam in the segment west of the fault. Again, maximum drawdown is observed at the end of pumping in 2019. In Figure 16, the water level decline exceeds 5 m in the Goonyella P Seam (layer 12). No significant drawdown (greater than 5 m) is observed in the underlying coal seams. Drawdown from the Tilbrook wells is greater than the 5 m trigger threshold only in the Goonyella P Seam at the end of pumping in 2019.

No registered water bores are situated within this Immediately Affected Area.


5.2.1.2 Long Term Affected Area

The modelled pumping in the Mount St Martins and Tilbrook bores is assumed to stop at the end of 2019 as part of this UWIR. After pumping, a recovery process starts whereby the water level drawdown decreases because of the removal of the pumping stress and lateral inflow from the regional aquifer system. At the end of 2020, almost all aquifers have fully recovered. A residual drawdown of approximately 2 m is visible in layers 3 and 5, corresponding to the Upper Goonyella Coal Seam and the Goonyella P Seam, east of the fault near the Mount. St.

Martins field. At the end of 2022 (three years after pumping), all aquifers have fully recovered. Therefore, there are no Long Term Affected Areas in ATP 688.

5.2.2 Water Bores in the Immediately Affected Area

Exploration activity in ATP 688 has been scaled back and no water has been produced from CSG activities post 2013. As no water has been produced, there is currently no Immediately Affected Area since September 2016. As discussed in Section 5.2.1, water level declines greater than the 5 m trigger threshold are observed in the Goonyella P Seam from the Tilbrook bores, and in the Upper Goonyella Coal Seam and Goonyella P Seam from the Mount St Martins bores. The impacted area is quite localised and no registered water bores are situated within the Immediate Affected Areas.

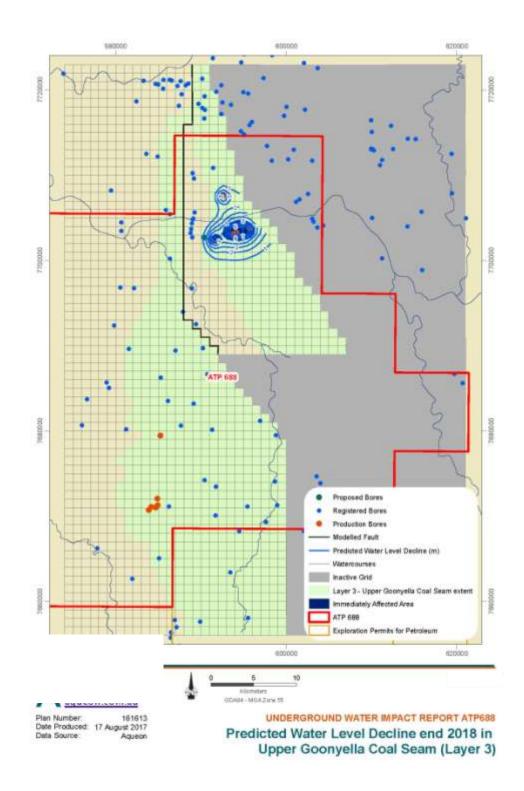


Figure 13 Predicted water level decline end 2018 in Upper Goonyella Coal Seam (Layer 3)

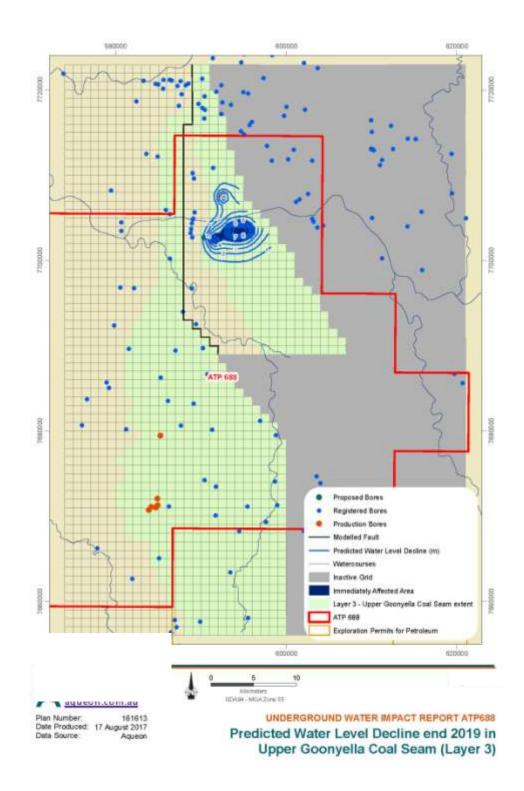


Figure 14 Predicted water level decline end 2019 in Upper Goonyella Coal Seam (Layer 3)

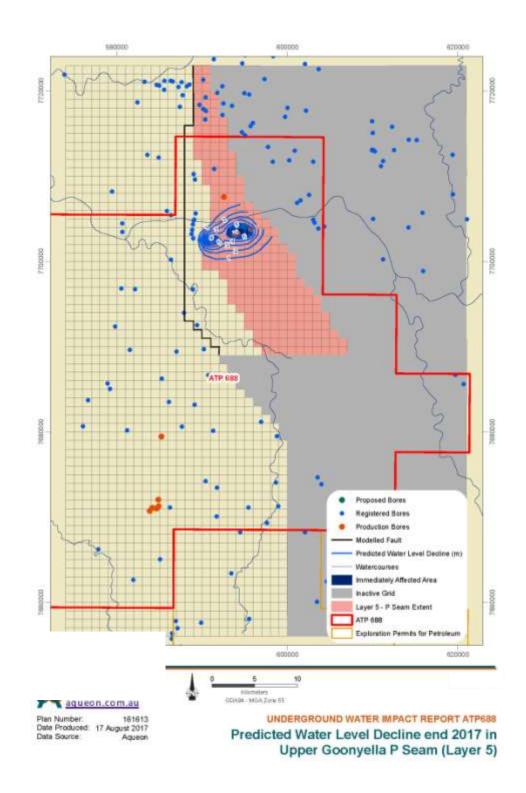
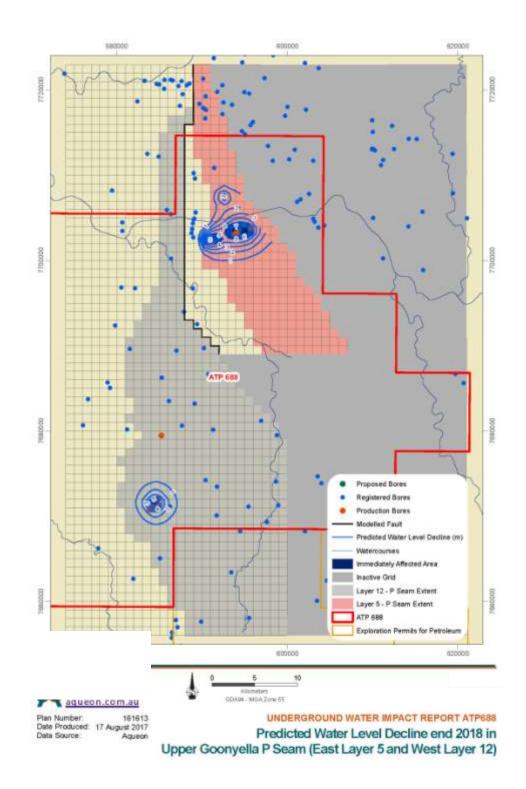
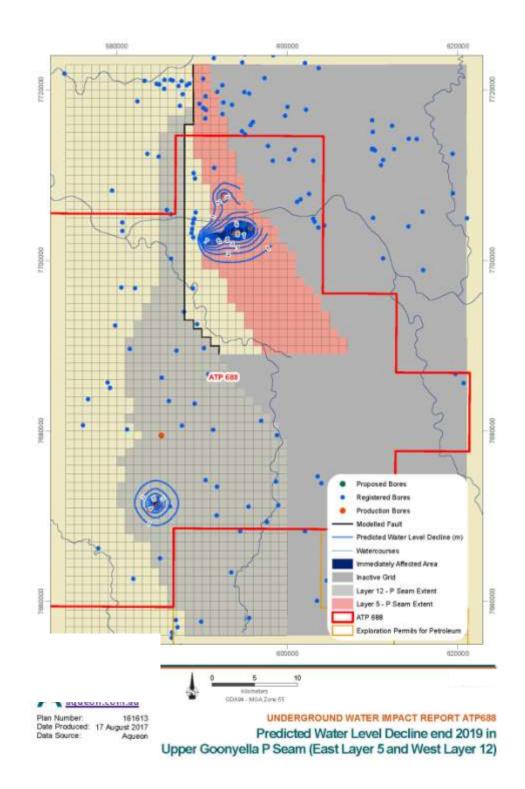




Figure 15 Predicted water level decline end 2017 in Upper Goonyella P Seam (Layer 5)

5.3 Sensitivity to Model Parameters

Prediction uncertainty arises mainly because of ambiguities in model conceptualisation and model parameters due to lack of measured data. The effects of alternative conceptualisations on the calibrated model were not explored in this study because the alternatives were considered very limited and the current model has been built based on the best available information.

Results presented in the previous section are based on calibrated parameters which lie within the range of previously measured or estimated values. The predicted results depend upon the conceptual hydrogeological model, associated parameter values, and a projected water extraction scenario. Some level of uncertainty exists within all these factors. To address the sensitivity of model results to one of these factors, two alternative parameter sets were used in additional predictive runs.

The model is particularly sensitive to hydraulic conductivity and only moderately sensitive to changes in storativity. Parameter uncertainty was explored through adjusting selected parameters, which were likely to impact on predictive drawdown.

As the projected CSG extraction occurs in the Goonyella Coal Seams, the hydraulic parameters associated with this formation will impact the projected drawdown. A factor was applied to previous calibrated horizontal and vertical hydraulic conductivity parameters in each coal seam (refer Table 8) to generate a "best case" and "worst case" scenario.

For the best-case scenario, hydraulic conductivity in the coal seams was increased by an order of magnitude. For the worst-case scenario, hydraulic conductivity in the coal seam was decreased by an order of magnitude. None of these new parameter values have been calibrated against observed data and may not adequately represent the actual state of the system, but can inform the process provided by the UWIR.

Maps of predicted water level decline for each affected aquifer are provided as part of this report. Results are first presented for the Immediately Affected Area associated with the pumping period (from 2016 to 2019). The longer-term effects remaining after the end of pumping in 2019 are next discussed for each sensitivity scenario.

5.3.1 Best Case Scenario

For the best-case scenario, hydraulic conductivity values are greater than the calibrated ones by a factor of 10. Increasing the conductivity creates smaller maximum drawdown, but the total affected area is expected to be greater.

Simulation results have shown that at the end of 2019, maximum drawdown is less than 5 m in every model layer. One year after the end of pumping (end of 2020), all layers have fully recovered.

5.3.2 Worst Case Scenario

The worst-case scenario is designed to illustrate what impacts might be predicted if calibrated hydraulic conductivity values are divided by 10. By decreasing the hydraulic conductivity, it is expected that the maximum drawdown will be greater, and spread further around the groundwater extraction bores.

Simulation results from this scenario show that all coal seams present in the model exhibit drawdown caused by the proposed CSG pumping and have Immediately Affected Areas. Also, Long Term Affected Areas are simulated for this worst-case scenario.

5.3.2.1 Immediately Affected Area, Worst-Case

During water extraction for CSG operations, water level decline has been predicted in three different seams of the Goonyella Coal Seam aquifer in the base case scenario. For the worst-case scenario, increased drawdown is expected in four different coal seams: Upper Goonyella Coal Seam, Goonyella P Seam, Lower Goonyella A Seam and Lower Goonyella B Seam. As in the base case, no drawdown is observed in the Quaternary Alluvium during the pumping period (2016 to 2019). Immediately Affected Areas, where water level decline greater than 5 m at the end of years 2017, 2018 and 2019 are mapped in Figure 12 to Figure 17.

Bores at Mount St Martins are pumping in the Upper Goonyella Coal Seam and Goonyella P Seam east of the north-south trending thrust fault. As expected, maximum drawdown is observed at the end of pumping in 2019 in impacted layers. Maximum drawdown is greater than in the base case by up to three times. However, the worst case Immediately Affected Area does not change greatly from the calibrated predictions (see dark blue area on figures in Section 5.2.1.2 and this section). Again, no registered water bores are situated within the predicted Immediately Affected Area.

Tilbrook pumping wells are pumping from the Goonyella P Seam in the segment west of the fault from 2017. Again, maximum drawdown is observed at the end of pumping in 2019. Water level decline exceeding 5 m (Immediately Affected Area) is observed in the Goonyella P Seam (layer 12), and in the Lower Goonyella A and B Seams (Figure 18 to Figure 22). No registered water bores are situated within this Immediately Affected Area.

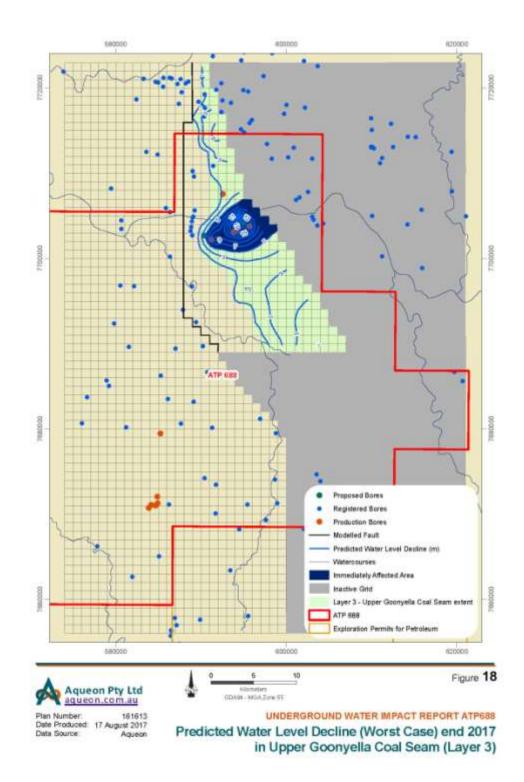
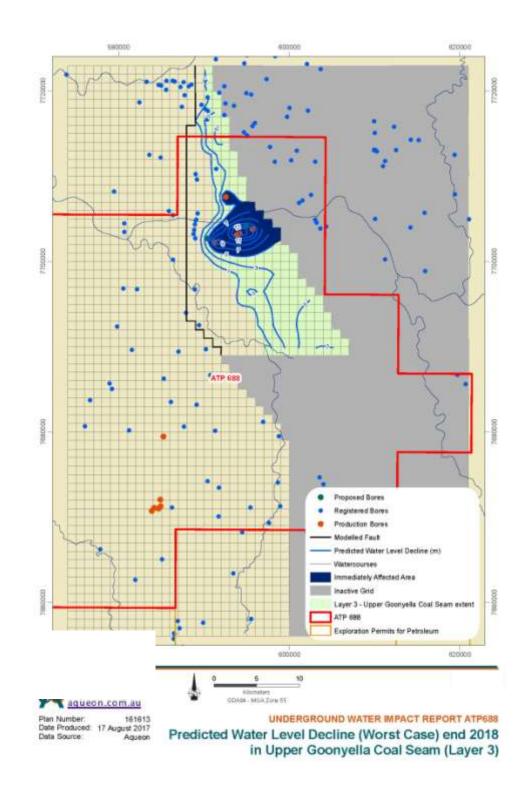
No steady state calibration has been performed using these best case/worst case parameters. The sensitivity parameters allow an estimate of how a change in parameters can provide information on the uncertainty in predictions.

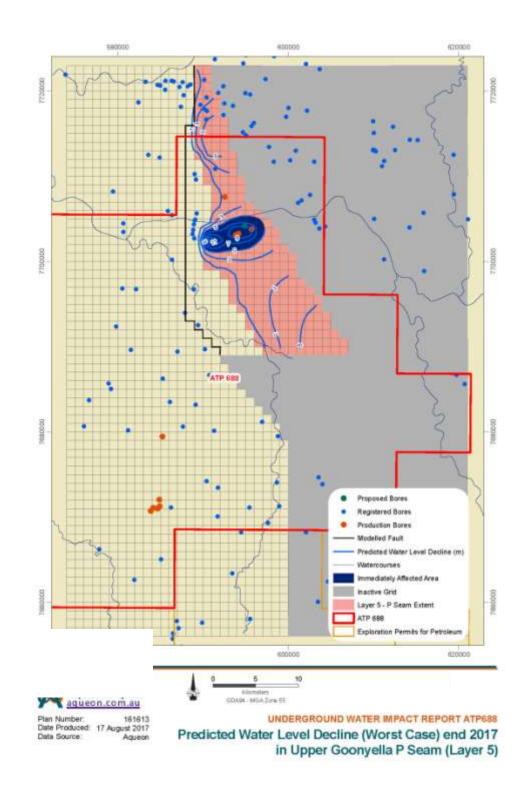
5.3.2.2 Long-Term Affected Area – Worst Case

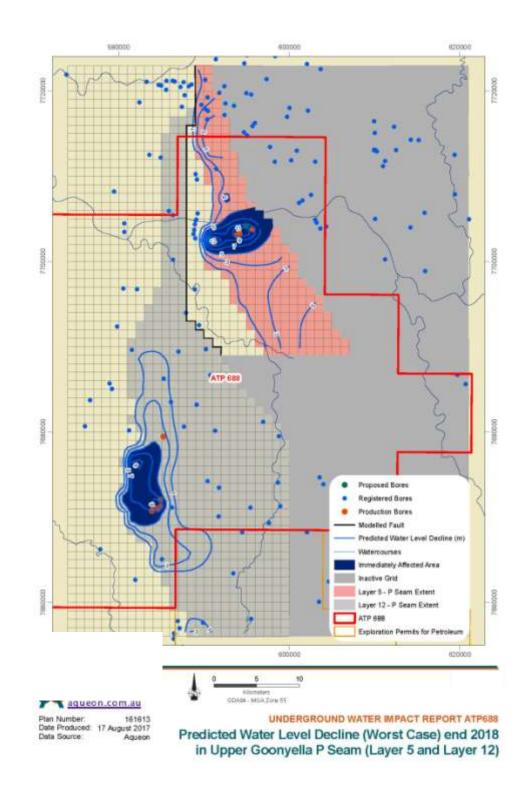
Following the end of proposed underground water extraction in 2019, the worst-case model was run for a long period to track the groundwater system recovery. In the calibrated base case scenario, no Long Term Affected Areas were predicted. For the worst case sensitivity run, significant effects are still visible years after the end of pumping. Simulated results indicate that it takes up to 5 years before all coal seams have water level declines less 5 m. Hence the worst-case scenario does predict Long Term Affected Areas.

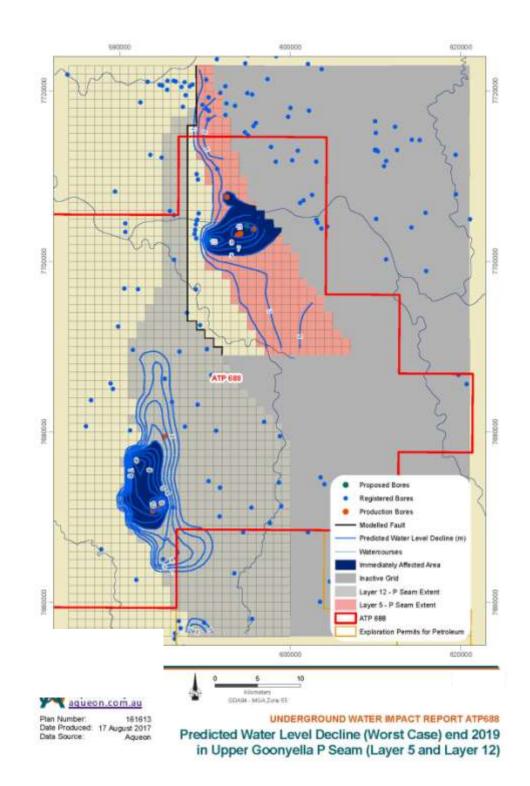
Figure 23 to Figure 25 present the Long Term Affected Area at the end of 2020, a year after CSG pumping stops, and the date when the predicted drawdown is the greatest. These figures show that four coal seams are still strongly affected by the pumping. All model layers begin to recover in 2020, showing decreasing drawdown. No registered bores are situated within the Long Term Affected Areas suggested by the worst-case scenario.

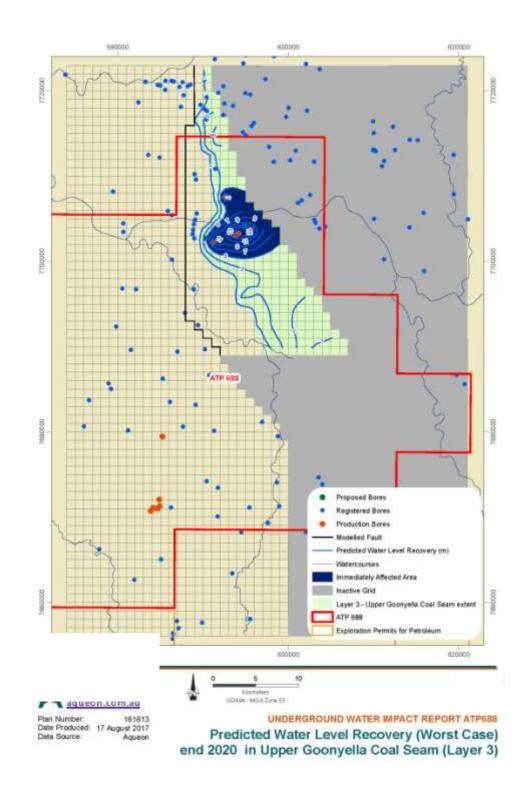
The sensitivity runs of this section demonstrate that changing model parameters can produce either no reportable drawdown and no Immediately Affected Area, or can slightly increase the area of the Immediately Affected Area and generate Long Term Affected Areas. The Water Monitoring Strategy in Appendix B addresses this uncertainty with additional data collection.


Figure 18 Predicted Water Level Decline (Worst Case) end 2017 in Upper Goonyella Coal Seam (Layer 3)






Figure 21 Predicted Water Level Decline (Worst Case) end 2017 in Upper Goonyella P Seam (Layer 5)

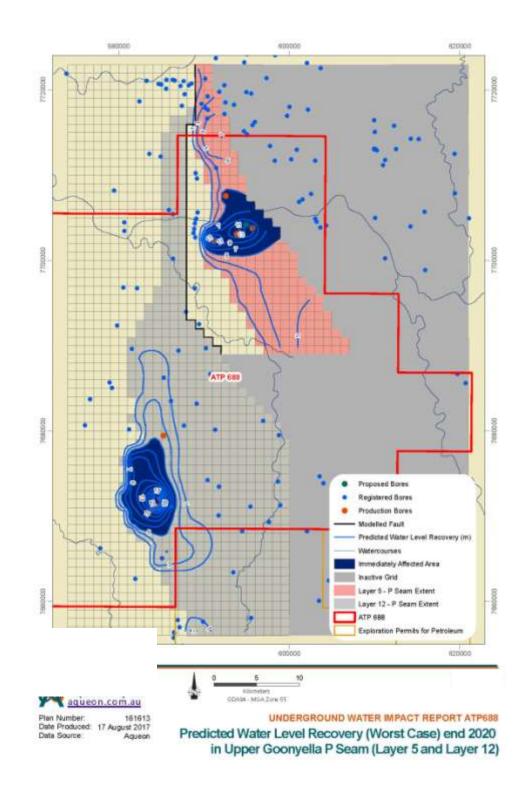


Figure 25 Predicted Water Level Recovery (Worst Case) end 2020 in Upper Goonyella P Seam (Layer 5 and Layer 12)

5.4 Model Limitations

All results presented within this report need to be considered with the assumptions and limitations inherent with numerical modelling of complex hydrogeological systems. A few of the more noteworthy limitations of this model are listed below:

- The model uses porous media flow methodology where mixed porous media and fracture flow is believed to occur. This is a problem with all models in which specific properties are not assigned to specific fractures or fracture zones.
- Applied stresses/timing are generalised because the observed data such as extraction pumping rates are somewhat erratic and are assumed from initial, but limited production testing.
- Whilst near-field geology is well understood, the properties of the basement rocks outside a radius of ~1 km are assumed.
- An average of volumes pumped during previous testing has been applied as the pumping regime to predict the immediate area and long-term impacts. This results in a likely overestimation of the affected areas.
- The current generation of regional groundwater flow models, including this model, are not capable of simulating localised drawdown at production wells and the associated two-phase flow of water and gas in the near-area of the wells.
- In the absence of any other information pumping associated with the possible installation of two new wells is assumed to commence in 2017. If pumping does not commence from these wells in early 2017 the model results presented here overpredict the affected areas.
- Data of depth to water used in calibration is spread over several years (2006 to 2012) and no new water level data is available post 2012.
- The exact extent of aquifer interconnection vertically or latterly is not accurately known.
- The model assumes test pumping takes place at rates similar to historical rates from the active wells. This provides a conservative case and is likely to overpredict any immediately affected or long-term affected area

5.5 Key Findings

The report identifies the extent of Immediately Affected Areas and Long Term Affected Areas above the trigger levels by predicting drawdowns caused by underground water extraction. The pumping rates used in the simulations have been based on historical rates plus assumptions that two new bores will be established in the Mount St Martins area. It should be noted that if modelled underground extraction rates are not reached, the predictions in this model over-estimate both the Immediately Affected Area and the Long Term Affected Area.

Groundwater modelling, using the best available parameters, leads to the prediction that there will be Immediately Affected Areas at ATP 688 only in the coal seams where extraction takes place. There are no reportable impacts in the overlying alluvium and basalt aquifer. After pumping ceases, groundwater elevations recover and there are no Long Term Affected Areas.

These findings depend upon several assumptions, documents, and data sources, which should be reviewed regularly to maintain accuracy of the maps. Reviews are particularly important whenever the modelling assumptions or data change significantly. For example, if regional faults are found to be permeable to groundwater flow, the model results should reflect the propagation of underground water decline along and across the faults. This modification to an underlying assumption may change (decrease or increase) the extent of the simulated Immediately Affected Area.

6 Part D: Impacts on Environmental Values

To meet the requirements of the Water Act, an UWIR must include the following:

- A description of the impacts on environmental values that have occurred, or are likely to occur, because of any previous exercise of underground water rights (section 376(da) of the Water Act);
- 2. An assessment of the likely impacts on environmental values that will occur, or are likely to occur, because of the exercise of underground water rights (section 376 (db) of the Water Act)
 - a. for a three-year period starting on the consultation day for the report; and
 - b. over the projected life of the resource tenure.

The DEHP guidelines for preparing the UWIR identifies the following considerations are required:

- Identification and description of the Environmental values within the Tenement Area.
- Nature and extent of any predicted impacts on the environmental values associated with exercising underground water rights.
- Impacts to formation integrity and issues that may cause surface subsidence.

DERM defines an Environmentally sensitive area (ESA) as a location, however large or small that has environmental values that contribute to maintaining biological diversity and integrity, has intrinsic or attributed scientific, historical, or cultural heritage value, or is important in providing amenity, harmony or sense of community. ESAs are divided into three categories (A. B. and C). Category A areas that have significant ecological values include national parks, marine parks, conservation parks, forest reserves, The Wet Tropics World Heritage Area and the Great Barrier Reef Region. Category B areas include Endangered regional ecosystems (REs), RAMSAR wetlands, state forest parks, wilderness areas, areas seaward of the highest astronomical tide, fish habitat areas and areas containing marine plants. Category C areas typically include Of Concern Res, essential habitat, referable wetlands, nature refuges, state forests, timber reserves. Declared water catchment areas, Koala habitat areas and resources reserves. For the purposes of ESAs, the biodiversity status of the RE is considered, not the status under the *Vegetation Management Act*, 1999 (AECOM, 2012)

The Directory of Important Wetlands in Australia (DIWA) and the Queensland Government Interactive wetlands map tool was used to identify areas of significant wetlands or identified GDEs occur within the boundary of ATP 688.

6.1 Identifying and describing environmental values

When identifying environmental values, consideration must be given to the interconnectivity between groundwater and surface water systems (i.e. baseflow to watercourses) that may support groundwater dependent ecosystems (GDEs). For this UWIR a GDE is defined as an ecosystem which requires access to groundwater on a permanent or intermittent basis to meet all or some of their water quality requirements to maintain their communities of plants and animals, ecological processes, and ecosystem services. Ecosystem dependency on groundwater may vary temporally (over time) and spatially (depending on its location in the landscape). GDEs include aquifers, caves, lakes, palustrine wetlands (billabongs, swamps, bogs, springs, soaks etc. and have more than 30% emergent vegetation), lacustrine wetlands, rivers, and vegetation.

Two tributaries (Figure 1), Little Bowen River to the south and Broken River to the north, drain through ATP 688 from the south east and exit as the Bowen River in the upper north west portion of ATP 688. Ponding on the Bowen River after the confluence of the two tributaries occurs behind the Collinsville Weir located 21 km south of Collinsville. It is inferred that this

water body will have been present for a suitable period to enable establishment of an ecosystem adapted to periods of almost permanent water supply.

The shallow alluvium aquifer is typically associated with present day channels and flood plains, comprising layers of fine grained highly transmissive material and monitoring data suggests the alluvial aquifer is unconfined and connected to surface water features such as streams and rivers. Connectivity between surface water features and the basalt aquifer is also considered to be high with surface water features receiving discharge from the basalt. Due to the level of connectivity the shallow groundwater system therefore supports baseflow and associated GDEs within the watercourses. During extended periods of drought or late summer where the watercourses are sufficiently incised to intersect the shallow water table pools will be maintained providing a refuge habitat for aquatic species.

Westside Corporation have completed two environmental assessments (AECOM 2010 and 2012) in the Mount Saint Martin area associated with the drilling of exploration wells in the area. The studies identified that most of the land has been cleared for grazing (Figure 26) but environmentally sensitive areas (ESA) under the Queensland classification system Category B (Endangered Regional Ecosystems, ERE's) occur within the Mount Saint Martin locality of the Tenement Area (refer Figure 27 and Figure 28).

Figure 26 Mount Saint Martin (MSM4L) showing cleared grazing land (Source: AECOM, 2012)

Figure 27 Mount St Martin (MSM2L) showing renant woodland with heavy under grazing (Source: AECOM, 2012)

Figure 28 Mount Saint Martin (MSM5L) showing lands cleared for grazing and non remnant vegetation regrowth (after AECOM, 2010)

Generally, the two studies identified the ESA's to lie adjacent to watercourses or drainage lines. The studies did not identify any category A or C ESA's within the areas studied. In the areas investigated one Referrable Wetland was identified within 400 m of the Bowen River. It is inferred that this wetland would most likely be supported by discharge of groundwater from the shallow water table aquifer.

Terrestrial vegetation such as illustrated in Figure 27 is likely to be supported to some degree by the shallow water table aquifer where tree roots penetrate sufficiently deep enough to intersect the water table.

6.2 Nature and extent of the impacts on the environmental values

Extractive testing ceased from the exploration wells in ATP 688 in 2010 and to date no further water has been discharged. However, in order to asses potential impacts the Groundwater Numerical modelling completed to support this UWIR assumes a level of continuous pumping (refer Table 2) from 2007 to 2019 plus given the uncertainties in aquifer parameters aquifer properties are modified to present a worst case simulation. Under these simulations no impacts associated with the extraction of water from the target coal seams were predicted on the shallow water table that supports base flow to the water courses, terrestrial vegetation and localised wetlands.

Therefore it is concluded that within the bounds of the available information over the period that this UWIR has been prepared, 2016 to 2019, any impact on the environmental values within ATP688 is unlikely.

6.3 Impacts to formation integrity and surface subsidence

Land subsidence associated with long-term (>60 years) extraction of groundwater has been well documented e.g. Mexico City and Bangkok. Land subsidence in these cases is associated with the over extraction and dewatering of the shallow aquifer systems. Currently there is little international information available describing observed subsidence associated with coal seam gas extraction

The Independent Expert Scientific Committee (IESC) on Coal Seam Gas and Large Coal Mining Development (2014) identify that there is no documented evidence of subsidence occurring from coal seam gas developments in Australia. Coffey Geotechnics (2013) modelled predictions of surface subsidence for individual coal seam gas fields in Queensland and identified that subsidence may range from 30 to 850 millimetres.

However, in the current environment of limited information, it is important that predictions of groundwater drawdown, compaction and subsidence are well documented, and monitoring is undertaken to:

- establish robust baseline datasets; and
- provide sufficient history and both spatial and temporal resolution to detect change and understand cause and effect relationships.

Monitoring and collection of data to establish the relevant baseline datasets are presented under Section 6, Water Monitoring Strategy. Once the additional baseline information has been collected if it becomes apparent during the extraction phase that land subsidence presents an operational risk additional measures for monitoring and management that may be considered could include:

- borehole extensometers; these are located within boreholes and measure change in height between the bottom of the bore and land surface to an accuracy of about 3 mm. Multiple readings over time measure changes in bore height above a reference point, and therefore infer subsidence at a single location.
- Recharge of associate water to underlying or overlying aquifer systems to maintain the balance in hydrostatic pressures.

7 Part E: Water Monitoring Strategy

The monitoring program described in this section will only be implemented if exploration /extraction activities are resumed at ATP 688.

7.1 Water monitoring strategy

Numerical modelling of the underground formations and associated water have predicted that only the target P coal seam and the Lower Goonyella A and B Seams have an Immediately Affected Area during the exploration phase in ATP 688. This is fully expected as the P coal seam and the Lower Goonyella A and B Seams are the primary target formations for pressure depletion. These coal seams are not a source of bore water in the area due to:

- Having high gas content and low water content.
- Having water quality that exceeds the Australian Drinking Water Guidelines 2004 (ADWG), published by the National Health and Medical Research Council.
- Uneconomic for large scale water demands due to depth, high drilling and completion costs, and low water productivity.

The water monitoring strategy for the target coal seams will be based on industry standard reservoir evaluation practices. This practice is performed by Reservoir Engineers, who are a subset of the Petroleum Engineering community. They are supported by Geophysicists, Geologists, and Petrophysicists. Reservoir evaluation methods specific to coal reservoirs are evolving over time and currently include seismic interpretations, core evaluation, well logging, transient through steady state pressure testing, and pilot testing analysis.

Initial exploration drilling has established the presence of gas bearing coals at depths. Mapping with limited well control, surface outcrops, seismic, and magnetic surveys have provided estimate of lateral extent of the coals. Future exploration efforts and pilot testing if it progresses aims to improve the knowledge of coal seam gas reservoir unknowns of:

- Initial reservoir pressure
- Effective gas saturation and volumes available to long term pilot testing
- Gas productivity
- Gas quality
- Effective water saturation and volume for long term pilot testing
- Water productivity
- Water quality
- Effective well drainage volume, both laterally and vertically
- Range of variance on all the above parameters

Coals seams are very complex, and are characterized by a high degree of heterogeneity vertically and laterally. This heterogeneity results in large variability in well to well productivity for water and gas. Some wells simply will not produce water or gas because of very low productivity of the target formation.

WestSide would commence any water monitoring strategy 3 months before any water / gas production.

7.2 Water monitoring rationale

The underground water monitoring strategy has been developed to address the findings of this UWIR, and to keep track of water level and water quality changes caused by the exercise of underground water rights at ATP 688.

Local registered bores are primarily drawing a water supply from the shallow Quaternary alluvial and Tertiary basalt aquifers. These superficial aquifers are separated from the perforated and exposed intervals of the coal seam production wells by lower permeability interburden and Rewan formations. In addition, the production wellbores are cemented and cased to best practice to avoid aquifer cross-contamination. Modelling results show no anticipated significant impact in the shallow aquifers. Therefore, the underground water monitoring strategy will not address this aquifer.

There are no springs identified within ATP688 or the surrounding 10 km, as discussed in Section 6. Therefore, this monitoring strategy also does not include provisions for monitoring springs.

However, the modelling predicts that there will be an Immediately Affected Area in the Goonyella coal seams, with maximum drawdown occurring in 2019 being the assumed end of production from these wells. If production were to continue beyond 2019 the model would need to be rerun to assess Immediately Impacted Areas and Long Term Affected Areas. After simulated pumping ceases, the impact reduces rapidly (within three years) and there are no Long Term Affected Areas.

7.2.1 Monitoring Threshold criteria

To identify adverse impacts, the monitoring strategy requires the development of criteria that detect significant changes against baseline or ongoing measurements. The following criteria will be used to identify significant changes in water quality and quantity:

- Adverse chemical impacts: Compare concentrations of selected analytes to previous monitoring rounds if either (a) value exceeds highest previous measurement by >25% or (b) three subsequent monitoring events record an increase in one or more analyte concentrations then a potential adverse impact has been identified.
- Adverse water level impacts: Compare measured water level to previous monitoring rounds if either (a) water level is lower than previous lowest measurement by >5 m or (b) three subsequent monitoring events record a fall in water level >1 m then a potential adverse impact has been identified.

These criteria are included in the Groundwater Monitoring Checklist included in Appendix B.

7.2.2 Critical data gaps

As discussed in Section 4.3, the predicted impacts depend upon some model inputs and assumptions which are not certain. This uncertainty can affect the impact conclusions and future data gathering should be designed to improve model certainty. To this aim, the following program will be implemented at ATP 688, with the projected model certainty improvement noted:

- Westside will determine if nearby geophysical surveys exist e.g. seismic, which can improve the geologic structure and the conceptual hydrogeologic model.
- Westside will measure horizontal and vertical hydraulic conductivity in the coal seams and surrounding interburden. Suggested methodology includes core testing of previously drilled or new CSG wells or laterals drilled within ATP 688. Both coal seam aquifer and interburden formations should be targeted with laboratory testing. These measurements will provide additional certainty in the hydraulic conductivity parameters utilised in the model.
- If possible, Westside will perform drill stem testing on new CSG wells or laterals drilled within ATP 688. Analysis of results will provide more certainty on hydraulic conductivity of the coal seams. Monitoring of pressure at nearby wells in the coal

seams and overlying aquifer may assist in determining aquifer connectivity and hydrogeologic parameters such as permeability and specific storativity.

• Regular groundwater level monitoring will be implemented at boreholes previously identified as suitable, thereby providing calibration data, and extending knowledge about the impact of CSG operations on aquifers. Refer to Section 5.3.2. for more detail on this strategy.

7.3 Monitoring strategy and frequency

The monitoring strategy is designed to quantify changes that occur because of water extraction during coal seam gas extraction. The strategy covers the water extracted from the coal seams, regional impacts in the Immediately Affected Area and, as a precaution, in the alluvial aquifer. As there is no projected Long Term Affected area, baseline sampling outside the borders of ATP 688 is not proposed.

7.3.1 Extracted underground water

As in the past, Westside will maintain records of underground water extracted while exercising water rights. These quantities will be tabulated on a daily and monthly basis and graphed each year, similar to Figure 7. Results will be included in annual reports.

7.3.2 Water level monitoring

No registered bores were identified in the Immediately Affected Area in the Moranbah target Coal Seams. The DEHP registered database does indicate some bores further away from the Immediately Affected Area, although it is impossible to determine from the available records in which aquifer the bores are completed.

The numerical modelling predicts no Immediately Affected Area for the Quaternary alluvium or the Tertiary basalt. Furthermore, there have been no CSG exploration wells on test post 2013.

Although no monitoring is required under the Water Act, 2000, should exploration activities resume in ATP 688, monitoring is suggested to verify model predictions, and to provide early notification of any unexpected water level decline.

A suggested monitoring regime should comprise measurement of groundwater levels monthly for the first 12 months. All recorded groundwater level data should be referenced to a surveyed datum (i.e. Australian Height Datum). On completion of one year of monthly monitoring, aimed at establishing seasonal variations, the frequency of groundwater level monitoring could be reduced to quarterly or bi- annual as appropriate.

Previous scouting over ATP 688 identified three bores which were accessible and are shown in Table 11. In addition to the bores identified in Table 11, bores located near to CSG testing in the Moranbah Coal Seams should be identified. During initial monitoring, investigation into the existence of unregistered bores within the area will also be conducted to ascertain if more appropriate monitoring locations exist. Should this not be the case, a total of six monitoring bores (a combination of standpipe piezometers and vibrating wire piezometers) will be installed in the Blackwater Group formation and Alluvium aquifer (actual number of each to be confirmed following field investigation). Vibrating wire piezometers allow for monitoring water level pressures across multiple intervals in the same bore hole which can be extremely cost effective compared to single monitoring bores where aquifer systems are deep.

Bore RN	Construction Date	Lattitude	Longitude	Aquifer	Purpose
Unregistered, may be 256636	Unknown	-21.05427442	147.9191497	Alluvium assumed	East of Tilbrook field
12030094 4	Unknown	-21.1031606	147.7493108	Unknown	West of Tilbrook field
70060 3	13/07/1984	-20.50119999	147.8483000	Unknown	Regional water levels, fluctuations and recharge analysis

Table 10 Existing bores identified to be suitable monitoring locations

If exploration activities continue in ATP 688 any associated future monitoring bores will be sited to maximise early detection of any potential impact, especially with relation to exceeding the mandated trigger levels. The monitoring network design and supervision of installation of any new monitoring bores in ATP 688 should be carried out by a suitably qualified hydrogeologist. After the monitoring bores are located or installed, full details of the bores including the registered number or other unique identifier and the tenure and location of the bore will be provided in the annual reporting for ATP 688.

7.3.3 Water quality monitoring

Water quality monitoring is designed to assess whether CSG operations are contributing to decreased water quality within the affected aquifer.

If exploration activities resume in ATP 688, the suite of analytical parameters described in Table 12 focuses on parameters which may help distinguish aquifer water sources, and on hydrocarbon occurrence.

A suggested monitoring program should comprise collection of groundwater samples from relevant bores on a quarterly basis for the first 12 months. Samples will be scheduled for laboratory analysis for the suite included in Table 12. On completion of one year of quarterly monitoring to establish any seasonal or annual natural variations it may be possible to reduce groundwater quality sampling to bi-annual or annual as appropriate and based on the results of monitoring. All water quality analysis should be carried out by a National Association of Testing Authorities (NATA) accredited laboratory.

Sampling will conform to detailed quality management guidelines. The guidelines should include procedures for sample preservation/packaging/shipping, chain of custody protocol, sample documentation, decontamination procedures. All measured data will be subjected to quality assurance and quality control objectives on data completeness, comparability, representativeness, precision and accuracy, and laboratory procedures.

Table 11 Water monitoring analytical suite				
General	Units			
Conductivity	μS/cm			
Total Dissolved Solids (calculated)	Mg/L			
рН				
Total Suspended Solids	o			
Major ions				
Bicarbonate alkalinity (HCO ₃)	mg/L			
Carbonate Alkalinity as CaCO ₃	mg/L			
Total Alkalinity as CaCO ₃	mg/L			
Sulphate (SO4)	mg/L			
Chloride (Cl)	mg/L			
Fluoride (F)	mg/L			
Calcium (Ca)	mg/L			
Magnesium (Mg)	mg/L			
Potassium (K)	mg/L			
Sodium (Na)	mg/L			
Nutrients				
Ammonia (Total as N)	mg/L			
Nitrate + Nitrite as N	mg/L			
TKN as N	mg/L			
Nitrogen - Total (as N)	mg/L			
Phosphorus - Total (as P)	mg/L			
Hydrocarbons				
Phenol compounds	μg/L			
Polyaromatic Hydrocarbons (PAH)	μg/L			
Total petroleum Hydrocarbons	μg/L			
Methane (dissolved)	μg/L			

7.4 Reporting

Westside will prepare an annual report on the findings of the Water Monitoring Strategy discussed in Section 5.3 and the review of the maps of Immediately Affected Areas shown in Figure 12 to Figure 17 as discussed in Section 4.2. Information relating to the completion of the monitoring requirements associated with this Underground Water Impact Report should be collated annually. The checklist provided in Appendix B should be completed and attached to any relevant documentation which should then be attached to this report. Any indicated actions prompted by a material change in the information or predictions should be implemented.

This UWIR will be updated in three years, incorporating the annual reviews and an updated groundwater model consistent with the monitoring data collected and other relevant new information on the hydrogeological regime or the quantity of water produced.

8 Part F: Spring Impact Management Strategy

8.1 Spring Inventory

Pursuant to the Water Act, 2000 a DEHP spring database review was completed for ATP 688. For any identified springs where predicted water levels within the source aquifer would decline more than 0.2 m, a spring impact management strategy is required.

CDM Smith (2013) completed a desktop review of spring inventories, searching for springs within 10 km of ATP 688 boundaries. Cross checking against project maps and the following sources of information were used to identify spring locations:

- Queensland Government Information Service (Queensland Wetland Data Springs);
- WetlandInfo Website; and
- Great Artesian Basin Resource Operation Plan Spring Register.

CDM Smith (2013) report no springs were located within or near the ATP 688 boundaries. An additional field check during sampling operations confirmed the negative search results.

Therefore, no information is available about the connectivity between springs and aquifers, nor spring values.

8.2 Management of Impacts to Springs

As no springs exist within the project or drawdown area of CSG activities associated with ATP 688, therefore no spring impact management strategy is required.

9 Conclusions

This Underground Water Impact Report was prepared for WestSide Corporation for ATP 688 in Queensland. This report conforms to the reporting requirements laid out in the Water Act (Qld) of 2000.

Following a review of the previous UWIR (CDM Smith, 2013) various published reports, registered bore extraction and water level data, and projected CSG operations at ATP 688 the following conclusions are drawn:

- With minimal initial water production and cessation of pilot testing in August 2010 the Immediately Affected Areas predicted by the groundwater numerical modelling in the UWIR prepared in 2013 for the period 2013 to 2016 did not eventuate.
- With cessation of pilot testing in August 2010 WestSide Corporation have no immediate plans to continue exploration in ATP 688. Therefore, the likely water production for the next three years will be zero (0) litres.
- Activities post 2013 approval have included the plugging and abandonment of three exploration wells wells (MSM-1, BH-01 and Tilbrook 9A) in addition to the 14 wells plugged and abandoned pre-2013.
- Whilst there are no immediate plans by WestSide Corporation to resume exploration activities in ATP 688, predictive modelling has been completed, inclusive of two new exploration wells, to evaluate the potential effects of pumping and identify any Immediately Affected Areas and Long-Term Affected Areas in the Mount St Martins exploration area if activities should resume.
- Modelling predictions have been completed to define the extent of Immediately Affected Areas and Long Term Affected Areas above the trigger levels in accordance with the Water Act (Qld), 2000, by predicting drawdowns caused by underground water extraction.
- The pumping rates used in the simulations have been based on historical rates plus assumptions that two new bores will be established in the Mount St Martins area.
- It should be noted that if modelled underground extraction rates are not reached the predictions in this model over-estimate both the Immediately Affected Area and the Long Term Affected Area.
- Under the applied assumptions predictive modelling identifies two consolidated aquifers (The Upper Goonyella Coal Seam and the Goonyella P Seam) are likely to be affected by the exercise of underground water rights.
- There are no reportable impacts in the overlying alluvium and basalt aquifer. After pumping ceases, groundwater elevations recover and there are no Long Term Affected Areas.
- All modelling results presented within this report need to be considered with the assumptions and limitations inherent with numerical modelling of complex hydrogeological systems.
- Local registered bores are primarily drawing a water supply from the shallow Quaternary alluvial and Tertiary basalt aquifers. These surficial aquifers are separated from the perforated and exposed intervals of the coal seam production wells by lower permeability interburden and Rewan formations and because of this separation modelling results show no significant impact in the shallow aquifers.
- This model is considered conservative because it assumes pumping commences in 2017 from the existing and new exploration bores. If pumping activities do not resume in 2017 the model predictions presented in this report significantly overestimate the Immediately Affected Area and the Long-Term Affected Area.
- The model is very sensitive to hydraulic conductivity and due to regional uncertainties sensitivity analysis was carried out by varying the hydraulic conductivity by an order of magnitude to present a worst case scenario.

- Under the worst case prediction modelled the Immediately Affected Area extends along a north south axis approximately 5 km around the pumped wells.
- A monitoring strategy has been prepared, if exploration activities resume, designed to quantify changes that occur because of water extraction during coal seam gas production.
- The monitoring strategy covers the water extracted from the coal seams, regional impacts in the Immediately Affected Area and, as a precaution, groundwater in the alluvial aquifer.
- Several, environmentally sensitive areas have been identified from previous surveys comprising minor wetlands adjacent to the Bowen River and also terrestrial vegetation that is most likely sustained by the shallow groundwater systems.
- The predictive simulations that model continued extractive pumping from 2007 to 2019 show no impacts on the shallow water table aquifers that support both terrestrial GDEs and discharges to water courses and drainage lines.
- Therefore within the bounds of the available information over the period that this UWIR has been prepared, 2016 to 2019, no impact on the environmental values within ATP688 is likely.
- Annual reports on the results of the Water Monitoring Strategy discussed in Section 5.3 will be submitted should exploration activities resume in ATP 688.
- Pursuant to the Water Act, (Qld) 2000 a DEHP spring database review was completed for ATP 688. No springs exist within the project or drawdown area of CSG activities associated with ATP 688, therefore no spring impact management strategy is required.

10 References

- AECOM, 2010 Collinsville Vegetation Assessment, Prepared for Westside Corporation Ltd. Environmental Approval Amendment Application.
- AECOM, 2012 Mount Saint Martin Vegetation Assessments. Prepared for Westside Corporation Ltd

AGE, 2006. Ensham Central Project EIA - Groundwater Impact Assessment. Prepared for Hansen Consulting. http://www.ensham.com.au/updated/eis/pdf/Volume-2_Appendices/APPENDIX%20C%20-%20GROUNDWATER.pdf

Ausenco-Norwest, 2012, Groundwater Model, Northern Bowen Basin Regional Model Impact Predictions, Queensland, Australia. Prepared for Arrow Energy Pty Ltd. http://www.arrowenergy.com.au/ data/assets/pdf_file/0018/3870/Appendix-M_Groundwater-Model-Technical-Report.pdf

Barnett, B., Townley, L.R., Post, V., Evans, R.E., Hunt, R.J., Peeters, L., Richardson, S., Werner,
A.D., Knapton, A. and Boronkay, A., 2012. *Australian groundwater modelling guidelines*.
Waterlines Report Series No. 82, National Water Commission, Canberra, 191 pp. June.

Bashari, A, 1998, *Diagenesis and reservoir development of sandstones in the Triassic Rewan Group, Bowen Basin, Australia,* Journal of Petroleum Geology, 21(4), 445-465.

Bureau of Meteorology, 2013a, *Evapotranspiration map*, http://www.bom.gov.au/jsp/ncc/climate_averages/evapotranspiration/index.jsp.

Bureau of Meteorology, 2013b, *Climate statistics for Collinsville, QLD*. http://www.bom.gov.au/climate/averages/tables/cw_033013.shtml, viewed 11 April 2013.

 BHP Billiton Mitsubishi Alliance, 2009. Daunia Coal Mine Project - Environmental Impact Statement. Appendix H Technical Report: Groundwater Modelling Assessment of Impact of Daunia Coal Mine on Regional Groundwater Aquifers. http://www.bhpbilliton.com/home/aboutus/regulatory/Documents/dauniaMineEisAppe ndixH.pdf

- Cadman, SJ, L Pain, and V Vuckovic, 1998, *Bowen and Surat Basins, Clarence-Moreton basin, Sydney Basin, Gunnedah Basin and other minor onshore basins, Qld, NSW and NT, Australian Petroleum Accumulations Report 11*, Department of Primary Industries and Energy, Bureau of Resource Sciences.
- CDM Smith, 2013 Underground water impact report ATP 688. A report prepared for WestSide Corporation

Draper, JJ, 1985a, *Stratigraphy of the Northern Bowen Basin*, Bowen Basin Coal Symposium, Geological Society of Australia Abstracts, Volume 17.

Draper, JJ, 1985b, *Summary of the Permian stratigraphy of the Bowen Basin*, Bowen Basin Coal Symposium, Geological Society of Australia Abstracts, Volume 17.

Fielding, C.R., Silwa, R., Holcombe, R.J., & Kassan, J. 2000: *A new palaeogeographic synthesis of the Bowen Basin of central Queensland*. In: Beeston, J.W. (Editor.), Bowen Basin Symposium 2000, Geological Society of Australia Coal Geology Group & Bowen Basin Geologists Group, Brisbane, 287-302.

Gray, ARG, 1968, *Stratigraphic drilling in the Surat and Bowen Basins, 1965-1966*, Queensland Department of Mines, Report No. 22.

IESC, 2014 Fact sheet - Subsidence from coal seam gas extraction Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development, http://www.iesc.environment.gov.au/publications/subsidence-coal-seam-gas-extraction

JBT, 2012. Foxleigh Plains Project - Environmental Impact Statement Groundwater Report.

Prepared for Hansen Bailey.

http://www.hansenbailey.com.au/assets/pdfs/foxleigh_eis/Appendix%20F%20-%20Groundwater.pdf

Paine, AGL and RL Cameron, 1972. 1:350,000 *Geological Series Explanatory Notes Bowen Queensland, Sheet SF/55-3*, Department of Mines, State of Queensland, Geological Survey of Queensland

Parsons Brinckerhoff, 2011. Middlemount Coal Project Stage 2 Environmental Impact Statement - Chapter 10 Groundwater. Prepared for Middlemount Coal. http://www.pb.com.au/middlemountcoal/09%20EIS%20for%20Public%20Consultation/Volu me%202%20Main%20Text/10_Groundwater_110107.pdf

- QCoal, 2010. Drake Coal Project Initial Advice Statement. http://www.ehp.qld.gov.au/management/impact-assessment/eisprocesses/documents/drake-coal-ias.pdf
- Reeves, S, R and O'Neill, P, J, 1989. Preliminary Results from the Broadmeadow Pilot, Project Bowen Basin, Australia. Proceedings of the 1989 Coalbed Methane Symposium.
- Silwa, R, S Hamilton, J Hodgkinson, and J Draper, 2008, Bowen Basin Structural Geology, poster produced by CSIRO and the Queensland Government Department of Mines and Energy.
- URS, 2009, Caval Ridge Groundwater Impact Assessment. Prepared for BM Alliance Coal Operations Pty Ltd. http://www.bhpbilliton.com/home/aboutus/regulatory/Documents/creisAppJGroundwa
 - http://www.bhpbilliton.com/home/aboutus/regulatory/Documents/creisAppJGroundwa ter.pdf
- URS, 2012. Report Groundwater Impact Assessment, Bowen Gas Project. Prepared for Arrow Energy Pty Ltd.
- http://www.arrowenergy.com.au/ data/assets/pdf_file/0008/3869/Appendix-L_Groundwater-and-Geology-Technical-Report.pdf

Appendix A Summary of Bores 10 km Surrounding ATP 688

As discussed in Section 4.3.1 bores registered with the Queensland DEHP within, and extending 10 km from the northern border of ATP 688 are listed below. No bores are located within simulated Immediately Affected Area or Long Term Affected Areas.

In the Table below, Queensland Bore Baseline Assessment Database Data Dictionary (November 2011) defines the registered number (RN), the status of the bore, the hydraulic unit (stratigraphic formation) accessed by the screen, the water quality measurement, the yield from the aquifer, the screen top and bottom, and the static water level as drilled (in metres below ground level). The facility and code is defined as Status: EX: existing; AD: abandoned.

The table illustrates that registered bore records are incomplete and field surveys are required to identify suitable pre-existing monitoring bores.

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
8606	614390	7536451	55	EX	Unknown					
22209	642194	7489229	55	EX	Unknown					
22742	589398	7692539	55	EX	Unknown					
23683	610002	7583535	55	EX	Unknown					
23686	609746	7585353	55	EX	Unknown					
23688	609488	7585355	55	EX	Unknown					
23693	609230	7585357	55	EX	Unknown					
23745	609749	7585722	55	EX	Unknown					
23748	609347	7585694	55	EX	Unknown					
23755	610038	7585966	55	EX	Unknown					
23758	609636	7585969	55	EX	Unknown					
23761	609400	7585110	55	EX	Unknown					
23839	606894	7583897	55	EX	Unknown					
23843	610179	7585719	55	EX	Unknown					
23846	605744	7583597	55	EX	Unknown					
24603	600263	7729920	55	EX	BULGONUNNA				3	10
24604	608590	7724949	55	EX	ALLUVIUM				2.7	8.2
25008	592391	7720564	55	EX	Unknown					
25191	576438	7741420	55	EX	Unknown					
25192	576273	7741465	55	EX	ALLUVIUM				13	15
25319	597304	7721420	55	EX	Unknown					
25348	591794	7719800	55	EX	Unknown					
25349	585005	7720630	55	EX	Unknown					

Table A-1: Registered bores within 10 km of ATP 688. RN is registered number

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
25410	612544	7713080	55	EX	UPPER CARB				17	19
25411	612304	7715810	55	EX	UPPER CARB				14	20
25460	602534	7725620	55	EX	BULGONUNNA				10	17
25461	601824	7728050	55	EX	ALLUVIUM				10	13
25463	600224	7727010	55	EX	Unknown					
25464	603674	7722570	55	EX	Unknown					
25530	596835	7741629	55	AD	ALLUVIUM				11	13
25621	586229	7671152	55	EX	Unknown					
25624	579195	7685070	55	EX	Unknown					
25625	578915	7685690	55	EX	Unknown					
25626	576005	7680680	55	EX	Unknown					
25628	602085	7668240	55	EX	Unknown					
25630	603568	7674694	55	EX	Unknown					
25631	598794	7679490	55	EX	Unknown					
25632	596924	7681170	55	EX	Unknown					
25633	597618	7669314	55	EX	Unknown					
25635	598929	7671312	55	EX	Unknown					
25636	595464	7671126	55	EX	BLACKWATER GROUP				19	50
25638	591706	7670079	55	EX	Unknown					
25639	598657	7674078	55	EX	Unknown					
25641	603996	7673865	55	EX	Unknown					
25645	582395	7718680	55	EX	Unknown					
25646	579445	7708210	55	EX	Unknown					
25655	619399	7712507	55	EX	UPPER CARB				9	15

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
25656	619454	7707920	55	EX	UPPER CARB				6	10
25661	592514	7718580	55	EX	Unknown					
25666	590194	7689720	55	EX	Unknown					
25667	587014	7689440	55	EX	Unknown					
25668	591294	7680140	55	EX	Unknown					
25669	582145	7696770	55	EX	Unknown					
25670	587904	7693990	55	EX	Unknown					
25671	589144	7683190	55	EX	Unknown					
25672	588924	7696720	55	AD	Unknown					
25673	590754	7686680	55	AD	Unknown					
25674	586114	7683510	55	AD	Unknown					
25675	581525	7689630	55	EX	Unknown					
25676	579805	7692380	55	EX	Unknown					
25677	586345	7700240	55	EX	Unknown					
25691	593554	7724950	55	EX	ALLUVIUM				16	18
25714	598324	7724140	55	EX	GRANITE				6	9
25715	594974	7719770	55	EX	GRANITE				7	10
25716	583265	7721110	55	EX	ALLUVIUM				12	14
30166	595767	7558845	55	AD	Unknown					
30797	611254	7700260	55	AD	Unknown					
33142	576245	7734490	55	EX	Unknown					
33143	567145	7741090	55	EX	Unknown					
33161	593134	7727080	55	EX	GRANITE				8	9
33162	594424	7725250	55	EX	BASALT				14	21

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
33163	595034	7724240	55	EX	GRANITE				6	9
33164	594734	7723270	55	EX	BASALT				9	15
33165	591384	7723760	55	AD	BASALT				5	18
33166	595554	7719610	55	AD	BASALT				11	15
33167	587745	7719540	55	EX	BASALT				12	15
33168	585585	7721240	55	EX	Unknown					
33215	590431	7674227	55	EX	Unknown					
33340	598204	7728090	55	EX	BULGONUNNA				7	15
33341	607024	7727390	55	EX	BULGONUNNA CREEK ALLUVIUM				0.6	6.4
33342	600024	7718050	55	EX	BULGONUNNA				27	27
33343	599734	7716990	55	EX	BULGONUNNA				6	10
33344	602194	7717730	55	EX	BULGONUNNA				9	21
33345	602084	7723190	55	EX	ALLUVIUM				5	11
34504	647324	7644144	55	EX	Unknown					
34569	604294	7730390	55	EX	THUNDERBOLT GRANITE				13	14
36420	593524	7718270	55	EX	THUNDERBOLT GRANITE				8	9
36421	600794	7724720	55	EX	THUNDERBOLT GRANITE				6	21
36422	600285	7736789	55	AD	THUNDERBOLT GRANITE				4	6
37147	652385	7493059	55	EX	BACK CREEK GROUP	COND 11,000	0.61	-27.4	34	36
38418	608380	7539621	55	EX	BLENHEIM FORMATION				12	14
38419	604433	7539695	55	EX	Unknown					
38514	576035	7734460	55	EX	Unknown					
38516	570565	7734520	55	EX	Unknown					
38517	565355	7732570	55	EX	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
38518	563065	7733970	55	EX	LIZZIE CREEK VOLCANIC GROUP				18.3	50.3
38518					LIZZIE CREEK VOLCANIC GROUP				64.1	70.1
38519	564335	7731970	55	EX	Unknown					
38520	567700	7727030	55	EX	Unknown					
38521	564525	7736450	55	EX	Unknown					
38522	564105	7740610	55	EX	Unknown					
38547	654098	7495068	55	EX	BLENHEIM FORMATION	COND 750 6/73	1.3	-12.2	32	34
38754	642607	7505004	55	EX	Unknown					
38997	665032	7481405	55	AD	BLACKWATER GROUP		0.3	-99.99	40.5	76.5
39371	585575	7720170	55	EX	ALLUVIUM				18	19
39376	573875	7721960	55	AD	Unknown				15	36
39762	597645	7741279	55	EX	EURI CREEK ALLUVIUM				0	2
39840	586305	7721230	55	EX	ALLUVIUM				12	14
39841	587605	7721060	55	EX	ALLUVIUM				10	11
39842	588925	7724550	55	EX	BASALT				6	8
43060	663778	7482641	55	EX	Unknown					
43061	656767	7486480	55	EX	Unknown					
43062	659303	7487862	55	EX	Unknown					
43064	663042	7484421	55	EX	BACK CREEK GROUP	8500 US/CM	0.5	-24.4	67	73
43305	647075	7516837	55	EX	BLACKWATER GROUP	VERY GOOD	0.39	-45.7	82	91
43639	638939	7511033	55	AD	BLACKWATER GROUP	COND 7300	0.75	-29.5	40	41
43794	645495	7489501	55	EX	BLENHEIM FORMATION	3850	2.4	-11	53	57
44080	664487	7480492	55	AD	BLACKWATER GROUP		0.01		43	52.7
44336	634975	7509310	55	EX	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
44480	595049	7631253	55	AD	Unknown					
47546	636631	7477884	55	EX	Unknown					
47547	635859	7482382	55	EX	Unknown					
54108	591725	7673460	55	EX	Unknown					
54280	609944	7713130	55	AD	Unknown					
54281	609964	7716470	55	AD	Unknown					
54282	610044	7715100	55	AD	Unknown					
54283	609944	7713040	55	AD	Unknown					
54284	610264	7712950	55	AD	GRANITE				17	17
54285	610124	7713100	55	AD	Unknown					
54948	582925	7739519	55	EX	BULGONNUNA				8	23
54949	580465	7739550	55	EX	BULGONUNNA				15	27
54950	580475	7740919	55	EX	BULGONUNNA				23	26
57747	640392	7509441	55	EX	BACK CREEK GROUP		4.42	-99.99	70.1	
57748	632375	7507835	55	EX	BLENHEIM FORMATION		1	-18	36	38
60091	576595	7683720	55	EX	ALLUV				19	25
60104	590815	7725440	55	EX	LIZZIE CREEK VOLCANIC GROUP				11	21
60105	588185	7720600	55	EX	ALLUVIUM				14	19
60275	604644	7662460	55	EX	Unknown					
60361	581195	7680190	55	EX	ALLUV				27	44
60362	585264	7686260	55	EX	ALLUV				51	74
60458	589906	7657632	55	EX	BLACKWATER GROUP				40	56
60459	595533	7658096	55	EX	BLACKWATER GROUP				20	45
60465	603477	7660098	55	EX	Unknown				40	55

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
60661	564955	7736540	55	EX	FORMATION UNKNOWN				31	34.5
60769	584985	7729210	55	EX	Unknown					
60814	608643	7729083	55	EX	Unknown	POTABLE	0.25	-16.2	13	17.5
60881	596635	7741169	55	EX	Unknown					
62571	645502	7473754	55	EX	BACK CREEK GROUP			-12.2	50	57
62719	608044	7538841	55	EX	Unknown					
63590	673546	7609705	55	AD	Unknown					
63591	672055	7610172	55	AD	Unknown					
63592	669965	7613804	55	AD	Unknown					
63963	629679	7641111	55	AD	EXEVALE FORMATION				24	60
63964	631142	7636671	55	AD	Unknown					
63965	630678	7636264	55	AD	EXEVALE FORMATION				12	60
63966	631812	7634082	55	AD	Unknown					
63967	635041	7634425	55	AD	EXEVALE FORMATION				23.5	27.5
63968	632485	7636537	55	AD	Unknown					
63969	643170	7637431	55	AD	Unknown					
63970	647377	7639649	55	AD	Unknown					
63971	635806	7643316	55	AD	Unknown					
63972	640196	7639744	55	AD	Unknown					
63973	642680	7638501	55	AD	Unknown					
67067	661782	7458818	55	EX	Unknown					
67068	661813	7458411	55	EX	Unknown					
67130	642432	7504723	55	EX	BLENHEIM FORMATION				45	47
67248	659733	7501055	55	EX	BLACKWATER GROUP	700 US/CM	3.52	-19	31	36

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
67250	659241	7500795	55	EX	BLACKWATER GROUP	3600 US/CM			30.5	35
67421	658156	7500245	55	EX	Unknown					
67422	656734	7496511	55	EX	Unknown					
67423	650064	7496776	55	EX	Unknown					
70019	587634	7680610	55	EX	Unknown					
70020	580525	7696850	55	EX	Unknown					
70060	588385	7732150	55	EX	Unknown					
70176	611004	7711210	55	EX	Unknown					
70177	615184	7714260	55	EX	Unknown					
70324	615954	7698890	55	EX	Unknown					
76237	615884	7705740	55	EX	COLLINSVILLE GRANITE				6.1	19.8
76238	614224	7704000	55	EX	COLLINSVILLE GRANITE				5.5	25.9
76239	610094	7705000	55	EX	COLLINSVILLE GRANITE				5.5	12.2
76240	611234	7711780	55	EX	COLLINSVILLE GRANITE				5.5	14.6
81135	641429	7662745	55	AD	Unknown					
81151	600066	7604543	55	AD	Unknown					
81696	608182	7586081	55	EX	Unknown					
81700	591815	7587788	55	EX	Unknown					
81701	600253	7576669	55	EX	Unknown					
81702	599074	7580862	55	AD	Unknown					
84538	641354	7516737	55	EX	Unknown					
85051	615465	7666406	55	EX	UPPER BOWEN COAL				43	45
85052	612686	7669883	55	EX	Unknown					
85053	610676	7671548	55	EX	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
85054	608500	7667003	55	EX	Unknown					
85055	612730	7665442	55	EX	Unknown					
85056	612807	7665992	55	EX	Unknown					
85057	617447	7659908	55	EX	Unknown					
85058	612270	7662852	55	EX	Unknown					
85059	612561	7662379	55	EX	EXEVALE FORMATION				42.5	44.5
85060	613755	7659148	55	EX	EXEVALE FORMATION				94	97.5
85441	589056	7630385	55	AD	BLACKWATER GROUP		0.88	-54	80	81
85442	587485	7630927	55	AD	BASALT		1	-40	48	62
85443	588640	7631494	55	AD	BLACKWATER GROUP		3.5	-30	55	61.5
85499	606359	7546888	55	EX	BLENHEIM FORMATION				47	53.6
85581	614260	7714295	55	EX	Unknown					
89035	636430	7478056	55	EX	BLENHEIM FORMATION				22.5	24
89468	652072	7500792	55	AD	Unknown					
89484	640378	7471934	55	EX	UNDIFF.				15	24
90013	646295	7502266	55	AD	UNDIFF.				23	
90014	645217	7505537	55	AD	Unknown					
90016	641460	7499975	55	AD	Unknown					
90017	640107	7500530	55	EX	UNDIFF				23	
90264	662740	7485824	55	EX	PERMIAN COAL MEASURE				24	29
90437	649085	7498072	55	AU	BLENHEIM FORMATION				30	36
90475	645463	7513291	55	AD	BLACKWATER GROUP		0.01	-304.5	56.69	60.96
100089	612943	7586807	55	EX	Unknown					
100137	609489	7585509	55	EX	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
100225	614778	7566528	55	EX	Unknown					
100235	605771	7579015	55	EX	Unknown					
100248	641645	7518640	55	EX	Unknown					
100253	618233	7556847	55	EX	Unknown					
100254	619668	7557174	55	EX	Unknown					
100290	607704	7584844	55	EX	Unknown					
100291	626431	7542882	55	EX	Unknown					
103210	616869	7560018	55	EX	BLACKWATER GROUP	POTABLE	0.38	-19.81	25.91	27.43
105460	654242	7662979	55	EX	URANNAH IGNEOUS COMPLEX	POTABLE	1.01	-2.3	8	9.2
105461	654960	7650098	55	AD	URANNAH IGNEOUS COMPLEX				0	
105462	640561	7662220	55	AD	LIZZIE CREEK VOLCANIC GROUP				0	
105463	639771	7664318	55	AD	LIZZIE CREEK VOLCANIC GROUP				0	
105464	640052	7663424	55	EX	LIZZIE CREEK VOLCANIC GROUP	POTABLE	0.56	-7	10	13.7
105502	652954	7663832	55	EX	URANNAH IGNEOUS COMPLEX	POTABLE	0.1	-4.3	7	9
105503	652954	7663925	55	AU	Unknown					
105504	653065	7663432	55	AU	Unknown					
105505	652461	7663622	55	AU	Unknown					
105506	651629	7664121	55	AU	Unknown				3	4
105507	651601	7664183	55	AU	Unknown				2	3
105508	652781	7663895	55	AU	Unknown				2	3
105509	652696	7664081	55	AU	Unknown				5	
105510	651629	7664121	55	EX	URANNAH IGNEOUS COMPLEX		0.38		3.65	6.7
105511	654530	7662649	55	EX	URANNAH IGNEOUS COMPLEX		0.63		21.33	22.86
105512	654992	7662706	55	AU	Unknown				3.65	5.02

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
105513	654992	7662706	55	AD	Unknown					
105514	654994	7662921	55	EX	URANNAH IGNEOUS COMPLEX		0.44		3.65	9
105515	654389	7663019	55	EX	URANNAH IGNEOUS COMPLEX		0.5		6.7	8.53
105516	654360	7663020	55	EX	URANNAH IGNEOUS COMPLEX		1.57	-1.58	4.57	7.31
105517	654331	7662958	55	EX	URANNAH IGNEOUS COMPLEX		1		5.18	7.13
105518	654388	7662927	55	EX	URANNAH IGNEOUS COMPLEX		1		8.23	9
105519	654530	7662649	55	EX	URANNAH IGNEOUS COMPLEX		0.63		18.9	22.5
105520	654530	7662680	55	EX	URANNAH IGNEOUS COMPLEX		0.38		10.05	13.56
105521	654472	7662680	55	EX	URANNAH IGNEOUS COMPLEX			-1.05	9.14	11.58
105521					Unknown				14	15.84
105521					Unknown				17.37	18.3
105522	654471	7662557	55	EX	URANNAH IGNEOUS COMPLEX				18.3	20.3
105523	654470	7662465	55	EX	URANNAH IGNEOUS COMPLEX		0.19	-8.8	9.14	9.3
105831	628592	7659696	55	AD	Unknown					
105832	628590	7659506	55	AD	Unknown					
105833	628501	7659507	55	EX	QUATERNARY - UNDEFINED	POT	1.87	-5	14	16.1
105835	672489	7614196	55	EX	NEBO CREEK ALLUVIUM		0	-9.14	9.14	13.72
105836	614397	7670776	55	EX	EXEVALE FORMATION		0	-14.63	19.51	21.34
105837	634508	7666465	55	EX	TERTIARY - UNDEFINED		0	-17.37	17.98	21.34
122458	644983	7526770	55	EX	BACK CREEK GROUP	COND 4000	1.88	-26	35	50.5
125371	626349	7704725	55	EX	Unknown	POTABLE	1.25	-9	7	20
125372	623254	7703666	55	AD	Unknown					
125375	621105	7704970	55	EX	Unknown	POTABLE	0.62	-14	14	25
125401	563712	7723375	55	AD	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
125402	563689	7723357	55	AD	Unknown					
125403	562068	7724432	55	EX	Unknown					
125404	565675	7722743	55	AD	Unknown					
125665	568688	7731772	55	EX	Unknown	POTABLE	4	-10	22	24
125696	597736	7713445	55	EX	Unknown	POTABLE	2.6	-5	8	26
125697	595070	7714811	55	AD	Unknown					
125698	595687	7715912	55	EX	Unknown	POTABLE	5.6	-25	8	37.27
125731	619729	7686702	55	EX	Unknown					
125885	620676	7685624	55	EX	Unknown	POTABLE	0.5	-11	15	22.8
125971	586429	7655735	55	AD	Unknown					
125972	586916	7657821	55	EX	Unknown	TDS 1300		-21.9	33	43
125973	587448	7654774	55	AD	Unknown					
125974	586506	7656354	55	EX	Unknown			-27.4	34	65
125975	586517	7656307	55	AD	Unknown					
125976	581927	7662636	55	AD	Unknown					
125977	586466	7656364	55	EX	Unknown	TDS 1200	12	-27.4	66	71.5
125978	586932	7657823	55	EX	Unknown	TDS 1500	5	-22	47	51
131217	659445	7623045	55	AD	Unknown					
131218	657953	7622609	55	EX	BLENHEIM FORMATION	РОТ	2.13	-10	11	17
131219	659597	7622711	55	AD	Unknown					
131220	657997	7622608	55	AD	Unknown					
131221	657931	7622609	55	AD	Unknown					
131459	628969	7658745	55	EX	BLACKWATER GROUP	РОТ	3.75	-11	54	57
131460	655966	7654762	55	AD	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
132459	669458	7468660	55	EX	Unknown					
132465	652154	7450105	55	EX	Unknown					
132466	656691	7449411	55	EX	Unknown					
132631	635440	7528179	55	EX	BACK CREEK GROUP	7290 US/CM	15	-31	321	328
132731	644569	7507274	55	EX	BLACKWATER GROUP	SALTY	0.1	-26	23	28
132732	645138	7506836	55	EX	BLACKWATER GROUP	SALTY	0.5	-28	30	35
132733	645138	7506836	55	EX	BLACKWATER GROUP	SALTY	0.5	-28	30	35
132734	645001	7506729	55	EX	Unknown					
132735	645118	7506800	55	EX	Unknown					
132736	645120	7506786	55	EX	BLACKWATER GROUP	SALTY	0.1	-26	23	28
136092	633416	7512196	55	EX	BACK CREEK GROUP		1.1	-12	18	
136689	635868	7528234	55	EX	DUARINGA FORMATION	7290 US/CM	15	-31	321	328
140015	595975	7716281	55	AD	Unknown					
140016	603058	7711711	55	EX	Unknown	POTABLE	0.74	-11.5	21	27
140017	600890	7713033	55	AD	Unknown	POTABLE	0.12	-33	33	42
140018	598298	7711717	55	AD	Unknown					
140019	595077	7714752	55	AD	Unknown					
140020	594690	7715181	55	EX	Unknown	POTABLE	0.74	-8.3	9	15
140021	602565	7707836	55	AD	Unknown					
140022	601558	7707200	55	AD	Unknown					
140023	601142	7706913	55	AD	Unknown					
140024	600240	7711878	55	AD	Unknown					
140025	592385	7717168	55	AD	Unknown					
140119	576644	7741286	55	EX	Unknown	850 PPM	0.3	-6.3	16	44

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
140127	577589	7740103	55	EX	Unknown	1100 PPM	3.8	-8	13	25
140400	587252	7720490	55	EX	Unknown					
140401	590426	7719297	55	EX	Unknown					
140402	587389	7718142	55	EX	Unknown					
140403	589700	7718421	55	EX	Unknown					
140404	590426	7719297	55	EX	Unknown					
140405	588530	7720770	55	EX	Unknown					
140406	586560	7721140	55	EX	Unknown					
140407	584660	7720720	55	EX	Unknown					
140408	590160	7721340	55	EX	Unknown			-18.7	15	21
140408					Unknown		0.02	-18.7	21	25
140529	590383	7716667	55	EX	Unknown					
140530	590479	7717653	55	EX	Unknown					
140531	590132	7717898	55	EX	Unknown					
140877	559884	7724637	55	EX	Unknown					
141047	600220	7581503	55	EX	ISAAC RIVER ALLUVIUM			-11.93	12	19
141123	663307	7604980	55	EX	Unknown	1800 US/CM	0.6	-10	21	25
141124	667132	7607940	55	AD	Unknown					
141125	667213	7608062	55	AD	Unknown					
141243	654381	7662721	55	EX	Unknown	OK WATER	0.88	-6	16	18
141247	636485	7635612	55	EX	Unknown	POTABLE	1	-35.5	56	63.6
141248	631014	7638701	55	AD	Unknown	MOIST			35	41
141367	656328	7658433	55	EX	Unknown		0.1		8	
141368	656378	7658481	55	EX	Unknown		0.1		6	10

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
141382	623251	7551535	55	EX	Unknown		0.02	-18.36	25	
141383	627054	7550393	55	EX	Unknown					
141384	623784	7549605	55	EX	Unknown		0.03	-23.87	42.2	
141385	623251	7551535	55	EX	Unknown		0.01	-30.53	42.2	
141386	626447	7543989	55	EX	Unknown	TRACE ONLY		-17.97	22	
141454	655567	7653368	55	AD	Unknown					
141545	660325	7610110	55	EX	Unknown	POTABLE	1.23	-6	12	
141547	658909	7623526	55	EX	Unknown	POTABLE	3.87	-10	19	
141718	670868	7608326	55	EX	Unknown	SALT	0.91	-12	15	18
141787	605120	7592687	55	EX	ISAAC RIVER ALLUVIUM	NOT TESTED	0.01	-10.48	13	15
141935	591997	7642215	55	EX	Unknown				24	
141935					Unknown		0.1	-78.5	102	119
141936	592422	7645985	55	EX	Unknown		0.1	-36.5	38	
141936					Unknown		0.5	-36.5	54	67
141937	588323	7637881	55	EX	Unknown		0	-94.7	90	101
151043	667610	7471634	55	EX	TERTIARY - UNDEFINED				21	30
151334	667716	7473509	55	EX	TERTIARY - UNDEFINED			-25	25	30
151335	667641	7469327	55	EX	Unknown					
151336	670646	7469943	55	EX	TERTIARY - UNDEFINED			-42	42	48
153054	589260	7705640	55	AD	Unknown					
153055	589001	7710264	55	EX	Unknown				41	
153056	589167	7709631	55	EX	Unknown				37	
153057	584890	7712200	55	EX	Unknown				33	
153058	583592	7712534	55	EX	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
153059	586335	7705463	55	EX	Unknown					
153060	585881	7705931	55	EX	Unknown					
153061	591450	7710883	55	EX	Unknown			-7	12	
153175	586079	7731773	55	EX	Unknown		0.25	-5.3	7	13
153175					Unknown		0.25	-5.3	30	32
153176	587209	7731782	55	AD	Unknown	POTABLE	0.06		17	20
153229	589229	7654175	55	EX	Unknown		0.4	-33.7	46	
153230	587122	7656990	55	EX	Unknown	POOR? NOT STATED	8.5		36	
153230					Unknown		2.5	-61	61	
153231	587115	7656973	55	EX	Unknown				27	28
153231					Unknown		1.5	-22.8	35	52
153232	587279	7643867	55	EX	Unknown				47	
153232					Unknown		0.7	-43.3	55	59
153233	585076	7665061	55	AD	Unknown		4	-72	89	96
153234	585089	7665060	55	EX	Unknown		4	-71.5	92	95
153235	595167	7646339	55	EX	Unknown		0.1	-55.8	112	120
153237	593438	7663430	55	EX	Unknown		0.8	-11.2	44	
153238	594512	7668243	55	EX	Unknown		0.5	-43	33	52
12020001	603199	7704582	55	AU	Unknown					
12020002	603027	7704911	55	AU	Unknown					
12020003	588851	7703750	55	AU	Unknown					
12020004	588856	7038255	55	AU	Unknown					
12020005	588919	7704352	55	AU	Unknown					
12020007	589023	7704833	55	AU	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
12020008	589075	7704956	55	AU	Unknown					
12020011	567597	7714971	55	AU	Unknown					
12020012	568010	7715295	55	AU	Unknown					
12020013	568008	7715295	55	AU	Unknown					
12020017	588754	7703253	55	EX	Unknown					
12020018	588980	7702715	55	EX	Unknown					
12020019	603641	7703870	55	AD	Unknown					
12020020	604355	7704114	55	AD	Unknown					
12020021	568330	7715664	55	EX	Unknown					
12020022	569104	7716381	55	AD	Unknown					
12020023	568515	7716220	55	AD	Unknown					
12020025	560038	7733536	55	AD	Unknown					
12020026	580663	7703507	55	EX	Unknown					
12020027	580641	7704484	55	EX	Unknown					
12030094	577823	7666252	55	AU	Unknown					
13010001	649066	7449003	55	AU	BACK CREEK GROUP			-41	2	52
13040108	656270	7609520	55	AD	Unknown					
13040109	655636	7609403	55	AD	Unknown					
13040110	654975	7609409	55	AD	Unknown					
13040111	654484	7609260	55	AD	Unknown					
13040171	603448	7587837	55	AD	Unknown					
13040172	602585	7587596	55	AD	Unknown					
13040173	601809	7587601	55	AD	Unknown					
13040174	617190	7562863	55	AD	Unknown					
13040175	616813	7562251	55	AD	Unknown					

Bore ID (RN)	Easting	Northing	Zone	Status	Formation	Quality	Yield (L/s)	Standing Water Level (m bgl)	Top Screen (m bgl)	Bottom Screen (m bgl)
13040176	616291	7561486	55	AD	Unknown					
13040281	598875	7583323	55	EX	BASALT	COND 13840		-35.18	42	59.5
13040282	605910	7545740	55	EX	BACK CREEK GROUP				10	30.4
13040283	627834	7527375	55	EX	BACK CREEK GROUP				47.5	52
13040316	665675	7613373	55	AD	LEURA VOLCANICS	800US/CM	0.1		22	
13040316					LEURA VOLCANICS	819US/CM	1.15		120	123
13040316					LEURA VOLCANICS	1056US/CM	1.55		172	182

Appendix B

UWIR Groundwater Monitoring Checklist

The following checklist (CDM Smith, 2013) would be completed at each monitoring episode

Task									
Verify n	nonitoring completed as required								
1	All monitored bores intact?								
	If boreholes damaged amend registered details								
2	All monitoring completed according to schedule	Y/N							
	If monitoring incomplete commission additional monitoring as required								
Review	monitoring data								
3	 Potentially adverse impacts identified? Compare measured water level to previous monitoring rounds – if either a) water level is lower than previous lowest measurement by >5m or b) three subsequent monitoring events record a fall in water level >1m then a potential adverse impact has been identified. 	Y/N							
	 If potentially adverse impacts identified, then: Advise Environment Manager; Review operational activities; If appropriate commission review of data; Identify any requirement for and implement changes in operation to mitigate adverse impacts. 								
Checklis	Name - Date -								

Arris Pty Ltd ABN 91 092 739 574

South Australian Office: The Waite Campus Bld 11b Gate 2c Hartley Grove URRBRAE SA 5064 Australia Tel +61 8 8313 6706 Fax +61 8 8313 6752

Queensland Office: 44 Wentworth Terrace ROCKHAMPTON Qld 4700 Australia Tel +61 407 268 069 Fax +61 8 8313 6752

info@arris.com.au

www.arris.com.au

Western Australian Office: 6/14 Halley Road BALCATTA WA 6021 Australia Tel +61 8 9344 4600 Fax +61 8 8313 6752

Northern Territory Office: 16 Willes Road BERRIMAH NT 0828 Australia Tel +61 8 8947 0181 Fax +61 8 8313 6752