

Supporting Information

No Name
No Name 1
No Name 2
Little No Name

Mining Lease Applications

Lane Machinery Pty Ltd

January 2023

CONTENTS

Report		
Summary		3
Tenure		4
Adjoining Pro	pperties and Tenements	4
Topography,	Fauna & Flora	5
Geology		8
Historical Exp	ploration	17
-	oration Activities	22
Proposed Lea		25
-	ork Programme	27
Method of O	perations	28
References		29
Figures		
Figure 1.	Location	9
Figure 2.	Geology	10
Figure 3.	Proposed Mining Lease Area Little No Name	11
Figure 4.	Proposed Mining Lease Area No Name	12
Figure 5.	Proposed Mining Lease Area No Name 1	13
Figure 6.	Proposed Mining Lease Area No Name 2	14
Figure 7.	AP 3766 Sampling Points and Location	20
Figure 8.	EPM 3766 Samples Sites (Schifleet 1988)	20
Figure 9.	Sample Sites 2022 and 2023	24
Tables		
Table 1.	Adjoining Properties	5
Table 2.	Vegetation Status	6
Table 3.	GPS Boundary Coordinates Little No Name	15
Table 4.	GPS Boundary Coordinates No Name	15
Table 5.	GPS Boundary Coordinates No Name 1	16
Table 6.	GPS Boundary Coordinates No Name 2	17
Table 7.	Ravenshoe Sampling Results CR 18408	19
Table 8.	GPS Coordinates Proposed Access	25
Plate 1.	Some of the Gold Samples Retrieved During Exploration	23

Summary

Hughes Consulting was commissioned by Lane Machinery Pty Ltd (LM) to provide supporting information for four mining lease applications within EPM 27536 known as East Hodgkinson.

A field visits were undertaken to the area which is subject to the granted EPM 27536 held by Lane Machinery Pty Ltd. Field reconnaissance along with desk top research was carried out in order to confirm the location, gold resource level, and geological setting for the site. Access to site is via the Peninsula Developmental Road at Mt Carbine and then Kondoparinga Road or via Dimbulah.

The Hodgkinson is host to widespread mineralisation. The oldest and most abundant rocks surrounding the proposed mining lease are the Middle Devonian to Lower Carboniferous sediments and metasediment of the Hodgkinson Formation. These rocks include greywacke, siltstone, slate, subordinate chert, andesite, spilite, limestone and conglomerate forming a thick highly folded geosynclinal deposit. Alluvial gold in the Hodgkinson Basin is thought to have been sourced from structurally controlled quartz reefs.

The area has unsurprisingly been well explored though primarily for hard rock gold by the likes of BHP, Consolidated Gold Fields and a number of local prospectors. The terrain can be difficult and historically gold prices have impacted the viability of any operation. However, the current and likely future gold price combined with technological improvements and the lack of significant prospects in the nearby Palmer Gold Field has provided a unique set of circumstances that has garnered renewed interest.

Many potential sites within the EPM were sampled and the most prospective being selected relate to waterways known locally as No Name and Little No Name which form a confluence with the East Hodgkinson River to the south. Significant gold has been found within these areas and following a final foray in November 2023, areas for pegging were identified. Three of the areas, No Name, No Name 1 and No Name 2 follow generally the area previously applied for my Mike Collins before being sold to Turnkey Alliance. The areas subsequently lapsed.

Tenure

The underlying and associated tenement is EPM 27536 held by Lane Machinery Pty Ltd (the applicant) who have provided permission for the mining lease application.

There are two underlying tenures Kondoparinga, Lot on Plan 5112HG843453 and Hurricane Station, Lot on Plan 1DA802415. Both are Lands Leases. The area of the mining lease applications lies wholly within Kondoparinga Station.

The four leases have been designed to cover alluvial gold prospects on No Name and Little No Name creeks along with two small side tributaries of No Name Creek. Both creeks form tributaries of the East Hodgkinson River. The proposed leases lie approximately 40km west of Mt Molloy, 27km south-west of Mt Carbine and 53km North of Dimbulah.

The proposed leases are intended to form part of a longer-term project of alluvial gold mining. Therefore, a term is applied for that allows for a timeline for the development of the area, testing of gravel locations, mining trials and facilities prior to mining activities commencing and for the rehabilitation of the area once mining operations cease. The mining lease applications are for a period of 10 years each.

Further exploration within the existing exploration permit EPM 27536 could extend the project life.

Adjoining Properties and Tenements

The proposed leases lie wholly within EPM 27536 also owned by Lane Machinery. The application known as No Name 1 shares a boundary with ML 20482 currently held by Turnkey Alliance Pty Ltd. EPM 28008 held by Arumvale Pty Ltd lies on the north eastern boundary of the tenement and therefore the northern most reached of the application areas known as Little No Name and No Name 2. There are no other granted or in application mining leases or claims within proximity.

Adjoining properties to the proposed leases are included in the table 1 below and the attached spreadsheet. Land access compensation is currently being discussed with the landowner.

Lot number	Plan number	Land tenure type *	Land tenure name (if applicable)	Land owner's name *	Land owners address
1	DA802415	Pastoral holding	Hurricane	Willim and Rosemary	Mt Carbine,
				German	Queensland, 4871
13	SP254833	Lands lease	Brooklyn	Australian Wildlife	339 West Mary Road, Mt
				Conservancy	Carbine, Queenslandnd,
					4871
5112	HG843453	Pastoral holding	Kondoperinga	Kuku Djungan	Kondaparinga Road, Mt
				Aboriginal Corporation	Mulligan, Queensland,
					4871
20	HG725	Pastoral holding	Mount Mulligan	CLG Properties Pty Ltd	499 Thornborough
					Kingsborough Road,
					Thornborough,
					Queensland, 4880
3	SP150971	Pastoral holding	Aroonbeta	Auctus Resources Pty	50 Aerodrome Road,
				Ltd	Chillagoes, Queensland,
					4880
4718	PH1896	Pastoral holding	Nychum	NBT Pty Ltd	2286 Nychum Road,
					Nychum, Queensland,
					4880
254	WRM9	Lands lease	Nychum	NBT Pty Ltd	2287 Nychum Road,
					Nychum, Queensland,
					4880
281	SP108034	Lands lease	Karama Waters	Alan and Karen	Karama Waters Road, Mt
				Pedersen	Carbine, Queensland,
					4871
66	SP245572	Lands lease	Bonny Glen	Gummi Junga	Bonnyglen Road,
				Aboriginal Corporation	
504	00000000				4871
581	SP263756	Freehold	Curaghmore and Springhill	Travis and Amber	Springhill Outstation,
				Hatfield	8579 Mullligan Highway,
					Desailly, Queensland,
4542	D114727	Destroy Health and	e	A	4880
4513	PH1727	Pastoral holding	Fonthill	Anson Holdings Pty Ltd	·
					Southedge, Queensland,
AEC.	OLE3	Othor	Ossupationallicana	Desemble Wilder	4880 Bakers Road, Mount
456	OL52	Other	Occupational Licence	Rosemary Yvonne Wallace	Mulligan, Queensland,
				Wallace	
170	CP887723	Pastoral holding	Glen Russel	George and Maxine	4880 434 McBean Road, Glem
170	CF00//23	r astoral notuning	Gieli kussei	Lowe	Russell Mareeba,
				Lowe	Queensland, 4880
				I	Queensianu, 4880

Table 1. Adjoining Properties

Topography, Fauna and Flora

The topography of the general EPM area is generally flat to gently undulating being associated with the Hodgkinson River and proximal flood plain at the 280m contour. In the region of the mining lease applications, topography is generally flat lying between deeply incised hills forming a basin. Vegetation is almost exclusively as of "Least Concern" under the Vegetation Management Act with a Biodiversity Status of "Of concern". Mapped regional ecosystems consist of either 9.3.14, 9.3.12a, 9.3.3 and 9.3.12 communities or 9.11.25, 9.11.3a and 9.11.3d the latter being described as "Least Concern" under both the Vegetation Management Act and Biodiversity status, see table 2 below. A search of the Wildlife Online database revealed no endangered, vulnerable or of concern fauna.

Climate is generally semi-arid with a marked wet and dry season. The majority of rainfall, around 780mm per year, falling between the months of December and March.

RE ID	Community	Biodiversity status	VGA Status
9.3.14a 9.3.12a	Fringing open and low open forest to open woodland of Melaleuca leucadendra (weeping teatree) and/or M. fluviatilis (teatree) and/or Eucalyptus camaldulensis (river red gum) or E. tereticornis (bluegum) +/- Lophostemon grandiflorus (Northern swamp box) +/- Nauclea orientalis (Leichhardt tree) +/- Ficus spp. E. camaldulensis can sometimes occur as an emergent. An open sub-canopy can occur and include Terminalia spp., Acacia spp., M. linariifolia (Snow-in Summer) and Casuarina cunninghamiana (river she oak). There is often a low open to mid-dense shrub layer, which often includes juvenile canopy species, Lagerstroemia spp., and M. trichostachya. The very sparse to mid-dense shrub layer is composed of a variety of species. The ground layer is sparse to mid-dense and can include Eragrostis schultzii, Nelsonia campestris, Cyperus spp. and Panicum spp. Occurs on major rivers and streams. Riverine wetland or fringing riverine wetland		Least Concern
9.3.12a	Sandy river beds sometimes with patches of ephemeral grassland, herb land or sedgeland, which can include Heteropogon contortus (black spear grass), Bothriochloa spp., and Ammannia multiflora. There can be clumps of shrubs (or isolated emergents), which can include Lophostemon grandiflorus, Melaleuca spp., Eucalyptus camaldulensis (river red gum) and Casuarina cunninghamiana (river she oak). Sandy river beds. Riverine wetland or fringing riverine wetland.	Of Concern	Least Concern
9.3.3	Mixed woodland to open woodland often dominated by Eucalyptus leptophleba and including combinations of E, platyphylla, Corymbia clarksoniana, C. tessellaris, E. crebra. An open sub-canopy dominated by canopy species often occurs. An absent to mid-dense shrub later of Melaleuca spp., Planchonia careya, Carissa lanceolata occur. Heteropogon spp., Themeda triandra and Sarga plumosum dominates the mid-dense to dense ground cover. Occurs on alluvial plains, terraces and levees.	Of Concern	Least Concern
9.11.25	Woodland to low woodland of Eucalyptus cullenii (Cullen's ironbark), Corymbia hylandii (Hyland's bloodwood), E. tetrodonta (Darwin stringybark) +/- Erythrophleum chlorostachys (Cooktown ironwood). There is a sparse to open sub-canopy layer including canopy species, Planchonia careya (cocky apple), and Acacia spp. The very sparse to open shrub layer includes juvenile canopy species, Persoonia falcata (geebung), Grevillea mimosoides (wattle Grevillea), Planchonia careya and Petalostigma spp. (quinine). The ground layer is grassy and includes Sarga plumosum (plume sorghum), Heteropogon contortus (black speargrass), H. triticeus (giant speargrass) and Themeda triandra (kangaroo grass). Occurs on metamorphic ranges and low hills with quartzite.	No Concern	Least Concern
9.11.3a	Woodland to low open woodland of Eucalyptus cullenii (Cullen's ironbark) +/- Corymbia clarksoniana (Clarkson's bloodwood) +/- Erythrophleum chlorostachys (Cooktown	No Concern	Least Concern

	incompany of Company and the second of the s		
	ironwood) +/- C. erythrophloia (red bloodwood) +/- C.		
	dallachiana (Dallachy's gum). Eucalyptus crebra (narrow-		
	leaved ironbark) can be dominant in some areas. A variety of		
	other Eucalyptus spp., Corymbia spp. and Melaleuca spp. can		
	occur as subdominants throughout the range of this		
	community. There can be an open sub-canopy containing		
	canopy species, M. stenostachya (teatree), Grevillea glauca		
	(bushman's clothes peg) and other Grevillea spp. The shrub		
	layer can be absent to mid-dense and include Denhamia		
	cunninghamii (yellowberry bush), Gardenia vilhelmii		
	(breadfruit), Petalostigma spp., Persoonia falcata and		
	Grevillea spp. The ground layer is grassy and dominated by		
	Themeda triandra (kangaroo grass), Heteropogon spp.		
	(speargrass), Aristida spp. and Schizachyrium spp. (firegrass).		
	Occurs on flats, hills and ranges of metamorphic ranges.		
9.11.3d	Low woodland to low open woodland of Melaleuca citrolens	No Concern	Least Concern
	(scrub teatree) and/or M. stenostachya or Terminalia spp. +/-		
	Eucalyptus cullenii (Cullen's ironbark). Eucalyptus spp. and/or		
	Corymbia spp. can sometimes occur in an emergent layer.		
	The shrub layer is sparse to mid-dense and can include		
	Denhamia cunninghamii (yellowberry bush), Petalostigma		
	banksii (smooth-leaved quinine), Gardenia vilhelmii		
	(breadfruit), Dolichandrone alternifolia (lemonwood) and		
	juvenile canopy species. The grassy ground layer is		
	dominated by Heteropogon contortus (black speargrass),		
	Aristida spp. and Themeda triandra (kangaroo grass).		
	Footslopes and lower slopes of metamorphic hills.		

Table 2. Vegetation Status

Geology

Regional Geology

The Hodgkinson Gold Field is located within the Hodgkinson Province, an early to middle Paleozoic turbidite sedimentary rocks with subordinate limestone, chert and basic volcanic rocks extending for around 500km from south of Innisfail to Cape Melville and inland for around 150km from the coast to the Palmerville Fault.

The dominant rock types are quartzo-feldspathic arenite and mudstone, which represent deep- water density current deposits interlayered with subordinate conglomerate, chert, metabasalt and minor shallow-water limestone. Older siliciclastic rocks of probable early Ordovician age are preserved in fault bounded lenses adjacent to the Palmerville Fault along the western margin of the province. Within the Hodgkinson Province the rocks form distinct mainly fault bounded belts each of which is disrupted extensively by numerous thrust faults.

The province has undergone generally sub-green schist facies metamorphism with localised higher-grade zones associated with contact aureoles around late Paleozoic intrusives. The Hodgkinson Province has been affected by several significant deformational events of both regional and local extent.

Local Geology

The Hodgkinson is host to widespread mineralisation. The oldest and most abundant rocks within the EPM area are the Middle Devonian to Lower Carboniferous sediments and metasediment of the Hodgkinson Formation. These rocks include greywacke, siltstone, slate, subordinate chert, andesite, spilite, limestone and conglomerate forming a thick highly folded geosynclinal deposit. Alluvial gold in the Hodgkinson Basin is thought to have been sourced from structurally controlled quartz reefs.

The area has unsurprisingly been well explored though primarily for hard rock gold by the likes of BHP, Consolidated Gold Fields and a number of local prospectors. The terrain can be difficult and historically gold prices have impacted the viability of any operation. However, the current and likely future gold price combined with technological improvements and the lack of significant prospects in the nearby Palmer Gold Field has provided a unique set of circumstances that has garnered renewed interest.

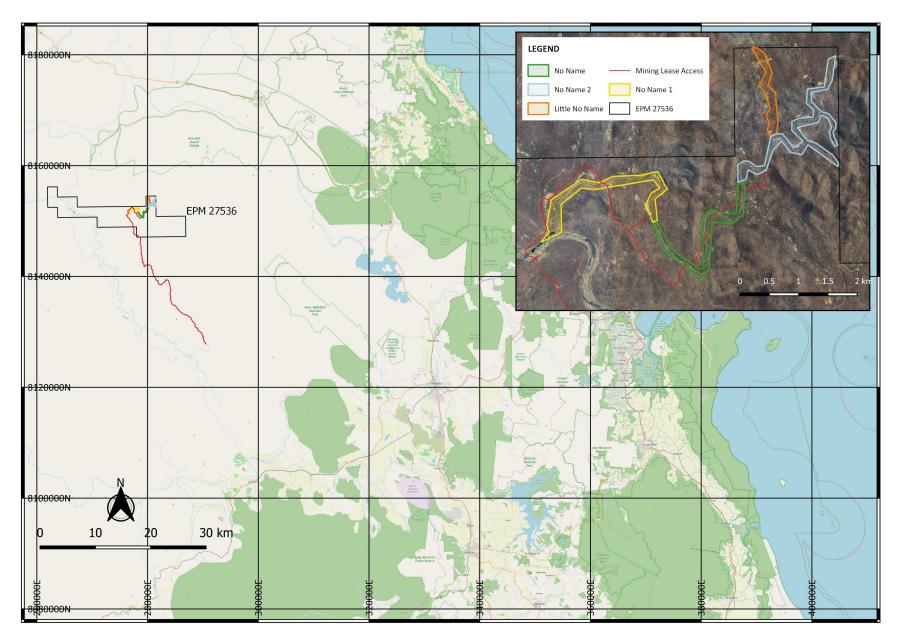


Figure 1. Location

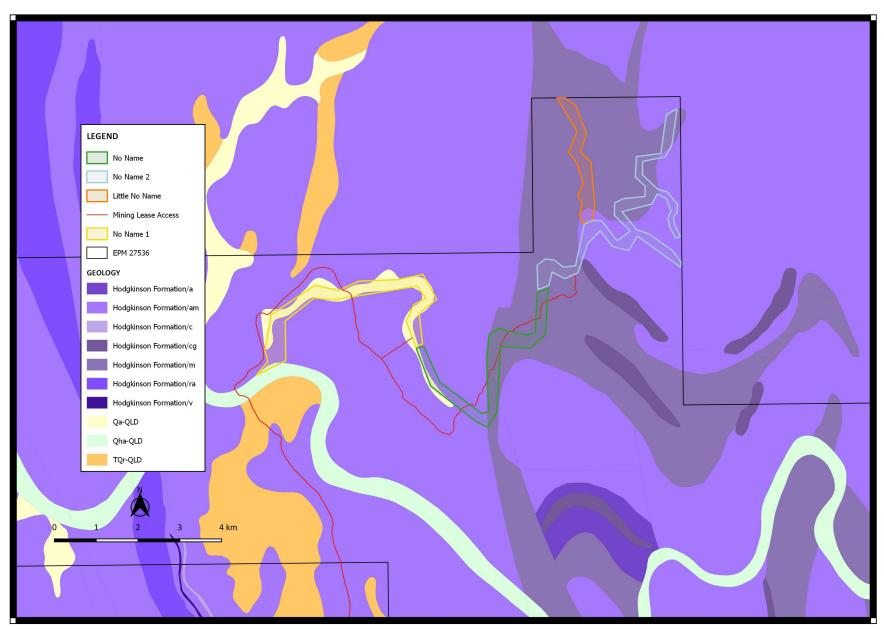


Figure 2. Local Geology

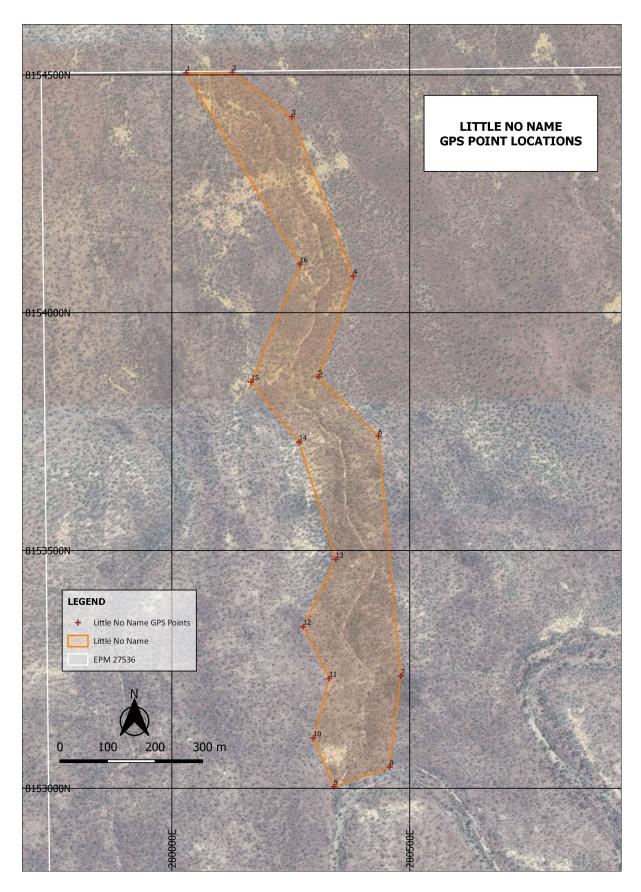


Figure 3. Proposed Mining Lease Area Little No Name

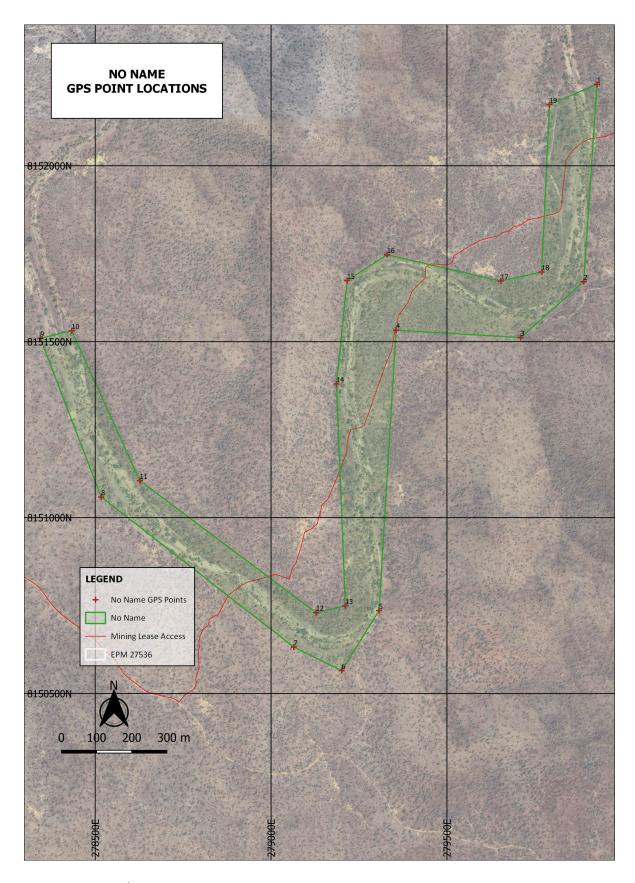


Figure 4. Proposed Mining Lease Area No Name

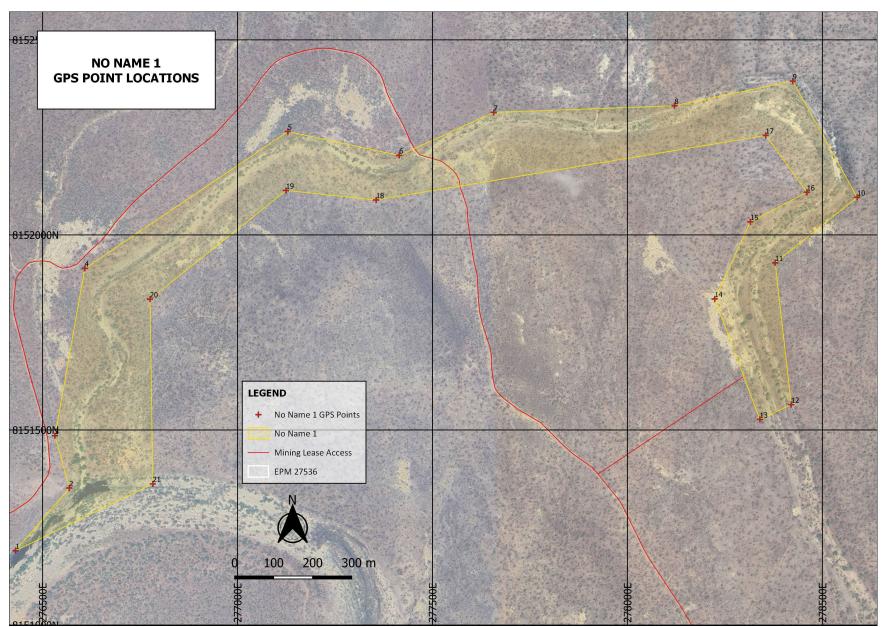


Figure 5. Proposed Mining Lease Area No Name 1.

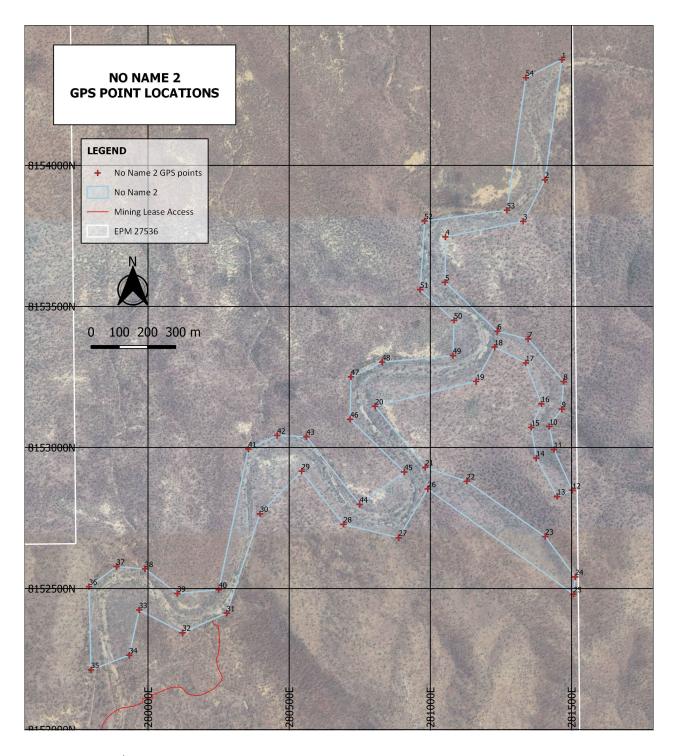


Figure 6. Proposed Mining Lease Area No Name 1.

				Coordinate-		
Selected Projection	LAT	LONG	Point_ID	systems	Latitude	Longitude
GDA2020 MGA Zone 55	8154504.694	280030.1812	1	GDA2020 lat/lng	-16.68185	144.93727
GDA2020 MGA Zone 55	8154505.697	280127.1854	2	GDA2020 lat/lng	-16.68185	144.93818
GDA2020 MGA Zone 55	8154412.206	280252.2968	3	GDA2020 lat/lng	-16.68270	144.93934
GDA2020 MGA Zone 55	8154076.898	280381.5479	4	GDA2020 lat/lng	-16.68574	144.94052
GDA2020 MGA Zone 55	8153865.722	280308.7466	5	GDA2020 lat/lng	-16.68764	144.93982
GDA2020 MGA Zone 55	8153740.37	280434.1826	6	GDA2020 lat/lng	-16.68879	144.94098
GDA2020 MGA Zone 55	8153235.911	280481.319	7	GDA2020 lat/lng	-16.69335	144.94138
GDA2020 MGA Zone 55	8153044.479	280457.8106	8	GDA2020 lat/lng	-16.69508	144.94114
GDA2020 MGA Zone 55	8153003.233	280340.6765	9	GDA2020 lat/lng	-16.69544	144.94004
GDA2020 MGA Zone 55	8153105.737	280297.6901	10	GDA2020 lat/lng	-16.69451	144.93964
GDA2020 MGA Zone 55	8153231.09	280330.9232	11	GDA2020 lat/lng	-16.69338	144.93997
GDA2020 MGA Zone 55	8153340.012	280276.3606	12	GDA2020 lat/lng	-16.69239	144.93947
GDA2020 MGA Zone 55	8153481.253	280344.781	13	GDA2020 lat/lng	-16.69112	144.94012
GDA2020 MGA Zone 55	8153728.026	280267.4183	14	GDA2020 lat/lng	-16.68888	144.93942
GDA2020 MGA Zone 55	8153854.448	280166.6342	15	GDA2020 lat/lng	-16.68773	144.93849
GDA2020 MGA Zone 55	8154102.269	280269.3069	16	GDA2020 lat/lng	-16.68550	144.93947

Table 3. GPS Coordinates Mining Lease Application Little No Name

Selected Projection	LAT	LONG	Point_ID	Coordinate- systems	Latitude	Longitude
GDA2020 MGA Zone 55	8152231.586	279926.9223	1	GDA2020 lat/lng	16.70237	144.93608
GDA2020 MGA Zone 55	8151670.717	279889.0327	2	GDA2020 lat/lng	16.70743	144.93567
GDA2020 MGA Zone 55	8151511.678	279709.6403	3	GDA2020 lat/lng	16.70885	144.93398
GDA2020 MGA Zone 55	8151532.822	279355.6629	4	GDA2020 lat/lng	16.70863	144.93066
GDA2020 MGA Zone 55	8150735.875	279307.1239	5	GDA2020 lat/lng	16.71583	144.93013
GDA2020 MGA Zone 55	8150565.187	279200.6948	6	GDA2020 lat/lng	16.71736	144.92911
GDA2020 MGA Zone 55	8150632.019	279064.7447	7	GDA2020 lat/lng	16.71674	144.92784
GDA2020 MGA Zone 55	8151058.544	278517.193	8	GDA2020 lat/lng	16.71284	144.92275
GDA2020 MGA Zone 55	8151509.658	278343.9319	9	GDA2020 lat/lng	16.70874	144.92117
GDA2020 MGA Zone 55	8151531.271	278433.187	10	GDA2020 lat/lng	16.70856	144.92201
GDA2020 MGA Zone 55	8151105.188	278626.9942	11	GDA2020 lat/lng	16.71243	144.92379
GDA2020 MGA Zone 55	8150729.879	279128.2327	12	GDA2020 lat/lng	16.71586	144.92845
GDA2020 MGA Zone 55	8150749.355	279211.2645	13	GDA2020 lat/lng	16.71569	144.92923
GDA2020 MGA Zone 55	8151379.864	279185.9801	14	GDA2020 lat/lng	16.71	144.92905
GDA2020 MGA Zone 55	8151673.855	279216.219	15	GDA2020 lat/lng	16.70734	144.92937
GDA2020 MGA Zone 55	8151747.422	279329.9066	16	GDA2020 lat/lng	16.70669	144.93044
GDA2020 MGA Zone 55	8151672.188	279653.2346	17	GDA2020 lat/lng	16.7074	144.93346
GDA2020 MGA Zone 55	8151698.212	279769.4974	18	GDA2020 lat/lng	16.70718	144.93455
GDA2020 MGA Zone 55	8152174.122	279791.6169	19	GDA2020 lat/lng	16.70288	144.93481

Table 4. GPS Coordinates Mining Lease Application No Name

Selected Projection	LAT	LONG	Point_ID	Coordinate-	Latitude	Longitude
				systems		
GDA2020 MGA Zone 55	8151190.424	276430.6254	1	GDA2020 lat/lng	16.71145	144.90321
GDA2020 MGA Zone 55	8151351.122	276568.3575	2	GDA2020 lat/lng	16.71001	144.90451

GDA2020 MGA Zone 55	8151485.166	276531.571	3	GDA2020 lat/lng	16.70879	144.90418
GDA2020 MGA Zone 55	8151914.089	276608.2178	4	GDA2020 lat/lng	16.70493	144.90494
GDA2020 MGA Zone 55	8152264.953	277128.9501	5	GDA2020 lat/lng	16.70181	144.90986
GDA2020 MGA Zone 55	8152203.833	277414.6917	6	GDA2020 lat/lng	16.70239	144.91253
GDA2020 MGA Zone 55	8152313.918	277657.0194	7	GDA2020 lat/lng	16.70141	144.91481
GDA2020 MGA Zone 55	8152331.176	278120.9085	8	GDA2020 lat/lng	16.7013	144.91916
GDA2020 MGA Zone 55	8152394.319	278424.0795	9	GDA2020 lat/lng	16.70076	144.92201
GDA2020 MGA Zone 55	8152096.15	278589.5068	10	GDA2020 lat/lng	16.70347	144.92353
GDA2020 MGA Zone 55	8151928.499	278378.9937	11	GDA2020 lat/lng	16.70496	144.92154
GDA2020 MGA Zone 55	8151564.93	278420.2438	12	GDA2020 lat/lng	16.70825	144.92189
GDA2020 MGA Zone 55	8151526.86	278339.484	13	GDA2020 lat/lng	16.70859	144.92113
GDA2020 MGA Zone 55	8151835.88	278223.8865	14	GDA2020 lat/lng	16.70579	144.92008
GDA2020 MGA Zone 55	8152033.315	278315.4705	15	GDA2020 lat/lng	16.70401	144.92096
GDA2020 MGA Zone 55	8152109.281	278460.3479	16	GDA2020 lat/lng	16.70334	144.92232
GDA2020 MGA Zone 55	8152255.024	278354.7775	17	GDA2020 lat/lng	16.70201	144.92135
GDA2020 MGA Zone 55	8152089.46	277355.5404	18	GDA2020 lat/lng	16.70341	144.91196
GDA2020 MGA Zone 55	8152113.923	277124.2913	19	GDA2020 lat/lng	16.70317	144.9098
GDA2020 MGA Zone 55	8151835.188	276775.5273	20	GDA2020 lat/lng	16.70566	144.9065
GDA2020 MGA Zone 55	8151361.647	276782.5848	21	GDA2020 lat/lng	16.70993	144.90652

Table 5. GPS Coordinates Mining Lease Applications No Name 1

Selected Projection	LAT	LONG	Point_ID	Coordinate-	Latitude	Longitude
				systems		
GDA2020 MGA Zone 55	8154375.004	281465.8086	1	GDA2020 lat/lng	-16.683150	144.950710
GDA2020 MGA Zone 55	8153949.286	281406.0883	2	GDA2020 lat/lng	-16.686990	144.950110
GDA2020 MGA Zone 55	8153801.595	281329.1244	3	GDA2020 lat/lng	-16.688320	144.949380
GDA2020 MGA Zone 55	8153746.762	281053.6942	4	GDA2020 lat/lng	-16.688790	144.946790
GDA2020 MGA Zone 55	8153585.554	281052.7379	5	GDA2020 lat/lng	-16.690240	144.946770
GDA2020 MGA Zone 55	8153411.96	281237.6468	6	GDA2020 lat/lng	-16.691830	144.948480
GDA2020 MGA Zone 55	8153384.481	281346.494	7	GDA2020 lat/lng	-16.692090	144.949500
GDA2020 MGA Zone 55	8153233.679	281472.3044	8	GDA2020 lat/lng	-16.693460	144.950670
GDA2020 MGA Zone 55	8153136.112	281465.4593	9	GDA2020 lat/lng	-16.694340	144.950590
GDA2020 MGA Zone 55	8153074.563	281421.6205	10	GDA2020 lat/lng	-16.694900	144.950170
GDA2020 MGA Zone 55	8152992.837	281438.1566	11	GDA2020 lat/lng	-16.695640	144.950320
GDA2020 MGA Zone 55	8152847.918	281503.7371	12	GDA2020 lat/lng	-16.696950	144.950920
GDA2020 MGA Zone 55	8152826.557	281449.0221	13	GDA2020 lat/lng	-16.697140	144.950410
GDA2020 MGA Zone 55	8152962.296	281375.6876	14	GDA2020 lat/lng	-16.695910	144.949730
GDA2020 MGA Zone 55	8153071.305	281357.5627	15	GDA2020 lat/lng	-16.694920	144.949570
GDA2020 MGA Zone 55	8153154.869	281393.327	16	GDA2020 lat/lng	-16.694170	144.949920
GDA2020 MGA Zone 55	8153299.898	281338.2078	17	GDA2020 lat/lng	-16.692850	144.949410
GDA2020 MGA Zone 55	8153355.96	281227.7589	18	GDA2020 lat/lng	-16.692340	144.948380
GDA2020 MGA Zone 55	8153234.39	281162.3019	19	GDA2020 lat/lng	-16.693430	144.947760
GDA2020 MGA Zone 55	8153146.21	280804.8194	20	GDA2020 lat/lng	-16.694190	144.944400
GDA2020 MGA Zone 55	8152929.648	280982.3219	21	GDA2020 lat/lng	-16.696160	144.946040
GDA2020 MGA Zone 55	8152880.464	281129.322	22	GDA2020 lat/lng	-16.696620	144.947420
GDA2020 MGA Zone 55	8152684.436	281407.3207	23	GDA2020 lat/lng	-16.698420	144.950000
GDA2020 MGA Zone 55	8152541.236	281513.4297	24	GDA2020 lat/lng	-16.699720	144.950980

GDA2020 MGA Zone 55	8152480.079	281507.5188	25	GDA2020 lat/lng	-16.700270	144.950920
GDA2020 MGA Zone 55	8152853.04	280990.959	26	GDA2020 lat/lng	-16.696860	144.946120
GDA2020 MGA Zone 55	8152680.389	280888.1008	27	GDA2020 lat/lng	-16.698410	144.945140
GDA2020 MGA Zone 55	8152727.771	280692.725	28	GDA2020 lat/lng	-16.697960	144.943310
GDA2020 MGA Zone 55	8152916.03	280544.2884	29	GDA2020 lat/lng	-16.696250	144.941940
GDA2020 MGA Zone 55	8152765.013	280396.7386	30	GDA2020 lat/lng	-16.697600	144.940540
GDA2020 MGA Zone 55	8152412.813	280278.7381	31	GDA2020 lat/lng	-16.700770	144.939400
GDA2020 MGA Zone 55	8152343.602	280122.4997	32	GDA2020 lat/lng	-16.701380	144.937930
GDA2020 MGA Zone 55	8152423.904	279968.6379	33	GDA2020 lat/lng	-16.700640	144.936490
GDA2020 MGA Zone 55	8152263.652	279933.6747	34	GDA2020 lat/lng	-16.702080	144.936150
GDA2020 MGA Zone 55	8152211.552	279798.1879	35	GDA2020 lat/lng	-16.702540	144.934870
GDA2020 MGA Zone 55	8152506.561	279791.207	36	GDA2020 lat/lng	-16.699870	144.934840
GDA2020 MGA Zone 55	8152577.766	279888.5668	37	GDA2020 lat/lng	-16.699240	144.935760
GDA2020 MGA Zone 55	8152569.71	279989.3637	38	GDA2020 lat/lng	-16.699320	144.936700
GDA2020 MGA Zone 55	8152482.502	280104.0591	39	GDA2020 lat/lng	-16.700120	144.937770
GDA2020 MGA Zone 55	8152495.715	280250.414	40	GDA2020 lat/lng	-16.700020	144.939140
GDA2020 MGA Zone 55	8152994.673	280355.1264	41	GDA2020 lat/lng	-16.695520	144.940170
GDA2020 MGA Zone 55	8153042.534	280457.9632	42	GDA2020 lat/lng	-16.695090	144.941140
GDA2020 MGA Zone 55	8153038.402	280561.3372	43	GDA2020 lat/lng	-16.695140	144.942110
GDA2020 MGA Zone 55	8152798.554	280749.5457	44	GDA2020 lat/lng	-16.697330	144.943850
GDA2020 MGA Zone 55	8152913.282	280907.9358	45	GDA2020 lat/lng	-16.696300	144.945340
GDA2020 MGA Zone 55	8153099.799	280716.3547	46	GDA2020 lat/lng	-16.694600	144.943570
GDA2020 MGA Zone 55	8153250.619	280718.723	47	GDA2020 lat/lng	-16.693240	144.943600
GDA2020 MGA Zone 55	8153302.458	280829.3688	48	GDA2020 lat/lng	-16.692780	144.944650
GDA2020 MGA Zone 55	8153325.843	281080.2646	49	GDA2020 lat/lng	-16.692590	144.947000
GDA2020 MGA Zone 55	8153450.68	281084.2113	50	GDA2020 lat/lng	-16.691470	144.947050
GDA2020 MGA Zone 55	8153559.941	280964.0567	51	GDA2020 lat/lng	-16.690470	144.945930
GDA2020 MGA Zone 55	8153803.201	280979.8637	52	GDA2020 lat/lng	-16.688270	144.946100
GDA2020 MGA Zone 55	8153841.299	281271.1632	53	GDA2020 lat/lng	-16.687950	144.948840
GDA2020 MGA Zone 55	8154311.292	281338.2735	54	GDA2020 lat/lng	-16.683710	144.949510
Table C. CDC Canadia at a AA					•	•

Table 6. GPS Coordinates Mining Lease Applications No Name 2

Historical Exploration

Initial investigations under the EPM primarily involved desk top research, including an assessment of any previous activities that may have taken place on site. An independent report was commissioned. This was considered along with the existing knowledge of the holder. Mr Mal Lane has considerable experience working in alluvial gold and tin deposits along with hard rock and has worked Hodgkinson ground previously.

There is a plethora of information from historical exploration. Ravenshoe Tin Dredging Ltd held AP2217 over the East Hodgkinson River during the early 1980's taken as prospective for gold mineralisation both in lodes and as alluvial deposits in the creeks and streams that drain the area. Ravenshoe reported that the gold bearing lodes appeared to occur in the brecciated Hodgkinson Formation indurated with quartz stringers or veins, ranging from centimetres to a metre wide. They found the best gold values in white

quartz with dark slate inclusions. Mineralised veins contained native gold, varying amounts of stibnite, pyrite, arsenopyrite and small quantities of chalcopyrite, sphalerite, galena and scheelite.

In 1988 Adams Enterprises held AP 3766M over a substantial part of the EPM area. The company carried out field studies and a pit sampling programme within areas of the East Hodgkinson River that were deemed possible for economic concentrations of alluvial gold. A total of 86 pits were excavated to bedrock along both St Kilda Creek and the East Hodgkinson River. Gravels sampled were reported to be generally evenly graded with particles from fine sand to 250mm. Sampling results across the eastern section of the East Hodgkinson from the confluence range from trace to 0.51g/LCM. Depths area around 1.00m with the maximum found being 2.9 m and the least to bedrock 0.5 m. Much of the ground therefore tested as running at better than 1/90, table 5 and figure 7.

The company also carried out bulk sampling at 105 random sites along the active channel of the East Hodgkinson. Samples were excavated using a backhoe and test pits excavated until basement was encountered. All excavated material was coned next to the pit site and 1.0 LCM was batch processed using

AP 3766M P	AP 3766M Pit Sampling Results										
Sample No	Grade g/LCM	Depth (m)	Sample No	Grade g/LCM	Depth (m)	Sample No	Grade g/LCM	Depth (m)	Sample No	Grade g/LCM	Depth (m)
N1	0.13	1	N23	0.23	1.6	N45	0.23	2.1	N67	0.00	0.75
N2	0.05	1.2	N24	0.04	0.75	N46	0.07	2.9	N68	0.06	1.2
N3	0.04	0.8	N25	0.12	1	N47	0.02	2.6	N69	0.47	1.1
N4	0.00	1.1	N26	0.27	0.6	N48	0.18	1.7	N70	0.23	1.2
N5	0.16	1.3	N27	0.06	0.5	N49	0.06	0.2	N71	0.09	1.6
N6	0.32	1	N28	0.37	0.5	N50	0.37	1.6	N72	0.20	1.1
N7	0.08	0.9	N29	0.02	0.4	N51	0.02	1.3	N73	0.32	1.2
N8	0.26	1.3	N30	0.18	0.5	N52	0.02	1.2	N74	0.01	0.7
N9	0.06	1.5	N31	0.03	0.3	N53	0.27	0.7	N75	0.00	0.8
N10	0.02	1.2	N32	0.22	0.75	N54	0.03	1.1	N76	0.06	1
N11	0.36	1.1	N33	0.00	1.2	N55	0.00	0.9	N77	0.13	1.1
N12	0.19	0.75	N34	0.00	1.3	N56	0.00	1	N78	0.02	0.9
N13	0.03	1	N35	0.28	1.4	N57	0.13	1.3	N79	0.07	0.6
N14	0.26	0.8	N36	0.06	1.2	N58	0.01	0.5	N80	0.19	0.6
N15	0.00	1.6	N37	0.14	0.7	N59	0.00	1.7	N81	0.09	1
N16	0.46	1.2	N38	0.04	0.6	N60	0.28	0.9	N82	0.31	1.2
N17	0.00	1.3	N39	0.00	0.75	N61	0.00	1.1	N83	0.01	0.7
N18	0.23	0.6	N40	0.31	1	N62	0.10	0.8	N84	0.51	1.1
N19	0.00	0.5	N41	0.00	0.6	N63	0.01	1.3	N85	0.26	1.2
N20	0.09	1.1	N42	0.30	1.8	N64	0.30	0.6	N86	0.13	1.4
N21	0.01	1.3	N43	0.16	1.5	N65	0.29	1.8			
N22	0.35	2.2	N44	0.00	1.2	N66	0.03	1.3			

Table 7. Ravenshoe Sampling Results CR18408

Figure 7. AP 3766M Sampling Points and Location

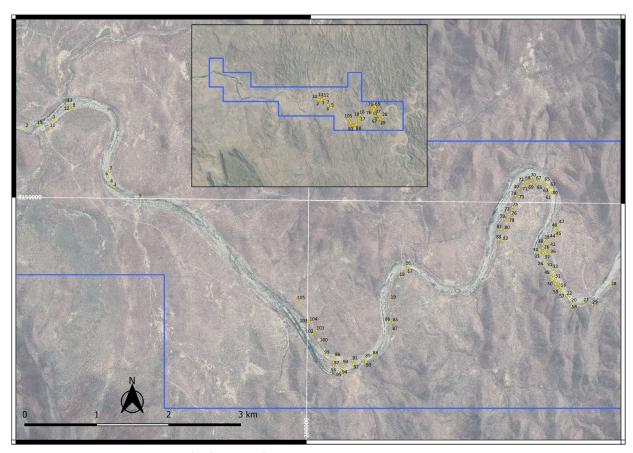


Figure 8. EPM 3766 Sample Sites (Scifleet 1988).

a Kowrie test plant. Following each clean-up concentrates were collected, panned and amalgamated for fine gold recovery. General results were similar to those achieved during the pit sampling ranging from trace to 0.56 g/LCM. However, a result of 1.56g/LCM were achieved at the eastern bend.

EPM 11231 was taken in 1996 by Mr R Foster and Ms C Fitzgerald for the identification of both alluvial and hard rock gold deposits. The EPM lies under the eastern section of the EPM applied for here. Pan sampling and mapping of wash beaches was carried out and concluded that bulk testing programme should be carried out. Further work was curtailed by the lodgement of a Native Title claim and the drop in gold price. Rock chip and dump samples taken from "Fosters Find" were tested. Chip samples of vein quartz are reported as returning values of 0.34 to 4.81g/t. Composite dump samples of vein quartz returned values of 0.4 - 25.6 g/t with an average grade of 5.25g/t Au. Mr Foster mapped the areas of gravel "beach" felt prospective for alluvial gold, counting colours, and being at pains to emphasise that these were not "peppers". The results were recorded and mapped with results ranging from 1 - 6 colours counted, the average being 3 (Appendix B).

Australian Ores and Minerals Limited carried out stream sediment sampling comprising 251 samples in the East Hodgkinson River and St Kilda Creek during 1988, followed by limited programme of rock chip sampling. The results identified a number of gold anomalous zones, the best of which were concentrated on the area of the East Hodgkinson that forms the central area of the application with up to 4.22 ppb Au being assayed. They surrendered the AP in order to take up a new EPM over a larger area and continue their exploration. The majority of their exploration was contained within the Hodgkinson River to the East of the application area however some samples were taken in tributaries of the East Hodkinson reaching 1.42 ppb, being anomalous for gold. Rock chip samples also taken from tributaries of the East Hodgkinson and synonymous with the current application indicated gold content at 1.09 and 1.17 ppm.

In the late 1980's, Poseidon Minerals Ltd completed an extensive drainage sampling project providing valuable data in the nature of gold dispersion through-out the area. While they were unsuccessful in finding any significant vein gold deposit the results of their sediment sampling appear to indicate values of around 32ppm Au within the lower reaches of Stockyard Creek. Soil sampling around tributaries of Stockyard Creek reported values varying from 5 to 101ppb Au. Though not part of the EPM, the sampling areas are part of the East Hodgkinson River catchment. The confluence of Stockyard Creek and East Hodgkinson River is within the application.

In 1991 Derbyshire Tin Mining carried out exploration on parts of the Hodgkinson and East Hodgkinson Rivers. The interest lay in both hard rock and alluvial gold. Field work carried out on the area found that

gold could be freely panned from the entire length of the rivers and the company reported some total alluvium in the order of 22 million bank cubic metres, about half of which was thought to be in the East Hodgkinson.

Mr Fisher held EPM 8177 in the early 1990's. While seeking hard rock gold the company was also interested in alluvial deposits in part of the East Hodgkinson overlapping with that within EPM 27536. In his annual report for 1993, Mr Fisher reports investigating quartz veins containing free gold, stibnite and arsenic. The area was drilled with several intersections of over 2gm/t Au being recorded. Further drilling was suggested but not completed.

Michael Collins previously held leases in the area directly associated with the application. Mr Collins had entered into an agreement with Intermet Resources and their subsidiary Hillgrove Resources which was subsequently dissolved and resulted in limited work being carried out. He had more recently entered into an agreement with a Chinese consortium. Most of these leases have since been relinquished without any significant work being carried out and the remaining leases are now held under Turnkey Alliance. The proposed mining lease lies over an area previously held my Turnkey and Mr Collins, also known as various incarnations of "No Name".

Current Exploration Activities

Obtaining substantial information regarding alluvial deposits is notoriously difficult. Tenements tend to be smaller and holders less likely to submit reporting. However, we have been able to analyse the available data and have combined that with a personal knowledge of the area to draw some tentative conclusions on the potential of the East Hodgkinson area covered by the EPM.

Reporting by Mr Fisher and Mr Foster provide some comfort in the potential grades available. Mr Fisher goes so far as to calculate around 22 million tonnes of auriferous gravels within his tenement of which around a half is attributed to the East Hodgkinson Tenement. None of the tributaries have been taken into account.

Further testing would need to be carried out in the form of sampling and mapping to confirm previous work, and it is not possible to be accurate as to the overall size of the deposit. However, we can certainly say that given the information contained within the researched reports, both from soil sample anomalies and tested pit sampling that a resource of an average of 0.2 g/t can be extrapolated. The sections of the East Hodgkinson catchment associated with the creeks known colloquially as No Name and Little no Name range from less than 50 m to over 200 m wide.

During the current term Lane has completed a thorough review of historical information available and the data associated with the tenement. Remodelling of some of the historical data enabled a better understanding of the alluvial gold occurrences within the East Hodgkinson River and associated tributaries. A number of in-field reconnaissance trips were undertaken during 2022 covering primarily the eastern section and some of the western area of the tenement. During these trips, testing by sediment sampling, panning and detector were carried out and comments recorded, figure 9. The eastern area concentrated on the East Hodgkinson River west of the confluence with Stockyard Creek and to the west of the Kondaperinga Homestead.

During the 2022 to 2023 report further infield work was carried out with an emphasis on the north eastern areas of the tenement in line with the proposed mining lease areas. While the testing highlighted some eastern tributaries that appear to have been thoroughly worked, sample results from detector work did confirm north eastern areas contained significant potential. The most recent excursion involved the detailed exploration of the proposed areas and much comfort was derived from the extent and ease in which gold was detected on levees and banks.

Plate 1. Some of the Gold Samples Retrieved by Prospector on Site During Sampling 2023

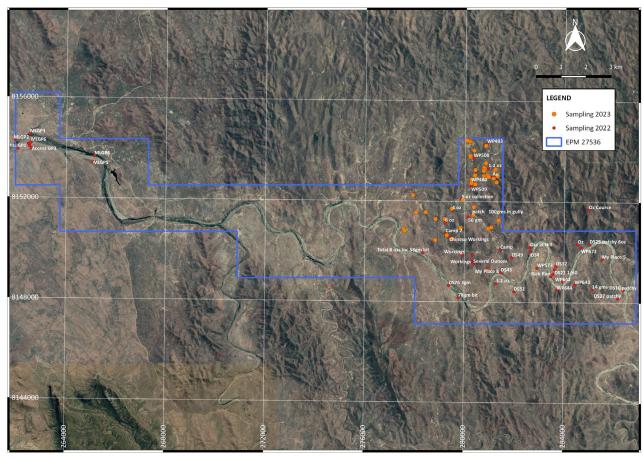


Figure 9. Sample Sites 2022 and 2023

Proposed Mining Lease

The proposed mining leases sit within the Kondoparinga Station, Lot on Plans 5112HG843453. The properties being to the 61km north of Dimbulah off the Mareeba Dimbulah Road. The station address is Kondoparinga Station, Kondoparinga Road, Mt Mulligan, Queensland, 4871 held by the Kuku Djungan Aboriginal Corporation.

The area for each mining lease has been selected as being most prospective for economic resources of alluvial gold and only involves the areas directly associated with the observed banks and channels, including the flood and beach deposits of the river. GPS coordinates have been recorded (GDA2020) as described in tables 1 to 4 above and the attached shp files.

The four mining lease areas share the same main access roads via Dimbulah and as detailed in the attached shape file.

Pt_ID	Easting	Northing	Latitude	Longitude
1	290597.254	8127795.401	-16.9240978	145.0338411
2	290209.252	8128309.187	-16.9194211	145.0302478
3	290115.524	8128592.305	-16.9168548	145.0293948
4	290000.855	8128839.659	-16.9146098	145.0283419
5	290103.487	8129110.916	-16.9121685	145.0293305
6	289928.482	8129458.41	-16.9090133	145.0277208
7	289787.465	8129715.77	-16.9066755	145.0264217
8	289415.392	8130105.532	-16.9031206	145.0229667
9	289066.096	8130346.97	-16.9009077	145.0197116
10	288980.693	8130632.147	-16.8983236	145.0189371
11	288767.059	8130808.966	-16.8967067	145.016949
12	288571.53	8131076.045	-16.8942761	145.0151394
13	288614.745	8131355.008	-16.8917598	145.0155713
14	288423.591	8131640.303	-16.889165	145.0138046
15	288066.735	8131986.349	-16.8860063	145.0104888
16	287945.4	8132287.358	-16.8832759	145.0093788
17	287653.183	8132671.977	-16.8797745	145.0066733
18	287289.714	8132879.273	-16.8778685	145.0032826
19	286956.975	8133131.518	-16.8755593	145.0001845
20	286457.752	8133220.086	-16.8747134	144.9955089
21	286260.962	8133419.182	-16.8728967	144.9936815
22	285971.572	8133558.862	-16.8716082	144.9909796
23	285784.154	8133770.691	-16.8696773	144.9892414
24	285602.464	8134017.346	-16.8674322	144.9875603
25	285353.324	8134237.631	-16.8654192	144.9852439
26	285202.11	8134479.458	-16.8632206	144.9838483
27	285045.31	8134708.98	-16.8611326	144.9823992
28	284643.678	8134847.496	-16.8598441	144.9786445

29	284327.638	8135357.079	-16.8552113	144.9757284
30	284193.518	8135599.471	-16.8530091	144.9744935
31	284139.985	8136033.91	-16.8490794	144.9740331
32	284157.008	8136414.551	-16.8456423	144.9742294
33	284054.362	8136889.18	-16.841345	144.9733121
34	284181.034	8137263.042	-16.8379793	144.9745363
35	284188.741	8137550.741	-16.8353809	144.9746363
36	284099.858	8138018.795	-16.8311443	144.9738475
37	284005.032	8138509.704	-16.8267006	144.9730051
38	283890.523	8138767.31	-16.8243628	144.9719558
39	283856.867	8139043.919	-16.8218608	144.9716667
40	283711.171	8139299.625	-16.8195372	144.9703247
41	283287.724	8139403.926	-16.8185557	144.9663629
42	283204.606	8139123.747	-16.8210791	144.9655562
43	282973.004	8138962.936	-16.8225104	144.9633683
44	282763.748	8138738.742	-16.8245163	144.9613839
45	282443.175	8138498.385	-16.8266578	144.9583536
46	282044.329	8138615.952	-16.8255585	144.9546238
47	281921.057	8138872.275	-16.8232314	144.9534924
48	281913.935	8139156.27	-16.8206651	144.9534531
49	281642.583	8139270.408	-16.8196086	144.950919
50	281489.989	8139528.007	-16.8172672	144.9495127
51	281133.826	8140077.045	-16.8122739	144.9462255
52	281032.772	8140390.884	-16.8094293	144.9453082
53	280928.978	8140711.805	-16.8065204	144.9443659
54	280977.26	8141009.809	-16.8038328	144.9448478
55	280726.083	8141487.236	-16.7994962	144.9425385
56	280605.579	8141913.867	-16.7956308	144.9414499
57	280356.947	8142034.947	-16.7945136	144.9391299
58	280086.853	8142133.675	-16.7935964	144.9366065
59	279793.406	8142062.663	-16.7942103	144.9338475
60	279555.446	8141926.245	-16.7954202	144.9316025
61	279326.501	8142267.989	-16.7923114	144.9294889
62	279162.161	8142498.068	-16.7902174	144.9279702
63	279150.062	8142776.408	-16.7877018	144.927884
64	279059.248	8143052.892	-16.7851955	144.9270595
65	278993.026	8143328.86	-16.7826962	144.9264655
66	278990.657	8143745.504	-16.7789321	144.9264841
67	278880.15	8144028.228	-16.7763676	144.9254756
68	278857.527	8144338.945	-16.7735585	144.9252939
69	278802.728	8144876.223	-16.7686997	144.9248327
70	278807.685	8145305.06	-16.7648261	144.9249212
71	278782.174	8145630.701	-16.7618819	144.9247139
72	278650.786	8145890.002	-16.7595271	144.9235073
73	278734.99	8146532.641	-16.7537295	144.9243598
74	278734.33	8146810.921	-16.7512139	144.9242201
/4	2/0/1/.1//	0140010.321	-10./312133	144.3242201

75 278613.573 8147073.606 -16.7488311 144.9232744 76 278355.886 8147293.943 -16.7468163 144.9208799 77 278122.07 8147464.247 -16.7452557 144.9187044 78 2773831.291 8147522.567 -16.7447013 144.9159838 79 277487.336 8147747.404 -16.7426376 144.9127811 80 277500.608 8148033.52 -16.7400542 144.9129337 81 277547.929 8148365.308 -16.7370614 144.912941 82 277452.378 8148876.632 -16.7324331 144.9125645 83 277355.063 8149330.746 -16.7283197 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150529.485 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.7152972 144.9036631 91 2764					
77 278122.07 8147464.247 -16.7452557 144.9187044 78 277831.291 8147522.567 -16.7447013 144.9159838 79 277487.336 8147747.404 -16.7426376 144.9127811 80 277500.608 8148033.52 -16.7400542 144.9129337 81 277547.929 8148365.308 -16.7370614 144.912341 82 277452.378 8148876.632 -16.7324331 144.9125645 83 277335.063 8149330.746 -16.7283197 144.9108548 84 277262.191 8149621.855 -16.7256829 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9048647 87 276613.683 8150762.49 -16.7152972 144.9048647 88 276497.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.712361 144.903023 91 276462.98	75	278613.573	8147073.606	-16.7488311	144.9232744
78 277831.291 8147522.567 -16.7447013 144.9159838 79 277487.336 8147747.404 -16.7426376 144.9127811 80 277500.608 8148033.52 -16.7400542 144.9129337 81 277547.929 8148365.308 -16.7370614 144.91341 82 277452.378 8148876.632 -16.7324331 144.9125645 83 277335.063 8149330.746 -16.7283197 144.9115093 84 277262.191 8149621.855 -16.7256829 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150762.49 -16.712361 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7012381 144.903023 91 276462.985 8151655.767 -16.7072332 144.9036631 92 276465.44	76	278355.886	8147293.943	-16.7468163	144.9208799
79 277487.336 8147747.404 -16.7426376 144.9127811 80 277500.608 8148033.52 -16.7400542 144.9129337 81 277547.929 8148365.308 -16.7370614 144.91341 82 277452.378 8148876.632 -16.7324331 144.9125645 83 277335.063 814930.746 -16.7283197 144.9108548 84 277262.191 8149621.855 -16.7256829 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150529.485 -16.7174221 144.9048647 88 276403.855 8150762.49 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276462.985 8151655.767 -16.702332 144.903633 91 276462.985 8151283.811 -16.7047705 144.9036131 93 276737.662	77	278122.07	8147464.247	-16.7452557	144.9187044
80 277500.608 8148033.52 -16.7400542 144.9129337 81 277547.929 8148365.308 -16.7370614 144.91341 82 277452.378 8148876.632 -16.7324331 144.9125645 83 277335.063 8149330.746 -16.7283197 144.9108548 84 277262.191 8149621.855 -16.7256829 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150529.485 -16.714221 144.9048647 88 276403.855 8150762.49 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.712361 144.903023 91 276462.985 8151655.767 -16.7072332 144.9035631 92 276465.447 8151928.41 -16.704705 144.9036130 93 276737.662 </td <td>78</td> <td>277831.291</td> <td>8147522.567</td> <td>-16.7447013</td> <td>144.9159838</td>	78	277831.291	8147522.567	-16.7447013	144.9159838
81 277547.929 8148365.308 -16.7370614 144.91341 82 277452.378 8148876.632 -16.7324331 144.9125645 83 277335.063 8149330.746 -16.7283197 144.9115093 84 277262.191 8149621.855 -16.7256829 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9048647 88 276613.683 8150529.485 -16.712291 144.9048647 88 276403.855 8150762.49 -16.7152972 144.9048647 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7015883 144.903023 91 276462.985 8151655.767 -16.7072332 144.9035631 92 276465.447 8151928.41 -16.704705 144.90361805 94 277018.548 8152341.434 -16.7010558 144.9126337 95 277424.04	79	277487.336	8147747.404	-16.7426376	144.9127811
82 277452.378 8148876.632 -16.7324331 144.9125645 83 277335.063 8149330.746 -16.7283197 144.9115093 84 277262.191 8149621.855 -16.7256829 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150529.485 -16.7174221 144.9060449 88 276403.855 8150762.49 -16.7152972 144.9028207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.9035631 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7016558 144.9126337 96 277621	80	277500.608	8148033.52	-16.7400542	144.9129337
83 277335.063 8149330.746 -16.7283197 144.9115093 84 277262.191 8149621.855 -16.7256829 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150529.485 -16.7174221 144.9048647 88 276403.855 8150762.49 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.903023 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9126337 96 277621.254 8151800.413 -16.7060364 144.914349 97 277777.7	81	277547.929	8148365.308	-16.7370614	144.91341
84 277262.191 8149621.855 -16.7256829 144.9108548 85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150529.485 -16.7174221 144.9048647 88 276403.855 8150762.49 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.9036131 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152281.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.914349 97 277777.7	82	277452.378	8148876.632	-16.7324331	144.9125645
85 276956.967 8149987.618 -16.7223498 144.9080294 86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150529.485 -16.7174221 144.9048647 88 276403.855 8150762.49 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.9036131 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.9126337 96 277621.254 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293	83	277335.063	8149330.746	-16.7283197	144.9115093
86 276742.297 8150270.79 -16.7197713 144.9060449 87 276613.683 8150529.485 -16.7174221 144.9048647 88 276403.855 8150762.49 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.9035631 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.706364 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.	84	277262.191	8149621.855	-16.7256829	144.9108548
87 276613.683 8150529.485 -16.7174221 144.9048647 88 276403.855 8150762.49 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.9035631 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.914349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.926405 100 278525.27 8150622.475 -16.7148237 144.9206405 101 279007.	85	276956.967	8149987.618	-16.7223498	144.9080294
88 276403.855 8150762.49 -16.7152972 144.9029207 89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.9035631 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.914349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9227939 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.92273372 102 27918	86	276742.297	8150270.79	-16.7197713	144.9060449
89 276197.389 8151085.347 -16.712361 144.9010171 90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.903631 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.914349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.92273372 102 279185.679 8151109.874 -16.7049596 144.93099032 104 2795	87	276613.683	8150529.485	-16.7174221	144.9048647
90 276409.279 8151283.811 -16.7105883 144.903023 91 276462.985 8151655.767 -16.7072332 144.9035631 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.9144349 97 27777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.7148237 144.9206405 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	88	276403.855	8150762.49	-16.7152972	144.9029207
91 276462.985 8151655.767 -16.7072332 144.9035631 92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.914349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.7012422 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 27	89	276197.389	8151085.347	-16.712361	144.9010171
92 276465.447 8151928.41 -16.7047705 144.9036131 93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.9144349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.7024596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.9303912 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.70031306 144.9374972	90	276409.279	8151283.811	-16.7105883	144.903023
93 276737.662 8152088.257 -16.7033523 144.9061805 94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.9144349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.92273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7031306 144.9374972 107 <td< td=""><td>91</td><td>276462.985</td><td>8151655.767</td><td>-16.7072332</td><td>144.9035631</td></td<>	91	276462.985	8151655.767	-16.7072332	144.9035631
94 277018.548 8152341.434 -16.7010918 144.9088384 95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.9144349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.702422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7000592 144.9384082 108 <td< td=""><td>92</td><td>276465.447</td><td>8151928.41</td><td>-16.7047705</td><td>144.9036131</td></td<>	92	276465.447	8151928.41	-16.7047705	144.9036131
95 277424.041 8152283.26 -16.7016558 144.9126337 96 277621.254 8151800.413 -16.7060364 144.9144349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908 <td>93</td> <td>276737.662</td> <td>8152088.257</td> <td>-16.7033523</td> <td>144.9061805</td>	93	276737.662	8152088.257	-16.7033523	144.9061805
96 277621.254 8151800.413 -16.7060364 144.9144349 97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	94	277018.548	8152341.434	-16.7010918	144.9088384
97 277777.774 8151518.637 -16.7085967 144.9158745 98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	95	277424.041	8152283.26	-16.7016558	144.9126337
98 278042.363 8151194.004 -16.7115543 144.9183229 99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	96	277621.254	8151800.413	-16.7060364	144.9144349
99 278293.344 8150834.721 -16.7148237 144.9206405 100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	97	277777.774	8151518.637	-16.7085967	144.9158745
100 278525.27 8150622.475 -16.716763 144.9227939 101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	98	278042.363	8151194.004	-16.7115543	144.9183229
101 279007.666 8150837.652 -16.7148645 144.9273372 102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	99	278293.344	8150834.721	-16.7148237	144.9206405
102 279185.679 8151109.874 -16.712422 144.9290325 103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	100	278525.27	8150622.475	-16.716763	144.9227939
103 279327.192 8151439.27 -16.7094596 144.9303912 104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	101	279007.666	8150837.652	-16.7148645	144.9273372
104 279552.828 8151764.778 -16.7065402 144.932538 105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	102	279185.679	8151109.874	-16.712422	144.9290325
105 279808.469 8151864.596 -16.7056624 144.9349441 106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	103	279327.192	8151439.27	-16.7094596	144.9303912
106 280077.904 8152147.636 -16.7031306 144.9374972 107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	104	279552.828	8151764.778	-16.7065402	144.932538
107 280171.555 8152488.595 -16.7000592 144.9384082 108 280334.38 8153069.809 -16.6948237 144.9399908	105	279808.469	8151864.596	-16.7056624	144.9349441
108 280334.38 8153069.809 -16.6948237 144.9399908	106	280077.904	8152147.636	-16.7031306	144.9374972
	107	280171.555	8152488.595	-16.7000592	144.9384082
109 280334.38 8153069.809 -16.6948237 144.9399908	108	280334.38	8153069.809	-16.6948237	144.9399908
	109	280334.38	8153069.809	-16.6948237	144.9399908

Table 8. GPS Points Proposed Access

Proposed Work Programme

Commencement

Operations will commence as soon as practically possible following the grant of the lease. Equipment required to carry out the operation is already available. The process is relatively simple being alluvial mining using the advanced step method.

Year	Activity		
1-2	Activities to delineate resource in advance of mining		
	Planning and set up of infrastructure.		
	Including bulk testing of alluvials, use of a trial plant.		
2-10	Mining		

Method of Operations

Minerals applied for under this mining lease application include:

Gold

Tin

Silver

Monazite

Ilmenite

Rutile

However, the priority will be the development and mining of the alluvial gold resource.

The mining operation is relatively simple being in the form of alluvial mining of river banks and palaeochannels. Once delineated, the gravels will be extracted from site by excavator/ loader and then transported to the mobile plant for processing including the washing and screening of alluvial gravels. Waste gravels will be stockpiled No other processing will be required on site. The operation will require a small team of less than 5 people. Infrastructure will be restricted to mobile alluvial processing plants. It is likely that a small temporary camp will be erected on one of the lease sites as work progresses.

Other equipment likely to be on site are:

- Dozer;
- Excavator;
- Loader;
- Truck;
- 4 WD site vehicles;

Any amendment to the mine plan longer term will result in an application to amend the environmental authority and mine plan once the programme has been determined.

Rehabilitation will take place in the advanced step method and will be on-going. Ripping of surface and any unwanted tracks by dozer before spreading of saved topsoil and overburden. This will then be seeded with natural seed of local provenance.

References

Scifleet, G.E. 1988. Evaluation and Exploration Techniques. A to P 3766M, East Hodgkinson River. Adams Enterprises Ltd. CR#18408

Scifleet, G.E. 1987. Evaluation and Exploration Techniques. A to P 3766M, East Hodgkinson River. Adams Enterprises Ltd. CR#16668

Ridge, K.J. 1981. First Six-Monthly Report AP 2408M Utah Development Company

CR#8547 Jackson, T. 2017. Partial Relinquishment Report EPM 12228 CR#100272

Tucker, R. M. 2009. Overview of EPM13944. Paterson Mining Ltd.

Foster, S. V. 1997 Exploration Report for First Year of Tenure. EPM 11231. CR#28975

Clark, A.B. 1957 Summary Report of Field Activities EPM 107. North Consolidated Gold Fields. CR#145

Murdoch, R. 1981. *Final Report on Authority to Prospect 2217 – East Hodgkinson River.* Ravenshoe Tin Dredging Limited. CR#8865

Hegarty, R.A. 1988 *Report for Six Months Ended September 1988*. Australian Ores & Minerals Limited CR#19249

Hegarty, E.A. 1989. Final Report Australian Ores and Minerals Ltd. CR#20312

Peters, S. G., Suzanne, D., Dowling, K. 1990. Melange and sediment hosted gold bearing quartz veins,

Hodgkinson Gold Field Queensland Australia. Economic Geology (1990) 85(2): 312-327

Fisher, G. 1996 Final Report EPM 8177 Ending 17th October 1996. CR#28995

Fisher, G. 1993. Partial Relinquishment Report. EPM 8177 CR#26081

Fisher, G. 1993. Yearly Report EPM 8177. CR#28983

Derbyshire Tin Mining. 1991. Summary Exploration on EPM 8177. CR#25390

Garth, B. E. 1971 Final Report AP 685 McLeod and Hodgkinson River. Alluvial Gold Limited. CR#3614

Bannister, P. 2017 EPM 19434 Partial Relinquishment Report. Placer Gold Pty Ltd CR#101089

Henry, R. 1988. Second six-monthly report AP 4975M Stockyard Creek. Poseidon Minerals Ltd CR#19355A