

The experience you deserve 8

Vecco Critical Minerals Project
Traffic Impact Assessment

Client: Vecco Industrial Pty Ltd (Vecco)
Project No: BE230071
Document No: BE230071-RP-TIA-06

October 2023

Document Control Record

Prepared by:	Ash Kotnala
Position:	Traffic Engineer
Signed:	fatach Kathare
Date:	$12 / 10 / 2023$

Approved by:	Angela Wood
Position:	Principal Traffic Engineer
Signed:	Culeod.
Date:	$12 / 10 / 2023$

Version No.	Description	Date	Prepared	Approved
01	Draft for client review	$2 / 06 / 2023$	AK	AW
02	Draft for client review	$5 / 06 / 2023$	AK	AW
03	Final	$20 / 06 / 2023$	AK	AW
04	Final	$5 / 09 / 2023$	AK	AW
05	Final	$5 / 09 / 2023$	AK	AW
06	Final	$12 / 10 / 2023$	AK	AW

Recipients are responsible for eliminating all superseded documents in their possession

Coote Burchills Engineering Pty Ltd ACN: 166942365
Level 2, 26 Marine Parade SOUTHPORT QLD 4215 PO Box 3766, Australia Fair SOUTHPORT QLD 4215

Telephone: +61 755096400
Level 14, 167 Eagle Street BRISBANE QLD 4000
PO Box 83, BRISBANE QLD 4000
Telephone: +61 736060201
123 Margaret Street TOOWOOMBA QLD 4350 PO Box 1439, TOOWOOMBA QLD 4350

Telephone: +61 745804970
Email: admin@burchills.com.au
RELIANCE, USES and LIMITATIONS
This report is copyright and is to be used only for its intended purpose by the intended recipient, and is not to be copied or used in any other way. The report may be relied upon for its intended purpose within the limits of the following disclaimer.
This study, report and analyses have been based on the information available to Burchills Engineering Solutions at the time of preparation. Burchills Engineering Solutions accepts responsibility for the report and its conclusions to the extent that the information was sufficient and accurate at the time of preparation. Burchills Engineering Solutions does not take responsibility for errors and omissions due to incorrect information or information not available to Burchills Engineering Solutions at the time of preparation of the study, report or analyses.

The experience you deserve

Table of Contents

1. Introduction 1
1.1 Project Overview 1
1.2 Assessment Methodology 1
1.3 Report Structure 2
1.4 References 2
1.5 Limitations 2
2. Vecco Critical Minerals Project 3
2.1 Project Overview 3
2.2 Location 6
2.3 Project Staging 8
2.4 Project Benefits 8
2.5 Workforce 9
2.6 Workforce Accommodation 9
3. Assessment Scope 10
3.1.1 State-controlled Roads 10
3.1.2 State-controlled Intersections 10
3.1.3 McKinlay Regional Council Roads 10
3.2 Study Intersections 10
3.3 Access and Egress to Mine Site 11
3.4 Intersection Safety Criteria 12
3.4.1 Warrants for Turn Treatments 12
3.5 Link Capacity Criteria 13
4. Existing Road Network 15
4.1 Road Links 15
4.2 Punchbowl Road - Additional Comments 17
4.3 Intersections 17
4.3.1 Flinders Highway / Punchbowl Road Intersection 17
4.4 Punchbowl Road / Shaw Street Intersection 21
4.5 Crash History for Intersections and Links 23
5. Traffic Generation 24
5.1 Traffic Count Data 24
5.2 Background Traffic Volumes 24
5.3 Traffic Growth 25
8
Client: Vecco Industrial Pty Ltd (Vecco)

The experience you deserve

5.4 Traffic Generation 25
5.4.1 Workforce Numbers 25
5.5 Workforce Transportation Modes Split 26
5.6 Workforce Vehicle Trips 26
5.7 Workforce Rosters 27
5.8 Heavy Vehicle Movements 27
5.9 Directional Trip Distribution 28
5.10 Traffic Distribution 28
6. Vecco Critical Minerals Project Traffic Assessment 29
6.1 Assessment Scenarios 29
6.2 SIDRA Assessment 30
6.2.1 Flinders Highway and Punchbowl Road 30
6.2.2 Punchbowl Road and Shaw Street 31
6.2.3 Punchbowl Road and Site Access Road 32
6.3 Turn Warrant Assessment 33
6.3.1 Flinders Highway and Punchbowl Road 33
6.3.2 Punchbowl Road and Shaw Street 34
6.3.3 Punchbowl Road and Access Road 35
7. Mitigation Strategies 37
7.1 Sight Distance 37
7.2 Cross-Section Fit for Use Assessment 37
7.2.1 Fit For Use Assessment 38
8. Summary and Recommendations 39
9. References 40
Tables
Table 2.1 Vecco Critical Minerals Projects Stages 8
Table 2.2 Vecco Critical Minerals Project Daily Workforce Number (Peak) 9
Table 3.1 Study Intersections 10
Table 3.2 Level of Service Definitions 13
Table 3.3 Maximum AADT Thresholds for Level Terrain on Two-Lane Two-Way Rural Roads 14
Table 4.1 Summarises the existing road conditions for key roads within the study area. 15
Table 4.2 Detailed characteristics of key roads. 16
Table 4.3 Flinders Highway / Punchbowl Road Intersection 18
Table 4.4 Flinders Highway / Punchbowl Road Safe Intersection Sight Distance Assessment 19
Table 4.5 Flinders Highway / Punchbowl Street Intersection Findings 21
Table 4.6 Punchbowl Road / Shaw Street Intersection 22

The experience you deserve

Table 4.7 Punchbowl Road / Shaw Street Safe Intersection Sight Distance Assessment. 22
Table 4.8 Punchbowl Road / Shaw Street Intersection Findings 23
Table 5.1 Peak AM and PM Period 24
Table 5.2 Vecco Critical Minerals Project Daily Workforce Number (Peak) 25
Table 5.3 Vecco Critical Minerals Project Workforce Transportation Distributions per shift-change Day for Years 2024 and 2025 26
Table 5.4 Vecco Critical Minerals Project Trips 26
Table 5.5 Vecco Critical Minerals Project Inbound and Outbound Trips (Construction Stage) 27
Table 5.6 External Traffic Distribution 28
Table 6.1 Assessment Scenarios 29
Table 6.2 Vecco Critical Minerals Mining Project Inbound and Outbound Trip Year 2025 29
Table 6.3 SIDRA Results - Flinders Highway / Punchbowl Road 30
Table 6.4 SIDRA Results - Intersection: Punchbowl Road / Shaw Street 31
Table 6.5 SIDRA Results - Intersection: Punchbowl Road / Site Access 32
Table 6.6 Flinders Highway / Punchbowl Road Intersection Trips Peak Hours 34
Table 6.7 Punchbowl Road / Shaw Street Intersection Trips Peak Hours 35
Table 6.8 Site Access Road / Punchbowl Road Intersection Trips Peak Hours 36
Table 6.9 Turn Warrant Existing Treatments and Required Treatments 36
Table 7.1 Single Carriageway Rural Road Width 37
Table 7.2 Fit for use Assessment for Punchbowl Road 38
Figures
Figure 2.1 Proposed Conceptual Infrastructure Layout 4
Figure 2.2 Proposed Access MLA Conceptual Infrastructure Layout 5
Figure 2.3 Project Location 7
Figure 3.1 Study Intersection 11
Figure 3.2 Warrants for Turn Treatment for Design Speed Greater Than or Equal to $100 \mathrm{~km} / \mathrm{h}$ 12
Figure 4.1 Flinders Highway / Punchbowl Road Aerial View 18
Figure 4.2 Punchbowl Road / Shaw Street Aerial View 21
Figure 5.1 Flinders Highway / Punchbowl Road Background Traffic Volume 24
Figure 6.1 SIDRA Layout - Flinders Highway / Punchbowl Road 30
Figure 6.2 SIDRA Layout - Punchbowl Road / Shaw Street 31
Figure 6.3 SIDRA Layout - Intersection: Punchbowl Road / Site Access 32
Figure 6.4 Turn Warrants Qm Traffic Flow Calculation 33
Figure 6.5 Turn Warrant Assessment Flinders Highway / Punchbowl Road Intersection 34
Figure 6.6 Turn Warrant Assessment Punchbowl Road / Shaw Street Intersection 35
Figure 6.7 Turn Warrant Assessment Site Access Road / Punchbowl Road Intersection 36

The experience you deserve

Appendices

Appendix A - Proposed Site Layout
Appendix B - Traffic Survey Data
Appendix C - SIDRA Output
Appendix D - Traffic Flow Diagram

[^0]
The experience you deserve

1. Introduction

1.1 Project Overview

Burchills Engineering Solutions (Burchills) has been commissioned by Vecco Industrial Pty Ltd (Vecco) to provide traffic and transport engineering advice in relation to the Vecco Critical Minerals Project located (Project) in Julia Creek, Queensland.

The Project will be comprised of a mine and associated infrastructure approximately 70 km north of Julia Creek, with capabilities of delivering up to 1.9 Mtpa of Run of Mine (ROM) ore during the mining operations.

To facilitate the processing of the ore, the Project will include the construction and implementation of a mineral processing plant (MPP), a Mine Infrastructure Area (MIA), ore handling facilities, raw water supply pumping and storage including a pipeline connection to the MIA, a hybrid photovoltaic diesel power plant, as well as an on-site workers village and on-site sewerage treatment plant (STP).

The Project area will be defined by three (3) proposed Mining Lease Applications (MLA), including main Production MLA, a Transport MLA and an Infrastructure MLA. The combine three (3) MLA approximately covers $31.43 \mathrm{~km}^{2}$ ($3,536 \mathrm{ha}$).

As part of the Project, the construction and operation phases will employ Drive-In-Drive-Out (DIDO) workers from the local McKinlay Shire area as well as Fly-In-Fly-Out (FIFO) workers sourced from Queensland regional centres, likely Mount Isa, Cloncurry, Julia Creek and Townsville.

1.2 Assessment Methodology

This report has adopted the following assessment methodology to quantify the impact of the Traffic Impact Assessment (TIA), consistent with the requirements of the Department of Transport and Main Roads Guide to Traffic Impact Assessments (GTIA) 2018:

- Determine the potential scope of the impact of the Project;
- Assess existing road infrastructure and conditions;
- Determine the transport demands of the Project;
- Determine the impact the demands have on the existing infrastructure in terms of:
- Intersection impact;
- Link capacity impact; and
- Other impacts including road safety.
- Determine any necessary measures required to mitigate the impact of the Project.

Doc Title: Traffic Impact Assessment

The experience you deserve

1.3 Report Structure

The reporting structure adopted as part of this assessment is outlined below:

Section	Description
Introduction	Introduces the TIA report
Project Description	An introduction and description of the proposed development
Assessment Methodology	Description of the scope of the assessment, and approach taken to determine the impact of the development
Existing Road Network	Description of the existing road network
Project Traffic Volumes	Description of the Project traffic demands
Project Assessment	This section describes the results of the assessment of the Project, and any potential impacts on the existing road network
Mitigation Strategies	Proposed strategies to mitigate potential impacts of the Project, including any infrastructure upgrades, or management strategies

1.4 References

The following documents have been used in the preparation of this report:

- Transport Main Roads Guide to Traffic Impact Assessment, 2018 (GTIA);
- Austroads Guide to Road Design Part 4A 2017; and
- Road Planning and Design Manual (RPDM) 2021.

1.5 Limitations

Burchills has completed this traffic report in accordance with the usual care and thoroughness of the consulting profession. To inform the Project operations conditions, workforce numbers and delivery stage durations, Burchills has largely utilised the Social Impact Management Plan produced by Vecco where confirmation of the adopted processes and methodologies have been provided by Vecco.

The assessment is based on accepted traffic engineering practises and standards applicable at the time of undertaking the assessment. The assessment was completed in June 2023 and is based on the conditions encountered and Project information available at the time. Burchills disclaims responsibility for any changes to Project planning or road conditions that may occur after the completion of the assessment.

[^1]
The experience you deserve

2. Vecco Critical Minerals Project

2.1 Project Overview

Vecco is seeking to develop the Project to mine and process the world class Vecco vanadium deposit. The Project will primarily target vanadium pentoxide ($\mathrm{V}_{2} \mathrm{O}_{5}$) and high purity alumina (HPA), with minor quantities of other rare earth elements (REEs) also produced. The life of mine (LOM) is expected to be approximately 36 years, including construction, operation, and rehabilitation.

A proposed conceptual Infrastructure layout and proposed Access MLA Conceptual Infrastructure layout is provided in Figure 2.1 and Figure 2.2, respectively. The Project is a proposed greenfield operation that will consist of a shallow, open-cut mine that will process up to 1.9 Mtpa ROM feed to produce up to approximately 5,500 tpa $\mathrm{V}_{2} \mathrm{O}_{5}$ and 4,000 tpa HPA over an operational life of approximately 26 years. Minor quantities of other REE may present opportunities for saleable biproducts of the process. Ore will be mined to an approximate depth of up to 35 m . Processing will occur following on site crushing and screening of the ore. Mineral products will be packed in containers and transported by truck or rail to Townsville, for secondary processing into battery electrolyte or export from the Port of Townsville to international markets.

[^2]
The experience you deserve

Source: VECCO Group
Figure 2.1 Proposed Conceptual Infrastructure Layout

The experience you deserve

Source: Vecco Group
Figure 2.2 Proposed Access MLA Conceptual Infrastructure Layout
$\$$ \qquad www.burchills.com.au
Client: Vecco Industrial Pty Ltd (Vecco)
Doc No.: BE230071-RP-TIA-06
Doc Title: Traffic Impact Assessment

The experience you deserve

Key components of the Project include:

- open cut mining of up to 1.9 Mtpa ROM ore over a period of approximately 26 years;
- development of a MIA, including, administration buildings, bathhouse, crib rooms, storage warehouse, workshop, fuel storage, refuelling facilities, wash bay, laydown area, and a helipad;
- development of mine areas (open cut pits) and out-of-pit waste rock emplacements. This includes vegetation and soil stripping;
- construction and operation of a Mineral Processing Plant (MPP) and ore handling facilities adjacent to the MIA (including ROM ore and product stockpiles and rejects);
- construction of an access road from Punchbowl Road to the MIA;
- construction of an airstrip to provide access for the Royal Flying Doctors Service;
- construction of a 10 MW solar farm and associated energy storage system;
- installation of a raw water supply pumping system and pipeline to connect the MIA to the Saxby River for water harvesting;
- construction of an on-site workers village and associated facilities, including an adjacent sewage treatment plant (STP) and effluent irrigation area;
- other associated minor infrastructure, plant, equipment and activities;
- progressive establishment of soil stockpiles, laydown area and borrow pits (for road base and civil works). Material will be sourced from local quarries if required;
- open-cut mining operations using conventional surface mining equipment (excavators, front end loaders, rear dump trucks, dozers);
- strategic disposal of neutralised process residue within the backfilled mining void;
- continued exploration and resource definition drilling on the MLAs;
- progressive development of internal roads and haul roads including a low level crossing over the Saxby River (designed for minimum impact on flow events) to enable access and product haulage;
- development of water storage dams and sediment dams, and the installation of pumps, pipelines, and other water management equipment and structures including temporary levees, diversions and drains; and
- progressive rehabilitation occurring at defined milestones through the operational life. All voids will be backfilled to natural surface, ensuring all rehabilitated landforms achieve a sustainable post-mining land use on closure.

Existing regional infrastructure, facilities and services may be used to support Project activities. These include the Townsville Port, the rail networks, electricity networks, local roads and the Flinders Highway.

2.2 Location

The Project is located approximately 70 km north of Julia Creek township and approximately 515 km west of Townsville in north-west Queensland (Figure 2.3). The townships of Cloncurry and Richmond are located approximately 125 km west and 145 km east of the Project, respectively.

The land within and surrounding the Project area is designated as a 'Rural' zone under the McKinlay Shire Planning Scheme 2019. Existing land use of the Project area is low intensity cattle grazing.

The experience you deserve

Source: AARC Environmental Solutions
Figure 2.3 Project Location
\qquad
Client: Vecco Industrial Pty Ltd (Vecco)
Doc No.: BE230071-RP-TIA-06
Doc Title: Traffic Impact Assessment

The experience you deserve

2.3 Project Staging

The Project on-site construction and operation process will be delivered over two (2) stages commencing at the end of 2024 and will have an approximate operational life of approximately 26 years. The two (2) delivery stages are outlined below in Table 2.1.

Table 2.1 Vecco Critical Minerals Projects Stages

Delivery Stage	Stage Overview	Start year	Finish year
Stage 1	Construction Phase	End-2024	Mid-2025
Stage 2	Operation Phase	Mid-2025	2051

2.4 Project Benefits

Localised and regional benefits of the Project come in the form of increased employment, development of services, patronage of local businesses and increased property prices. These will occur from the construction phase through to the end of mine and rehabilitation phase.

The Queensland government has recognised the important role of vanadium in supporting the government's plan in making Queensland a leading producer and exporter of diversified minerals by building a new common user vanadium demonstration facility in Townsville. The facility will provide smaller Projects with the opportunity to trial extraction and production processes, reducing costs to smaller companies and support the local economy through jobs and investment opportunities (DSDILGP 2022).

Investment in renewable energy and energy storage technologies is required for the Queensland Government to achieve its renewable energy target of 70% by 2032 , and 80% by 2035 . To assist this, available energy storage batteries will be required to store excess energy during low demand and maximise energy reserves during peak demand. Vanadium redox flow batteries offer the industry a long term, cost effective, energy storage alternative to Lithium batteries (DSDILGP 2022). Vanadium redox flow batteries have a life of at least 20 years, can be attached to an existing energy network and can store energy generated from solar and wind energy sources (DSDILGP 2022). Vanadium redox flow batteries have a minimal environmental footprint and reduce waste (due to their long lifespan) which contributes to the circular economy (DSDILGP 2022). The Project will offer a local source of vanadium and HPA (with Vecco Group also establishing a manufacturing facility in Townsville to produce vanadium battery electrolyte) to help meet both the domestic and global renewable energy market requirements.

The Australian Government has identified the importance of growth in the exploration, manufacturing, and mining of critical minerals, including vanadium in the "2022 Critical Minerals Strategy" (DISEP 2022). Australia has the 2nd largest recoverable vanadium resource in the world and has been identified by the Australian Government as a priority critical mineral (DISEP 2022). There is an increasing global demand for vanadium in the production of industrial-sized batteries for the storage of renewable energy and the advancements of technologies such as electric cars in the renewable energy sector (DISEP 2022). The Project will support a stable supply of critical minerals, support supply chains, grow our capability in the critical mineral sector, export higher value-added products with battery electrolyte and support economic growth in regional communities.

[^3]
The experience you deserve

2.5 Workforce

To determine the traffic generation associated with the Project, Burchills has assessed the proposed workforce numbers associated with the construction and operation phases of each of the delivery stages.

The anticipated workforce schedule for the construction and operation phase is outlined in Table 2.2 below. It is noted these workforce numbers specify the anticipated number of workers and operators per day during each calendar year.

Table 2.2 Vecco Critical Minerals Project Daily Workforce Number (Peak)

Year	2024-2025 (mid)		2025 (mid) - 2026 onwards			
Staff	Construction Stage		Operation Stage			
	Process Infrastructure	Mine Construction		Infrastructure	Mining staff	
Construction Staff	76	27	103	42	27	69
Technical Staff	28	n / a	28	10	n / a	10
Senior Staff	9	6	15	5	6	11
Total Daily Workforce		146			90	

The construction workforce is divided into 2 crew which then will be rotated every eighth day. However, technical and senior staff will work 5 days on and 2 days off roster. It is also to be noted that there will be no overlap between the construction stage and the operation stage.

2.6 Workforce Accommodation

As a part of the Project, during the construction and operation phase, all workers will be accommodated in the on-site worker's village that will be located south of approximately 1.8 km south of MIA.

[^4]
The experience you deserve

3. Assessment Scope

The scope of this assessment is limited to the roads used by the proposed Project traffic. The judgement of whether a road carries a significant amount of traffic is based on TMR Guidelines to Traffic Impact Assessments. These guidelines state that a road carries a significant proportion of project traffic when levels reach 5% of existing traffic volumes.

The following roads and intersections have been assessed in this document to determine if the proposed traffic exceeds the 5% trigger and be classed as a significant impact:

3.1.1 State-controlled Roads

- Flinders Highway.

3.1.2 State-controlled Intersections

- Flinders Highway / Punchbowl Road.

3.1.3 McKinlay Regional Council Roads

- Punchbowl Road; and
- Shaw Street.

3.2 Study Intersections

The study intersections considered as part of this assessment are outlined in Table 3.1 and are illustrated in Figure 3.1.

Table 3.1 Study Intersections

Intersection ID	Study Intersections
1	Flinders Highway / Punchbowl Road
2	Punchbowl Road / Shaw Road
3	Punchbowl Road / Access Road

[^5]
The experience you deserve

Figure 3.1 Study Intersection

3.3 Access and Egress to Mine Site

Access and egress to the mine site will be assessed according to Austroads Guide to Road Design Part 4A.

Austroads Guide to Road Design Part 4A includes:

- Safe Intersection Sight Distance (SISD) assessment.
- Acceleration assessment, and
- Turn Warrant Assessment.

The guideline assessments ensure adequate protection is proposed for turning vehicles for the proposed project traffic. It is noted that the Safe Intersection Sight Distance (SISD) assessment is the highest measure of sight distance, where SISD compliance will result in compliance with Approach Sight Distance (ASD), Minimum Gap Sight Distance (MGSD) and Stopping Sight Distance (SSD).
\qquad

The experience you deserve

3.4 Intersection Safety Criteria

3.4.1 Warrants for Turn Treatments

The Austroads warrants for turn treatments provide an indication of which turn treatments will likely provide an appropriate level of safety.

The warrants for turn treatment provide guidance on where deceleration lanes and turning lanes should be used based on traffic volumes. The warrants were developed by Arndt, Troutbeck, Handley \& Slattery (2006) and referenced in the TMR Road Planning and Design Manual (RPDM). These warrants were produced by identifying the location at which the benefits of providing a higherlevel treatment (the reduction in estimated crash costs) are equal to additional construction costs associated with the treatment.

The benefits and costs of a higher-level treatment were compared to the base case (minimum turn treatments) to develop the curves demonstrated in Figure 3.2. Figure 3.2 also reproduces the warrants for turn treatments for rural roads with speeds greater than or equal to 100 kilometres per hour (km/h).

Figure 3.2 Warrants for Turn Treatment for Design Speed Greater Than or Equal to $100 \mathrm{~km} / \mathrm{h}$
\qquad

The experience you deserve

3.5 Link Capacity Criteria

The Road link capacity of the roads impacted by the Project traffic has been assessed according to the Guide to Traffic Impact Assessments (GTIA). Link Level of Service (LOS) relates to the operating conditions encountered by traffic. It is a qualitative measure of such factors as speed, trip time, interruptions, interference, freedom to overtake, ability to manoeuvre, safety, comfort, convenience and vehicle operating costs. TMR's definitions of LOS for uninterrupted flow are defined in terms of traffic flow as detailed in Table 3.2, in addition to indicative photographs. The performance of the assessed links was analysed including and excluding project traffic using the link LOS methodology detailed in Austroads Guide to Traffic Engineering Practice Part 2 Roadway Capacity (1991).

Table 3.2 identifies the level of service thresholds specified for varying K factors which represents the ratio of the design hour volume to the Annual Average Daily Traffic (AADT). It is noted that the Guide to Traffic Engineering Practice has been superseded, by the Austroads Guide to Traffic Management (2015). However, as the Guide to Traffic Engineering Practice contains the source research for contemporary standards, it has been listed here as the source.

Table 3.2 Level of Service Definitions

| LOS | Level of Service Description | | LOS | Level of Service Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | Free flow conditions
 where drivers are
 unaffected by the
 presence of others in
 the traffic stream | | | |
| B | Stable flow where
 drivers still have
 reasonable freedom
 to select their desired
 speed and to
 manoeuvre within the
 traffic stream. | Close to the limit of
 stable flow and
 approaching unstable
 flow. Drivers are severely
 restricted to select their
 speed and manoeuvre. | | |
| C | Stable flow, but most
 drivers are restricted
 to some extent in
 their freedom to
 select their desired
 speed and to
 manoeuvre. | Traffic volumes are at or
 close to capacity and
 there is virtually no
 freedom to select desired
 speeds or to manoeuvre. | | |

Source: TMR's Road Planning and Design Manual (2013)

The experience you deserve

Table 3.3 Maximum AADT Thresholds for Level Terrain on Two-Lane Two-Way Rural Roads

K-factor	Level of Service				
	A	B	C	D	E
0.10	2,400	4,800	7,900	13,500	22,900
0.11	2,200	4,400	7,200	12,200	20,800
0.12	2,000	4,000	6,600	11,200	19,000
0.13	1,900	3,700	6,100	10,400	17,600
0.14	1,700	3,400	5,700	9,600	16,300
0.15	1,600	3,200	5,300	9,000	15,200

[^6]
The experience you deserve

4. Existing Road Network

4.1 Road Links

Burchills undertook an inspection of the site and the surrounding road network on $10^{\text {th }}$ May 2023. Tasks conducted on these inspections include the following:

- Visual review of general road condition, including pavement type and noted pavement deficiencies;
- Visual review of road formation, including carriageway configuration;
- Visual review of road alignment, including bends and crests which could pose safety risks; and
- Visual review of existing roadside infrastructure, including warning signage.

To supplement the site visit information, Burchills commissioned 12-hour traffic counts on key roads. Table 4.1 summarises the existing conditions for key roads along with the vehicles per day (vpd).

Table 4.1 Summarises the existing road conditions for key roads within the study area.

Road	Road Condition	Formation	Average Width	Speed Limit	AADT (2023) Based on Traffic counts	HV\%
Flinders Highway	Sealed	2-lane 2-way	7.2 m	$100 \mathrm{~km} / \mathrm{h}$	377 vpd	28.41%
Punchbowl Road	Sealed	1-lane 2-way	4.2 m	$100 \mathrm{~km} / \mathrm{h}$	57 vpd	26.37%
Shaw Road	Sealed	2-lane 2-way	5.1 m	$50 \mathrm{~km} / \mathrm{h}$	71 vpd	16.97%

Detailed characteristics of key roads in the vicinity of the subject site is provided in Table 4.2.

The experience you deserve

Table 4.2 Detailed characteristics of key roads.

Road	Characteristics	Photo
Flinders Highway	Flinders Highway stretches from Roseneath, through to Cloncurry, crossing through the town of Charters Towers City. The road is generally a two-lane two-way sealed formation, with typically flat topography, and gradual bends. The speed limit is $100 \mathrm{~km} / \mathrm{h}$ along the majority of its length, with reductions in speed limits to $60 \mathrm{~km} / \mathrm{h}$ through towns. The sealed width is typically 7.6 m , with 500 mm shoulders provided along the majority of its length.	
Punchbowl Road South of Shaw Street)	Punchbowl Road provides an alternative connection to Julia Creek Town. This section of the road is a two-lane two-way sealed formation. The default speed limit is $100 \mathrm{~km} / \mathrm{h}$, however, this section is only 480 m in length. The sealed width is typically 5.3 m , with gravel shoulders.	

The experience you deserve

Punchbowl Road (north of Shaw Street)	Punchbowl Road connects outback locality Malpas-Trenton with Julia Creek Town in Shire of McKinlay. The 60 km section of the road (north of Shaw Street) is a rural single lane two-way sealed formation, the rest of the section is a dirt road. The default speed limit on the majority of the section is $100 \mathrm{~km} / \mathrm{h}$ with speed reduced to $60 \mathrm{~km} / \mathrm{h}$ in flood crossing areas. The sealed width is typically 4.2 m , with gravel shoulders.	
Shaw Street	Shaw Street is a local road of approximately 2.1 km in length. This road provides an alternative access to Julia Creek Town via Punchbowl Road. The road is generally a twolane two-way sealed formation, with typically flat topography, and gradual bends. The default speed limit is $50 \mathrm{~km} / \mathrm{h}$ along the majority of its length. Section of Shaw Street leading to Julia Creek Town has sealed width of typically 5 m , with gravel shoulders.	

4.2 Punchbowl Road - Additional Comments

The 65 km section of Punchbowl Road (north of Shaw Street) has multiple single-width cattle grids, vertical and horizontal crests, floodways (some on bends), single-width floodway bridges along with damaged road surface in some sections of the road.

Approximately 60km from the Shaw Street intersection, Punchbowl Road turns into a dirt road from a gravel surface.

4.3 Intersections

4.3.1 Flinders Highway / Punchbowl Road Intersection

The Flinders Highway / Punchbowl Road intersection is a three-leg sealed priority-controlled intersection with a speed limit of $100 \mathrm{~km} / \mathrm{h}$ across the major road (Flinders Highway). The intersection 8 \qquad

The experience you deserve

has a T-intersection arrangement with unsealed shoulders (0.5 m wide) that are provided on both sides of the carriageway of Flinders Highway.

The Flinders Highway / Punchbowl Road intersection will be utilised to provide access to the wider road network to and from the Project area for staff and operators during both the construction and operation phases. The intersection also provides access to Julia Creek airport via Julia Creek township. Figure 4.1 below provides an aerial view of the intersection.

Figure 4.1 Flinders Highway / Punchbowl Road Aerial View
Lane widths in the vicinity of the intersection are summarised in Table 4.3 below.
Table 4.3 Flinders Highway / Punchbowl Road Intersection

Lane Description	Lane Width
Flinders Lane (eastbound)	3.6 m
Flinders Lane (westbound)	3.6 m
Punchbowl Road (northbound)	2.65 m
Punchbowl Road (southbound)	2.65 m

The Safe Intersection Sight Distance (SISD) results for Flinders Highway / Punchbowl Road intersection were determined from site inspections. A summary of the achievable sight distances at the intersection is provided in Table 4.4.
\qquad

The experience you deserve

Table 4.4 Flinders Highway / Punchbowl Road Safe Intersection Sight Distance Assessment

| Direction | SISD | SISD
 Requirement
 (Posted
 Km/h) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Kmoto | | |

The experience you deserve

Table 4.5 summarises a review of key intersection characteristics relevant to the Flinders Highway / Punchbowl Road intersection.

Doc No.: BE230071-RP-TIA-06
Doc Title: Traffic Impact Assessment

The experience you deserve

Table 4.5 Flinders Highway / Punchbowl Street Intersection Findings

Description	Existing Condition
Intersection Clear Zones	Adequate
Signage	Adequate (an existing sign reduces the sightline for vehicles making a right turn onto the Flinders Highway)
Line Marking	Adequate
Pavement	Adequate

4.4 Punchbowl Road / Shaw Street Intersection

The Punchbowl Road / Shaw Street intersection is a three-leg priority-controlled intersection with a speed limit of $100 \mathrm{~km} / \mathrm{h}$. Punchbowl Road travels in a northeast direction (north of Shaw Street) with unsealed shoulders that lead to the project site (approximately 65 km to the north of the intersection). Shaw Street provides secondary access to Julia Creek Township. Figure 4.2 below provides an aerial view of the intersection.

Figure 4.2 Punchbowl Road / Shaw Street Aerial View
Key lane widths in the vicinity of the intersection are listed in Table 4.6.

Client: Vecco Industrial Pty Ltd (Vecco)
Doc No.: BE230071-RP-TIA-06
Doc Title: Traffic Impact Assessment

The experience

Table 4.6 Punchbowl Road / Shaw Street Intersection

Lane Description	Lane Width
Punchbowl Road (north of Shaw Street)	4.20 m
Punchbowl Road (eastbound)	2.65 m
Punchbowl Road (westbound)	2.65 m
Shaw Street (eastbound)	2.50 m
Shaw Street (westbound)	2.50 m

The Safe Intersection Sight Distance (SISD) results for Punchbowl Road / Shaw Street intersection were determined from site inspections that took place on $10^{\text {th }}$ May 2023 and are outlined in Table 4.7.

Table 4.7 Punchbowl Road / Shaw Street Safe Intersection Sight Distance Assessment

Direction	SISD	SISD Requirement (Posted Speed 100 Km/h)		Site Photo
Left out of Punchbowl Road (towards Flinders Highway)	236 m	285 m		

[^7]The experience you deserve

Direction	SISD	SISD Requirement (Posted Speed 100 Km / h)	Site Photo
Right out of Punchbowl Road (towards Shaw Street)	288 m	285 m	

While it is acknowledged that the sight distance at the intersection does not accord with the SISD requirements outlined in Austroads, it is anticipated that sight distances could be improved to accord with Austroads by reducing the height of the landscaping within the verge on Punchbowl Road.

Table 4.8 summarises a review of key intersection characteristics for the relevant to the Punchbowl Road / Shaw Street intersection.

Table 4.8 Punchbowl Road / Shaw Street Intersection Findings

Description	Existing Condition
Intersection Clear Zones	Adequate (overgrown vegetation)
Signages	Adequate
Line Marking	Adequate
Pavement	Adequate

4.5 Crash History for Intersections and Links

Crash data over the previous five years (May 2017 to May 2022) was obtained from TMR in order to determine any incident trends in the vicinity of the haul routes. However, no crashes were recorded in the vicinity of the intersection for the last ten years.

[^8]
The experience you deserve

5. Traffic Generation

5.1 Traffic Count Data

To understand the existing traffic conditions at the study intersections, peak hour traffic surveys were undertaken by Austraffic between 6:00 AM to 6:00 PM on Tuesday $9^{\text {th }}$ May 2023 at the following intersections:

- Flinders Highway / Punchbowl Road; and
- Punchbowl Road / Shaw Street.

A review of the survey indicated that the AM and PM period for study intersections ranged between the time shown in Table 5.1 below:

Table 5.1 Peak AM and PM Period

Peak Hour	Flinders Highway / Punchbowl Road	Punchbowl Road / Shaw Street
AM Peak	$10: 30$ AM - 11:30 AM	$6: 00$ AM - 7:00 AM
PM Peak	$4: 15 \mathrm{PM}-5: 15 \mathrm{PM}$	$12: 15 \mathrm{PM}-1: 15 \mathrm{PM}$

To ensure a conservative assessment, Burchills has assessed both intersections based on the isolated AM and PM periods for each intersection instead of the AM and PM peak periods of the overall network.

5.2 Background Traffic Volumes

Based on the traffic survey data, the AM and PM peak period traffic volumes at each of the study intersections are illustrated in Figure 5.1 below.

Figure 5.1 Flinders Highway / Punchbowl Road Background Traffic Volume

[^9]
The experience you deserve

5.3 Traffic Growth

TMR's annual segment report for the Flinders Highway has been referenced to indicate traffic growth along the study network. A review of the report indicated TMR survey sites are within close proximity to the study intersection, as outlined below:

- Flinders Highway TMR Site 100178; and
- Flinders Highway TMR Site 100019.

A review of the AADT over the last ten (10) years of each TMR site was assessed. The TMR site 100178 doesn't have a record of any AADT data before 2018 and the latest AADT data (2021) shows a growth rate of 6.79% compared to last year (2020). The TMR site 100019 shows a growth rate of 0.41% for the last 10 years.

Based on the slow-increasing traffic volumes over the last 10 years, a linear growth rate of 1\% p.a. has been adopted for assessment purposes. The growth rate adopted is considered a conservative approach for the surrounding external road network given the rural nature of the Project.

5.4 Traffic Generation

5.4.1 Workforce Numbers

To determine the traffic generation associated with the Project, Burchills has assessed the supplied workforce numbers associated with the construction and operation phases of each of the delivery stages.

The anticipated workforce schedule for the construction and operation phase is reproduced in Table 5.2 below.

Table 5.2 Vecco Critical Minerals Project Daily Workforce Number (Peak)

Year	2024-2025 (mid)		2025 (mid) - 2026 onwards			
Staff	Construction Stage		Operation Stage			
	Process Infrastructure	Mine Construction	Total	Infrastructure	Mining staff	Total
Construction Staff	76	27	103	42	27	69
Technical Staff	28	n / a	28	10	n / a	10
Senior Staff	9	6	15	5	6	11
Total Daily Workforce		146			90	

As previously noted, the construction workforce is divided into two crews which then will be rotated every $8^{\text {th }}$ day. Technical and senior staff will work 5 days on and 2 days off roster. It is also to be noted that there will be no overlap between the construction stage and the operation stage.

As previously noted, all workers will be accommodated in the on-site worker's village.

[^10]
The experience you deserve

5.5 Workforce Transportation Modes Split

It is anticipated that on the day of shift change, travel to and from the mine area will occur via shuttle bus services as well as private vehicle transportation for both construction and operation phases.

The workforce transportation mode splits are outlined below for both the construction and operation phases:

- 75% of the workforce travelling to and from the mine area via private vehicles (Drive-In DriveOut) Carpooling with other staff. The majority of the workforce travelling via light vehicles are expected to travel from Charters Towers or Townsville and the rest from Mount Isa;
- 20% of the workforce travelling to and from the mine area via shuttle bus service (Fly-In FlyOut) from Julia Creek Airport; and
- 5% of the workforce is expected to be local and carpool with other workers in private vehicles (i.e., local trips).

Therefore, the workforce transportation mode split for the construction and operation workforce in the years 2024 and 2025 are outlined in Table 5.3 below.

Table 5.3 Vecco Critical Minerals Project Workforce Transportation Distributions per shift-change Day for Years 2024 and 2025

Workforce Transportation Mode	Construction Stage Year 2024 (End)	Operation Stage Year 2025 (Mid)
Fly-In Fly-Out via workforce buses	29	Daily workforce
Drive-In Drive-Out via private vehicles	110	18
Local trips via private vehicles (carpool)	7	68
Total	$\mathbf{1 4 6}$	$\mathbf{4}$

5.6 Workforce Vehicle Trips

Burchills has been advised that the shuttle bus service in the construction phase will have a capacity of 40 people per bus, while the carpooling occupancy ratio of 1.2 people per car has been adopted.

Therefore, the number of vehicle trips likely to be generated by the development is summarised in Table 5.4.

Table 5.4 Vecco Critical Minerals Project Trips

	Construction Stage Year 2024 (End)	Operation Stage Year 2025 (Mid)
Workforce Trips	Shift-change day	Shift change day
Shuttle Buses (40/Bus)	1	1
Private vehicles (1.2/Car)	97	60

S \qquad www.burchills.com.au
Client: Vecco Industrial Pty Ltd (Vecco)
Doc No.: BE230071-RP-TIA-06
Doc Title: Traffic Impact Assessment

The experience you deserve

5.7 Workforce Rosters

Burchills has been advised that the construction and operation phases will operate 365 days per year, where there will be two (2) workforce rosters per day, subject to suitable weather conditions.

The two (2) daily workforce rosters will run for a 12 -hour shift per roster, for 8 days. On the $8^{\text {th }}$ day two new crews will arrive to replace the previous crews (shift-change day) hence the workforce trips in Table 5.5 represent the trips associated with the shift-change day only.

Burchills has been advised that two shift change sequences will occur on shift change day (day 8) with AM crews anticipated to be replaced during the AM shift change period and the PM crews replaced during the PM shift change period.

Furthermore, it has been assumed that the inbound shuttle buses and private vehicles arriving at the mine areas for the one-week roster travel in the same hour period that the outbound shuttle buses and private vehicles for the previous shift are travelling from the mine area ($50-50$ split).

As seen in section 6.1, the number of staff is higher in the construction stage with no overlap when compared with the operation stage. Therefore, the inbound and outbound trips for the AM and PM peak hours are expected to reach the peak during the construction stage in the year 2024 and will reduce in the operation stage. Table 5.5 shows the inbound and outbound trips for the construction stage and operation stage.

Table 5.5 Vecco Critical Minerals Project Inbound and Outbound Trips (Construction Stage)

Workforce Trips	Construction Stage (Year 2024)		Operation Stage (Year 2025)	
Shuttle Buses	AM $\ln /$ Out	PM In / Out	AM In / Out	PM In / Out
Private vehicles	$1 \mathrm{vph}^{*}$	1 vph	1 vph	1 vph
Total	49 vph	49 vph	30 vph	30 vph
*vph- vehicles per hour	50 vph	50 vph	31 vph	31 vph

*vph- vehicles per hour
The network flow diagrams outlining these AM and PM inbound/outbound movements have been provided at Appendix D.

5.8 Heavy Vehicle Movements

In addition to the workforce trip generation for the Project, Burchills has also assessed the heavy vehicle movements for both the construction and operation phases. Burchills has been advised of the following heavy vehicle movements per day across construction and operational phases:

- Construction Stage: 6 heavy vehicle movements per day (including loaded and unloaded trips); and
- Operation Stage: 25 heavy vehicle movements per day (including loaded and unloaded trips).

The above vehicle movements per day equates to 1 heavy vehicle movement each for both peaks hour during construction stage and 2 heavy vehicle movements during the operation stage.

[^11]
The experience you deserve

5.9 Directional Trip Distribution

For robust traffic assessment, the directional distribution has been estimated based on the worstcase scenario. A split of 50% In and 50% Out is used for both AM and PM peak trip distribution.

5.10 Traffic Distribution

The surrounding road network and attractors have been analysed to determine the external distributions for the mining traffic.

It is anticipated that the majority of private vehicles trips will originate for the east (i.e. Hughenden, Charters Towers, Richmond etc), while a smaller proportion will originate from the west (i.e. Julia Creek, Cloncurry and Mount Isa). As such, a 70% east / 30% west split has been adopted for private vehicle trips.

It is expected that 90% of heavy vehicles used for deliveries proposed during the construction stage will be travelling to and from Charters Towers or Townsville. However, in the operation stage, 100\% of heavy vehicles transport the mined product as well as deliveries will be travelling to and from Charters Towers or Townsville.

The traffic split for light vehicles is expected to remain the same during both stages.
For the purpose of this assessment, the external distribution of the Project is summarised in Table 5.6 below.

Table 5.6 External Traffic Distribution

	Construction Stage Year 2024 (End)		Operation Stage Year 2025 (Mid)	
Transportation Mode	Flinders Hwy East	Flinders Hwy West	Flinders Hwy East	
Light vehicles	30%	70%	30%	70%
Heavy vehicles	10%	90%	0%	100%

[^12]
The experience you deserve $\$$

6. Vecco Critical Minerals Project Traffic Assessment

6.1 Assessment Scenarios

For the purpose of the traffic assessment, Burchills has assessed the year of construction as the traffic generated during construction represents the worst-case design scenario from a traffic generation perspective. The assessment scenario is shown in Table 6.1 below.

Table 6.1 Assessment Scenarios

Stage	Assessment Year
Construction Stage	2025 (Peak Stage for the total workforce)

The inbound and outbound trips for the AM and PM peak hour periods for the assessment years are outlined in Table 6.2 below. It is important to note that the volumes below will occur on shift changeover days only and do not represent typical AM and PM traffic generation characteristic for the site as typical volumes will be significantly lower.

Table 6.2 Vecco Critical Minerals Mining Project Inbound and Outbound Trip Year 2025

Trips (Inbound	Construction Stage (Start) (Year 2024 - End)		Operation Stage (Year 2025-Mid)	
Outbound)	AM	PM	AM	PM
Shuttle Buses	1 vph	1 vph	1 vph	1 vph
Private vehicles	49 vph	49 vph	30 vph	30 vph
Total	50 vph	50 vph	31 vph	31 vph
Heavy Vehicle Trips				
HV (Total)	1 vph	1 vph	2 vph	2 vph

[^13]
The experience

6.2 SIDRA Assessment

6.2.1 Flinders Highway and Punchbowl Road

The existing intersection configuration and the adopted SIDRA layout is illustrated in Figure 6.1 below:

Figure 6.1 SIDRA Layout - Flinders Highway / Punchbowl Road
The results of the SIDRA assessment are summarised in Table 6.3. The SIDRA layouts and detailed results are included in Appendix C.

Table 6.3 SIDRA Results - Flinders Highway / Punchbowl Road

Scenarios	AM Peak Period				PM Peak Period		
	DOS	Critical Mvmt Delay	95 th \%ile Queue	DOS	Critical Mvmt Delay	95th \%ile Queue	
2025 BG	0.02	0.7 sec	0.2 m	0.02	1.3 sec	0.1 m	
2025 BG + DEV	0.04	4.0 sec	1.2 m	0.04	4.1 sec	1.1 m	

As shown in Table 6.3, Flinders Highway / Punchbowl Road intersection performs within the acceptable thresholds (DOS <0.80 and delay <42 seconds) in all scenarios.

As such, Flinders Highway / Punchbowl Road intersection is anticipated to operate satisfactorily following the construction and operation of the development.

[^14]
The experience you deserve

6.2.2 Punchbowl Road and Shaw Street

The existing intersection configuration and the adopted SIDRA layout is illustrated in Figure 6.2.

Figure 6.2 SIDRA Layout - Punchbowl Road / Shaw Street
The results of the SIDRA assessment are summarised in Table 6.4. The SIDRA layouts and detailed results are included in Appendix C.

Table 6.4 SIDRA Results - Intersection: Punchbowl Road / Shaw Street

| Scenarios | AM Peak Period | | | | | PM Peak Period |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2025 BG | DOS | Critical Mvmt
 Delay | 95th
 Queue | DOS | Critical Mvmt
 Delay | 95th \%ile
 Queue |
| 2025 BG + DEV | 0.01 | 5.6 sec | 0.3 m | 0.01 | 5.3 sec | 0.2 m |

As shown in Table 6.4 Punchbowl Road / Shaw Street intersection performs within the acceptable thresholds (DOS <0.80 and delay <42 seconds) in all scenarios.

As such, Punchbowl Road / Shaw Street Access intersection is anticipated to operate satisfactorily following the construction and operation of the development.

[^15]
The experience you deserve

6.2.3 Punchbowl Road and Site Access Road

The intersection is proposed to be a three-way, priority-controlled arrangement. The SIDRA assessed layout is illustrated in Figure 6.3.

Figure 6.3 SIDRA Layout - Intersection: Punchbowl Road / Site Access
The results of the SIDRA assessment are summarised in Table 6.5. The SIDRA layouts and detailed results are included in Appendix C.

Table 6.5 SIDRA Results - Intersection: Punchbowl Road / Site Access

Scenarios	AM Peak Period					PM Peak Period	
	DOS	Critical Mvmt Delay	95th \%ile Queue	DOS	Critical Mvmt Delay	95th \%ile Queue	
2025 BG + DEV	0.043	5.0 sec	1.0 m	0.043	5.1 sec	1.0 m	

As shown in Table 6.5, the Punchbowl Road / Site Access intersection performs within the acceptable thresholds (DOS <0.80 and delay <42 seconds) in all scenarios.

As such, Punchbowl Road / Site Access intersection is anticipated to operate satisfactorily following the construction and operation of the development.

The experience you deserve

6.3 Turn Warrant Assessment

A turn warrant assessment has been undertaken in accordance with the Department of Transport and Main Roads (DTMR) Road Planning and Design Manual Edition 2: Volume 3 Supplement to Austroads Guide to Road Design Part 4A: Unsignalised Intersections August 2014. A summary of the traffic movement parameters considered is shown in the following Figure 6.4 below.

Figure 6.4 Turn Warrants Qm Traffic Flow Calculation
A summary of the study intersection outlined earlier in this report is tabulated below with the required treatments based on Austroads turn warrant assessments. Turn warrant assessment results/graphs for each intersection are provided in Table 6.6 below.

The turn warrant assessments were conducted for the opening year of the operations stage of the development (i.e. 2026).

6.3.1 Flinders Highway and Punchbowl Road

The adopted volumes for the turn warrant assessment as shown in Table 6.6 with the turn warrant diagram shown in Figure 6.5.

[^16]
The experience

Table 6.6 Flinders Highway / Punchbowl Road Intersection Trips Peak Hours

Traffic Volume	AM peak hour	PM peak hour
QT1 (northbound) $^{\text {QT2 (southbound) }} 15$	20	
QL (from the south)	30	21
QR (from the north)	10	18
Qм Left	23	22
Qм Right	30	21

Figure 6.5 Turn Warrant Assessment Flinders Highway / Punchbowl Road Intersection
The assessment above indicates that the Flinders Highway / Punchbowl Road intersection will require the provision of a Basic Right-turn (BAR) and a Basic Auxiliary Left Turn (BAL) treatment.

6.3.2 Punchbowl Road and Shaw Street

The adopted volumes for the turn warrant assessment as shown in Table 6.7 with the turn warrant diagram shown in Figure 6.6.

[^17]
The experience

Table 6.7 Punchbowl Road / Shaw Street Intersection Trips Peak Hours

Traffic Volume	AM peak hour	PM peak hour
QT1 (northbound)	1	1
QT2 (southbound) $^{\text {QL (from the south) }}$	1	1
QR (from the north)	2	1
Qm Left	41	34
Qm Right	1	1

Figure 6.6 Turn Warrant Assessment Punchbowl Road / Shaw Street Intersection
The assessment above indicates that the Punchbowl Road / Shaw Street intersection will require the provision of a Basic Right-turn (BAR) and a Basic Auxiliary Left Turn (BAL) treatment.

6.3.3 Punchbowl Road and Access Road

The adopted volumes for the turn warrant assessment as shown in Table 6.8 with the turn warrant diagram shown in Figure 6.7.

[^18]
The experience

Table 6.8 Site Access Road / Punchbowl Road Intersection Trips Peak Hours

Traffic Volume	AM peak hour	PM peak hour
QT1 (northbound)	1	7
QT2 (southbound) $^{\text {QL }}$ (from the south)	11	4
QR (from the north)	31	31
QM Left	1	1
Qм Right	11	4

Figure 6.7 Turn Warrant Assessment Site Access Road / Punchbowl Road Intersection
The assessment above indicates that the site access intersection will require the provision of a Basic Right-turn (BAR) and a Basic Auxiliary Left Turn (BAL) treatment.

Table 6.9 summarises the results of the turn warrant assessments for each study intersection for the worst-case development and background traffic volumes.

Table 6.9 Turn Warrant Existing Treatments and Required Treatments

| Intersection | Existing Treatments (Major
 Movements) | | Required Treatments (Major
 Movements) | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | Left Turn | Right Turn | Left Turn | Right Turn |
| Flinders Highway / Punchbowl Road | BAL | BAR | BAL | BAR |
| Punchbowl Road / Shaw Street | BAL | BAR | BAL | BAR |
| Punchbowl Road / Access Road | BAL | BAR | BAL | BAR |

On the basis of the turn warrant assessment, the existing turn treatments are considered to accord with Austroads turn warrant requirements.
\qquad

The experience you deserve

7. Mitigation Strategies

7.1 Sight Distance

Reference to Austroads Guide to Road Design indicates that the site access is required to provide a Safe Intersection Sight Distance (SISD) of 285 m adopting a $100 \mathrm{~km} / \mathrm{hr}$ design speed and a driver reaction time of 2 seconds.

The site access intersection with Punchbowl Road has been designed to maximize the achievable sight distances, the following SISD are provided:

Access:

- $400 \mathrm{~m}+$ to the North; and
- $400 \mathrm{~m}+$ to the South.

Based on the above, the sight distance provisions at the site access points are considered to be satisfactory from a traffic engineering perspective.

It's recommended that maintenance of the Punchbowl Road verge be monitored to ensure that adequate sight distance is retained during the life of the project.

7.2 Cross-Section Fit for Use Assessment

Proposed design AADT of cross-section widths for rural roads form the fit for use criteria. Desirable traffic lanes and shoulder widths are adopted to optimise safety and environmental impacts. Performance of single carriageway rural roads is detailed in Austroad's Guide to Road Design Part 3 Geometric Design. Table 7.1 identifies desirable cross-sectional characteristics for varying design ADDT volumes.

Table 7.1 Single Carriageway Rural Road Width

Element	Design AADT				
	$1-150$	$150-500$	$500-1,000$	$1,000-3,000$	$>3,000$
Traffic Lanes (m)	3.7	6.2	$6.2-7.0$	7.0	7.0
	(1×3.7)	(2×3.1)	$(2 \times 3.1 / 3.5)$	(2×3.5)	(2×3.5)
Total Shoulder (m)	2.5	1.5	1.5	2.0	2.5
Minimum Shoulder Seal (m)	0	0.5	0.5	1.0	1.5
Total Carriageway (m)	8.7	9.2	$9.2-10.0$	11.0	12.0

Source: Austroads: Guide to Road Design Part 3 Geometric Design - 2016
Austroad's Guide to Road Design Part 3 Geometric Design identifies the desirable lane width for rural roads to be 3.5 m to allow large vehicles to pass without either vehicle veering towards the outer edge of the lane. Time period of project road use will dictate the validity of potential carriageway widening works.

[^19]
The experience you deserve

7.2.1 Fit For Use Assessment

Fitness for use has been assessed for each project road based on three criteria:

- Suitable road condition - the existing road is in a generally good condition for vehicular travel, based on site observations;
- Sufficient road capacity - the existing road form is sufficient to accommodate baseline plus development traffic volumes according to the Austroads road link capacities, discussed at section 7.2; and
- Adequate road safety - the road configuration provides for adequately safe travel for users, based on site observations.

A road can be identified as unfit if any of the above three (3) criteria are not adequately met. For such cases, potential mitigation items should be identified to ameliorate the issues.

Based on the findings of the fit for use assessment, Punchbowl Road is considered to be unfit for use in its current configuration. The potential mitigations have been recommended in the Table 7.2.

Table 7.2 Fit for use Assessment for Punchbowl Road
\(\left.$$
\begin{array}{llll}\text { Road } & \begin{array}{l}\text { Suitable Road } \\
\text { Condition }\end{array} & \begin{array}{l}\text { Sufficient } \\
\text { Road Capacity }\end{array} & \begin{array}{l}\text { Adequate } \\
\text { Road Safety }\end{array}\end{array}
$$ \begin{array}{l}Potential Mitigation

Apply localised gravel formations and provide\end{array}\right]\)| maintenance. |
| :--- |
| Upgrade the single width cattle grids to double |
| Road |

As previously noted, Punchbowl Road incorporates a range of physical features along its length including but not limited to:

- multiple single-width cattle grids;
- vertical crests and horizontal bends;
- floodways (some on bends);
- single-width floodway bridges; and
- damaged road surface in some sections of the road.

If required, infrastructure agreement with the relevant local or state governing bodies may be entered into to address ongoing use of road infrastructure and any future upgrades required for the Project.

[^20]
The experience you deserve

8. Summary and Recommendations

The Project will be comprised of a mine and associated infrastructure approximately 70 km north of Julia Creek, with capabilities of delivering up to 1.9 Mtpa of ROM ore during mining operations which is expected to last for over a period of approximately 26 years.

To facilitate the processing of the ore, the Project will include the construction and implementation of a MPP, MIA, ore handling facilities, raw water supply pumping and storage including a pipeline connection to the MIA, 10 MW solar array with storage.

The Project will be accessed via Punchbowl Road for both stages (construction and operation), approximately 70 km North of Punchbowl Road and Flinders Highway intersection.

In light of the above, the following concluding statements are made:

- It is expected to have a 25 heavy vehicle movements per day during the operation stage which will be the highest number of heavy vehicle daily movement in any stages.
- The construction and operation workforce operators and staff will be accommodated in the on-site workers village.
- A peak of 90 staff members will be on-site during the operations stage.
- Shift change (crew replacement) will occur on every $8^{\text {th }}$ day, with traffic resulting from shift change peaking to up to 50 vph (at shift change times only)
- Site investigation has been undertaken for the SISD at the location of the study intersections. From site investigations and SISD checks, all intersections meet the required sight distance with the exception of Punchbowl Road and Shaw Street intersection that requires minor landscaping within the verge on Punchbowl Road.
- Crash analysis of the subject intersections and project roads indicates that there are no preexisting safety issues,
- The Project vehicle trips were determined via anticipated workforce numbers within each stage, as well as accommodation and transportation mode distributions provided by Vecco,
- A SIDRA Assessment indicated that project roads will operate at LOS A and will not largely increase compared to background traffic conditions,
- Turn Warrant Assessment indicated that all existing intersection formations are appropriate for their use, and do not require upgrade with the addition of development volumes to the end of life of the Project.

In addition to the above, the following recommendations and / or other considerations have been made:

- Infrastructure such as culverts and structures along Punchbowl Road may be assessed to determine if any, upgrade works are required,
- A number of safety mitigation measures have been identified to ensure Project traffic is able to safely travel on the identified roads.
lient: Vecco Industrial Pty Ltd (Vecco)
Doc No.: BE230071-RP-TIA-06
Doc Title: Traffic Impact Assessment

The experience you deserve

9. References

Department of Main Roads 2021, Road Planning and Design Manual: Supplement to Austroads Guide to Road Design Part 4A: Unsignalised and Signalised Intersections.

Department of Main Roads 2006, Guidelines for Assessment of Road Impacts of Development, Queensland Government, Brisbane.

Roads and Traffic Authority (RTA) 2002, Guide to Traffic Generating Developments, Roads and Traffic Authority, Sydney.

Austroads 2021, Guide to Road Design - Part 4A: Unsignalised and Signalised Intersections, Austroads Incorporated, Sydney.

Department of Main Roads 2018, Guide to Traffic Impact Assessment.
Department of Industry, Science, Energy and Resources (DISEP) 2022, 2022 Critical Minerals Strategy, The Australian Government, Viewed 26 July 2022, [https://www.industry.gov.au/sites/default/files/March\ 2022/document/2022-critical-mineralsstrategy.pdf](https://www.industry.gov.au/sites/default/files/March%5C%202022/document/2022-critical-mineralsstrategy.pdf)

Department of State Development, Infrastructure, Local Government and Planning (DSDILGP) 2022, What is vanadium and why are we mining it in Queensland, The State of Queensland, Viewed 26 July 2022,
https://www.statedevelopment.qld.gov.au/news/people-projects-places/what-is-vanadium-and-why-are-we-mining-it-in-queensland

[^21]
Appendix A - Proposed Site Layout

Appendix B - Traffic Survey Data

Doc No.: BE230071-RP-TIA-06
Doc Title: Traffic Impact Assessment

Flinders Highway (west)

Flinders Highway (east)

This report shows Annual Average Daily Traffic
values (AADTs). Because the AADT values are values (AADTs). Because the AADT values are
converted to whole numbers, there will be converted to whole numbers, there will be occasional inaccuracies due to rounding.
These inaccuracies are statistically insignificant.

AADT Segment Annual Volume Report

Provides summary data for the selected AADT Segment of a Road Section. Summary data is presented as both directional information and a combined bi-directional figure. The data is then broken down by Traffic Class, when available. The report also includes maps displaying the location of both the AADT Segment and the traffic count site.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year

AADT Segments

The State declared road network is broken into Road Sections and then further broken down into AADT Segments. An AADT Segment is a sub-section of the declared road network where traffic volume is similar along the entire AADT Segment.

Area

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District	
Central West District	401
Darling Downs District	402
Farr North District	403
Fitzroy District	404
Mackay/Whitsunday District	405
Metropolitian District	406
North Coast District	407
North West District	409
Northern District	408
South Coast District	410
South West District	411
Wide Bay/Burnett District	412

AADT Values

AADT values are displayed by direction of travel as:
G Traffic flow in gazettal direction
A Traffic flow against gazettal direction
B Traffic flow in both directions

Data Collection Year

Is the most recent year that data was
collected at the data collection site.

Please Note:

Due to location and/or departmental policy, some sites are not counted every year.

Gazettal Direction

Is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane Gympie denotes that the gazettal direction is from Brisbane to Gympie.

Maps

Display the selected location from a range of viewing levels, the start and end position details for the AADT Segment and the location of the traffic count site.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Segment Site

Is the unique identifier for the traffic count site representing the traffic flow within the AADT Segment.

Site

The physical location of a traffic counting device. Sites are located at a specified Through Distance along a Road Section.

Site Description

The description of the physical location of the traffic counting device.

Start and End Point

The unique identifier for the Through Distance along a Road Section.

Vehicle Class

Traffic is categorised as per the Austroads Vehicle Classification scheme. Traffic classes are in the following hierarchical format:

Volume or All Vehicles

$00=0 A+0 B$

Light Vehicles

$0 \mathrm{~A}=1 \mathrm{~A}$
$1 A=2 A+2 B$
Heavy Vehicles
$0 B=1 B+1 C+1 D$
$1 B=2 C+2 D+2 E$
$1 C=2 F+2 G+2 H+2 I$
$1 \mathrm{D}=2 \mathrm{~J}+2 \mathrm{~K}+2 \mathrm{~L}$
The following classes are the categories
for which data can be captured:

Volume

00 All vehicles
2-Bin
OA Light vehicles
OB Heavy vehicles

4-Bin

1A Short vehicles
B Truck or bus
C Articulated vehicles
1D Road train
12-Bin
2A Short 2 axle vehicles
2B Short vehicles towing
2C 2 axle truck or bus
2D 3 axle truck or bus
2E 4 axle truck
2F 3 axle articulated vehicle
2G 4 axle articulated vehicle
2 H 5 axle articulated vehicle
21 6 axle articulated vehicle
2J B double
2K Double road train
2L Triple road train
Copyright
Copyright The State of Queensland (Department of Transport and Main Roads) 2013

Licence

http://creativecommons.org/licences/by-nd/3.0/au
This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

5-Aug-2020 16:44

Area 409 - North West District \quad Road Section 14D - FLINDERS HIGHWAY (RICHMOND - JULIA CREEK) Site 100019-14D Ch 116.9km - Spellary Creek TDist 116.900km Speed Limit 110 -20.641905

Year	2019	Growth last Year	24.04%
AADT	454	Growth last 5 Yrs	5.12%
Avg Week Day	481	Growth last 10 Yrs	2.40%

AADT History

Year	AADT	$1-$ Year Growth	5-Year Growth	10-Year Growth
2019	454	24.04%	5.12%	2.40%
2018	366	-5.91%	-1.06%	
2017	389	2.10%	1.29%	
2016	381	4.38%	1.29%	-0.02%
2015	365	-5.19%	0.51%	
2014	385	0.00%	-0.68%	2.16%
2013	385	9.07%		2.10%
2012	353	0.57%		0.86%
2011	351	-0.28%	-2.68%	0.54%
2010	352	-27.87%		0.54%
2009	488		13.69%	4.85%
2008				
2007				
2006	362		2.09%	
2005				

Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2004	244	-28.02%	-9.78%	
2003	339	-0.88%	0.29%	
2002	342	-7.32%	1.60%	
2001	369	5.13%		
2000	351	-2.77%	7.53%	
1999	361	22.37%		
1998	295	-3.28%		
1997	305			
1996				
1995	231			
1994				
1993				
1992				
1991				
1990				

Hourly Averages

[^22]
Daily Averages

2019 Calendar

May					
M	T	W	T	F	S
		1	2	3	4
6	7	8	9	10	11
13	14	15	16	17	18
20	21	22	23	24	25
27	28	29	30	31	

September

M	T	W	T	F	S	S
30						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

February

M	T	W	T	F	S	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28			

March						
M	T	W	T	F	S	S
4				1	2	3
11	12	6	7	8	9	10
18	19	20	14	15	16	17
25	26	27	28	23	23	24

April						
M	T	W	T	F	S	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

| June | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | T | W | T | F | S | S |
| | | | | 1 | 2 | |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 | 30 |

M	T	W	T	F	S	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

August						
M	T	W	T	F	S	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

December						
M	T	W	T	F	S	
30	31					
2	3	4	5	6	7	
9	10	11	12	13	14	
16	17	18	19	20	21	
23	24	25	26	27	28	

Growth Percentage

Represents the increase or decrease in AADT, using a exponential fit over the previous 1,5 or 10 year period.

Hour, Day \& Week Averages

The amount of traffic on the road network will vary depending on the time of day, the day of the week and the week of the year. The ebb and flow of traffic travelling through a site over a period of time forms a pattern. The Hour, Day and Week Averages are then used in the calculation of AADT.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Site

The unique identifier and description of the physical location of a traffic counting device. Sites are located at a Through Distance along a Road Section.

Stream

The lane in which the traffic is travelling in. This report provides data for the combined flow of traffic in both directions.

Thru Dist or TDist

The distance from the beginning of the Road Section, in kilometres.

Type

There are two types of traffic counting sites, Permanent and Coverage. Permanent means the traffic counting device is in place 24/7. Coverage means the traffic counting device is in place for a specified period of time.

Year

Is the current year for the report. Where an AADT Year record is missing a traffic count has not been conducted, for that year.

Copyright

Copyright The State of Queensland (Department of Transport and Main Roads) 2013

Licence

http://creativecommons.org/licences/by-nd/3.0/au
This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

Queensland Government

Disclaimer:

The materials in this resource are distributed by the Department of Transport and Main Roads for and on behalf of the State of Queensland as an information source only. The Department makes no statements representations or warranties about the accuracy or completeness of and you should not rely on, any information contained in this site.
The Department of Transport and Main Roads disclaims all responsibility and liability (including without limitation, liability in negligence) for all expenses, damages and costs which you might incur as a result of the information contained in this resource being inaccurate or incomplete in any way.

AADT Site Profiles Report

Filters

14D Ch 116.9km - Spellary Creek | Both Directions | 2020

AADT	Growth last Year	\% of year with data
335	-26.21%	
Week day \% of AADT	Growth last 5 years	
105.34%	-3.35%	
Weekend day \% of AADT	Growth last 10 years	
86.66%	-1.29%	

Annual Site Profile

Average Hourly Profile
Year: 2020
Road Section: 14D, FLINDERS HIGHWAY (RICHMOND - JULIA CREEK)
Site: 100019, 14D Ch 116.9km - Spellary Creek, 116.9

Annual Site Profile

Average Daily Profile

Year: 2020
Road Section: 14D, FLINDERS HIGHWAY (RICHMOND - JULIA CREEK)
Site: 100019, 14D Ch 116.9km - Spellary Creek, 116.9

Annual Site Profile

Annual Weekly Profile
Year: 2020
Road Section: 14D, FLINDERS HIGHWAY (RICHMOND - JULIA CREEK)
Site: 100019, 14D Ch 116.9km - Spellary Creek, 116.9

Annual Site Profile

Data Availability

January, 2020

MON	TUE	WED	THU	FRI	SAT	SUN
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		

February, 2020
MON TUE WED THU FRI SAT SUN

March, 2020
MON TUE WED THU FRI SAT SUN

$\begin{array}{lllllll}9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
$\begin{array}{lllllll}16 & 17 & 18 & 19 & 20 & 21 & 22\end{array}$
$\begin{array}{llllll}23 & 24 & 25 & 26 & 27 & 28 \\ 29 & 29\end{array}$

May, 2020
MON TUE WED THU FRI SAT SUN

June, 2020
MON TUE WED THU FRI SAT SUN

29) 30

September, 2020
MON TUE WED THU FRI SAT SUN

November, 2020
MON TUE WED THU FRI SAT SUN

30

Queensland Government

Disclaimer:

The materials in this resource are distributed by the Department of Transport and Main Roads for and on behalf of the State of Queensland as an information source only. The Department makes no statements representations or warranties about the accuracy or completeness of, and you should not rely on, any information contained in this site.
The Department of Transport and Main Roads disclaims all responsibility and liability (including without limitation, liability in negligence) for all expenses, damages and costs which you might incur as a result of the information contained in this resource being inaccurate or incomplete in any way.

AADT Site Profiles Report

Filters

14D Ch 116.9km - Spellary Creek | Both Directions | 2021

AADT
382
Week day \% of AADT
104.77\%

Weekend day \% of AADT
88.08\%

Growth last Year
14.03\% -

Growth last 5 years
-0.26\% -
Growth last 10 years
0.41% -

Annual Site Profile

Average Hourly Profile
Year: 2021
Road Section: 14D, FLINDERS HIGHWAY (RICHMOND - JULIA CREEK)
Site: 100019, 14D Ch 116.9km - Spellary Creek, 116.9

Annual Site Profile

Average Daily Profile

Year: 2021
Road Section: 14D, FLINDERS HIGHWAY (RICHMOND - JULIA CREEK)
Site: 100019, 14D Ch 116.9km - Spellary Creek, 116.9

Annual Site Profile

Annual Weekly Profile
Year: 2021
Road Section: 14D, FLINDERS HIGHWAY (RICHMOND - JULIA CREEK)
Site: 100019, 14D Ch 116.9km - Spellary Creek, 116.9

Annual Site Profile

Data Availability

January, 2021						
MON	TUE	WED	THU	FRI	SAT	SUN
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

February, 2021

April, 2021
MON TUE WED THU FRI SAT SUN

June, 2021
MON TUE WED THU FRI SAT SUN

September, 2021
MON TUE WED THU FRI SAT SUN

November, 2021
MON TUE WED THU FRI SAT SUN

December, 2021
MON TUE WED THU FRI SAT SUN

Site 100178. Point 300019674. 3.18km west of Int 14E/14D/5807.
3.18 km

AADT Segment Annual Volume Report

Provides summary data for the selected AADT Segment of a Road Section. Summary data is presented as both directional information and a combined bi-directional figure. The data is then broken down by Traffic Class, when available. The report also includes maps displaying the location of both the AADT Segment and the traffic count site.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year

AADT Segments

The State declared road network is broken into Road Sections and then further broken down into AADT Segments. An AADT Segment is a sub-section of the declared road network where traffic volume is similar along the entire AADT Segment.

Area

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District	
Central West District	401
Darling Downs District	402
Farr North District	403
Fitzroy District	404
Mackay/Whitsunday District	405
Metropolitian District	406
North Coast District	407
North West District	409
Northern District	408
South Coast District	410
South West District	411
Wide Bay/Burnett District	412

AADT Values

AADT values are displayed by direction of travel as:
G Traffic flow in gazettal direction
A Traffic flow against gazettal direction
B Traffic flow in both directions

Data Collection Year

Is the most recent year that data was
collected at the data collection site.

Please Note:

Due to location and/or departmental policy, some sites are not counted every year.

Gazettal Direction

Is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane Gympie denotes that the gazettal direction is from Brisbane to Gympie.

Maps

Display the selected location from a range of viewing levels, the start and end position details for the AADT Segment and the location of the traffic count site.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Segment Site

Is the unique identifier for the traffic count site representing the traffic flow within the AADT Segment.

Site

The physical location of a traffic counting device. Sites are located at a specified Through Distance along a Road Section.

Site Description

The description of the physical location of the traffic counting device.

Start and End Point

The unique identifier for the Through Distance along a Road Section.

Vehicle Class

Traffic is categorised as per the Austroads Vehicle Classification scheme. Traffic classes are in the following hierarchical format:

Volume or All Vehicles

$00=0 A+0 B$

Light Vehicles

$0 \mathrm{~A}=1 \mathrm{~A}$
$1 A=2 A+2 B$
Heavy Vehicles
$0 B=1 B+1 C+1 D$
$1 B=2 C+2 D+2 E$
$1 C=2 F+2 G+2 H+2 I$
$1 \mathrm{D}=2 \mathrm{~J}+2 \mathrm{~K}+2 \mathrm{~L}$
The following classes are the categories
for which data can be captured:

Volume

00 All vehicles
2-Bin
OA Light vehicles
OB Heavy vehicles

4-Bin

1A Short vehicles
B Truck or bus
C Articulated vehicles
1D Road train
12-Bin
2A Short 2 axle vehicles
2B Short vehicles towing
2C 2 axle truck or bus
2D 3 axle truck or bus
2E 4 axle truck
2F 3 axle articulated vehicle
2G 4 axle articulated vehicle
2 H 5 axle articulated vehicle
21 6 axle articulated vehicle
2J B double
2K Double road train
2L Triple road train
Copyright
Copyright The State of Queensland (Department of Transport and Main Roads) 2013

Licence

http://creativecommons.org/licences/by-nd/3.0/au
This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

Year	2019	Growth last Year	11.00%
AADT	545	Growth last 5 Yrs	

Daily Averages

2019 Calendar

February

M	T	W	T	F	S	S
			1	2	3	
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

M	T	W	T	F	S	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

May

M	T	W	T	F	S	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		

September

M	T	W	T	F	S	S
30					1	
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

Mune						
M	T	W	T	F	S	S
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

M	T	W	T	F	S	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

August						
M	T	W	T	F	S	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

October

M	T	W	T	F	S	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

November

December

M	T	W	T	F	S	S
30	31					1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

Growth Percentage

Represents the increase or decrease in AADT, using a exponential fit over the previous 1,5 or 10 year period.

Hour, Day \& Week Averages

The amount of traffic on the road network will vary depending on the time of day, the day of the week and the week of the year. The ebb and flow of traffic travelling through a site over a period of time forms a pattern. The Hour, Day and Week Averages are then used in the calculation of AADT.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Site

The unique identifier and description of the physical location of a traffic counting device. Sites are located at a Through Distance along a Road Section.

Stream

The lane in which the traffic is travelling in. This report provides data for the combined flow of traffic in both directions.

Thru Dist or TDist

The distance from the beginning of the Road Section, in kilometres.

Type

There are two types of traffic counting sites, Permanent and Coverage. Permanent means the traffic counting device is in place $24 / 7$. Coverage means the traffic counting device is in place for a specified period of time.

Year

Is the current year for the report. Where an AADT Year record is missing a traffic count has not been conducted, for that year.

Queensland Government

Disclaimer:

The materials in this resource are distributed by the Department of Transport and Main Roads for and on behalf of the State of Queensland as an information source only. The Department makes no statements representations or warranties about the accuracy or completeness of and you should not rely on, any information contained in this site.
The Department of Transport and Main Roads disclaims all responsibility and liability (including without limitation, liability in negligence) for all expenses, damages and costs which you might incur as a result of the information contained in this resource being inaccurate or incomplete in any way.

AADT Site Profiles Report

Filters

14E Ch 3.18 West of Int 14E/14D/5807 | Both Directions | 2020

AADT	Growth last Year	\% of year with data
486	-10.83%	
Week day \% of AADT	Growth last 5 years	
106.47%	N/A	
Weekend day \% of AADT	Growth last 10 years	
83.83%	N/A	

Annual Site Profile

Average Hourly Profile
Year: 2020
Road Section: 14E, FLINDERS HIGHWAY (JULIA CREEK - CLONCURRY)
Site: 100178, 14E Ch 3.18 West of Int 14E/14D/5807, 3.18

Annual Site Profile

Average Daily Profile

Year: 2020
Road Section: 14E, FLINDERS HIGHWAY (JULIA CREEK - CLONCURRY)
Site: 100178, 14E Ch 3.18 West of Int 14E/14D/5807, 3.18

Annual Site Profile

Annual Weekly Profile
Year: 2020
Road Section: 14E, FLINDERS HIGHWAY (JULIA CREEK - CLONCURRY)
Site: 100178, 14E Ch 3.18 West of Int 14E/14D/5807, 3.18

Annual Site Profile

Data Availability

March, 2020
MON TUE WED THU FRI SAT SUN

May, 2020
MON TUE WED THU FRI SAT SUN

February, 2020
MON TUE WED THU FRI SAT SUN

April, 2020
MON TUE WED THU FRI SAT SUN

June, 2020
MON TUE WED THU FRI SAT SUN

2930

September, 2020
MON TUE WED THU FRI SAT SUN

November, 2020
MON TUE WED THU FRI SAT SUN

30

Queensland Government

Disclaimer:

The materials in this resource are distributed by the Department of Transport and Main Roads for and on behalf of the State of Queensland as an information source only. The Department makes no statements representations or warranties about the accuracy or completeness of and you should not rely on, any information contained in this site.
The Department of Transport and Main Roads disclaims all responsibility and liability (including without limitation, liability in negligence) for all expenses, damages and costs which you might incur as a result of the information contained in this resource being inaccurate or incomplete in any way.

AADT Site Profiles Report

Filters

14E Ch 3.18 West of Int 14E/14D/5807 | Both Directions | 2021

AADT	Growth last Year	\% of year with data
519	6.79%	
Week day \% of AADT	Growth last 5 years	
105.65%	N/A	
Weekend day \% of AADT	Growth last 10 years	
85.88%	N/A	

Annual Site Profile

Average Hourly Profile
Year: 0
Road Section: 14E, FLINDERS HIGHWAY (JULIA CREEK - CLONCURRY)
Site: 100178, 14E Ch 3.18 West of Int 14E/14D/5807, 3.18

Annual Site Profile

Average Daily Profile

Year: 0
Road Section: 14E, FLINDERS HIGHWAY (JULIA CREEK - CLONCURRY)
Site: 100178, 14E Ch 3.18 West of Int 14E/14D/5807, 3.18

Annual Site Profile

Annual Weekly Profile
Year: 0
Road Section: 14E, FLINDERS HIGHWAY (JULIA CREEK - CLONCURRY)
Site: 100178, 14E Ch 3.18 West of Int 14E/14D/5807, 3.18

Appendix C - SIDRA Output

SITE LAYOUT

∇ Site: 101 [Flinders Highway and Punchbowl Road 2023 AM
(Site Folder: Flinders Highway and Punchbowl Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Flinders Highway

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BURCHILLS ENGINEERING SOLUTIONS | Licence: NETWORK / 1PC | Created: Monday, 4 September 2023 10:42:55 AM Project: I:\Projects\2023\BE230071_Vecco Critical Minerals Project\!Traffic\SIDRAISIDRA_Punchbowl Rd \& Flinders Hwy_Julia Creek.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Flinders Highway and Punchbowl Road 2023 AM
(Site Folder: Flinders Highway and Punchbowl Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	UT MES HV] \%		$\begin{gathered} \text { AND } \\ \text { WS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service		CK OF Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Flinders Highway													
5 T1	14	28.6	15	28.6	0.009	0.0	LOSA	0.0	0.1	0.02	0.04	0.02	59.4
6 R2	1	0.0	1	0.0	0.009	5.5	LOSA	0.0	0.1	0.02	0.04	0.02	57.0
Approach	15	26.7	16	26.7	0.009	0.4	NA	0.0	0.1	0.02	0.04	0.02	59.3
North: Punchbowl Road													
7 L2	2	100.0	2	100.0	0.004	6.9	LOS A	0.0	0.2	0.13	0.55	0.13	48.3
9 R2	2	50.0	2	50.0	0.004	6.3	LOSA	0.0	0.2	0.13	0.55	0.13	49.5
Approach	4	75.0	4	75.0	0.004	6.6	LOS A	0.0	0.2	0.13	0.55	0.13	48.9
West: Flinders Highway													
10 L2	1	0.0	1	0.0	0.019	5.5	LOS A	0.0	0.0	0.00	0.02	0.00	58.0
11 T1	29	34.5	31	34.5	0.019	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.7
Approach	30	33.3	32	33.3	0.019	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.7
All Vehicles	49	34.7	52	34.7	0.019	0.8	NA	0.0	0.2	0.02	0.07	0.02	58.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Flinders Highway and Punchbowl Road 2023 PM

(Site Folder: Flinders Highway and Punchbowl Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { UT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Flinders Highway													
5 T1	19	15.8	20	15.8	0.012	0.0	LOS A	0.0	0.0	0.01	0.03	0.01	59.6
6 R2	1	0.0	1	0.0	0.012	5.5	LOSA	0.0	0.0	0.01	0.03	0.01	57.2
Approach	20	15.0	21	15.0	0.012	0.3	NA	0.0	0.0	0.01	0.03	0.01	59.5
North: Punchbowl Road													
7 L2	1	0.0	1	0.0	0.002	5.6	LOSA	0.0	0.1	0.09	0.56	0.09	53.1
9 R2	2	0.0	2	0.0	0.002	5.6	LOSA	0.0	0.1	0.09	0.56	0.09	52.5
Approach	3	0.0	3	0.0	0.002	5.6	LOSA	0.0	0.1	0.09	0.56	0.09	52.7
West: Flinders Highway													
10 L2	8	0.0	8	0.0	0.018	5.5	LOSA	0.0	0.0	0.00	0.17	0.00	56.1
11 T1	20	45.0	21	45.0	0.018	0.0	LOSA	0.0	0.0	0.00	0.17	0.00	57.8
Approach	28	32.1	29	32.1	0.018	1.6	NA	0.0	0.0	0.00	0.17	0.00	57.3
All Vehicles	51	23.5	54	23.5	0.018	1.3	NA	0.0	0.1	0.01	0.14	0.01	57.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Flinders Highway and Punchbowl Road 2025 AM Background (Site Folder: Flinders Highway and Punchbowl
Road)]

```
New Site
Site Category: (None)
Give-Way (Two-Way)
```

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \\ \hline \end{array}$	UT MES HV] \%		$\begin{aligned} & \text { 4ND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Flinders Highway													
5 T1	15	26.6	16	26.6	0.010	0.0	LOS A	0.0	0.1	0.02	0.04	0.02	59.5
6 R2	1	0.0	1	0.0	0.010	5.5	LOSA	0.0	0.1	0.02	0.04	0.02	57.1
Approach	16	24.9	17	24.9	0.010	0.4	NA	0.0	0.1	0.02	0.04	0.02	59.3
North: Punchbowl Road													
7 L2	2	100.0	2	100.0	0.004	6.9	LOS A	0.0	0.2	0.13	0.54	0.13	48.3
9 R2	2	50.0	2	50.0	0.004	6.3	LOSA	0.0	0.2	0.13	0.54	0.13	49.5
Approach	4	75.0	4	75.0	0.004	6.6	LOS A	0.0	0.2	0.13	0.54	0.13	48.9
West: Flinders Highway													
10 L2	1	0.0	1	0.0	0.020	5.5	LOSA	0.0	0.0	0.00	0.02	0.00	58.0
11 T1	30	34.0	32	34.0	0.020	0.0	LOSA	0.0	0.0	0.00	0.02	0.00	59.7
Approach	31	32.9	33	32.9	0.020	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.7
All Vehicles	51	33.7	54	33.7	0.020	0.7	NA	0.0	0.2	0.01	0.07	0.01	58.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BURCHILLS ENGINEERING SOLUTIONS | Licence: NETWORK / 1PC | Processed: Tuesday, 30 May 2023 9:19:05 AM Project: I:IProjects\2023\BE230071_Vecco Critical Minerals Project!!TrafficISIDRAISIDRA_Punchbowl Rd \& Flinders Hwy_Julia Creek.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Flinders Highway and Punchbowl Road 2025 PM Background (Site Folder: Flinders Highway and Punchbowl
Road)]

```
New Site
Site Category: (None)
Give-Way (Two-Way)
```

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \\ \hline \end{array}$	UT MES HV] \%		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Flinders Highway													
5 T1	20	15.8	21	15.8	0.012	0.0	LOS A	0.0	0.0	0.01	0.03	0.01	59.6
6 R2	1	0.0	1	0.0	0.012	5.5	LOSA	0.0	0.0	0.01	0.03	0.01	57.2
Approach	21	15.0	22	15.0	0.012	0.3	NA	0.0	0.0	0.01	0.03	0.01	59.5
North: Punchbowl Road													
7 L2	1	0.0	1	0.0	0.002	5.6	LOS A	0.0	0.1	0.10	0.56	0.10	53.1
9 R2	2	0.0	2	0.0	0.002	5.6	LOSA	0.0	0.1	0.10	0.56	0.10	52.5
Approach	3	0.0	3	0.0	0.002	5.6	LOS A	0.0	0.1	0.10	0.56	0.10	52.7
West: Flinders Highway													
10 L2	8	0.0	8	0.0	0.019	5.5	LOSA	0.0	0.0	0.00	0.16	0.00	56.1
11 T1	21	45.0	22	45.0	0.019	0.0	LOSA	0.0	0.0	0.00	0.16	0.00	57.8
Approach	29	32.6	31	32.6	0.019	1.5	NA	0.0	0.0	0.00	0.16	0.00	57.4
All Vehicles	53	23.8	56	23.8	0.019	1.3	NA	0.0	0.1	0.01	0.13	0.01	57.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BURCHILLS ENGINEERING SOLUTIONS | Licence: NETWORK / 1PC | Processed: Tuesday, 30 May 2023 9:19:06 AM
Project: I:\Projects\2023\BE230071_Vecco Critical Minerals Project!!TrafficISIDRAISIDRA_Punchbowl Rd \& Flinders Hwy_Julia Creek.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Flinders Highway and Punchbowl Road 2025 AM Construction (Site Folder: Flinders Highway and Punchbowl
Road)]

```
New Site
Site Category: (None)
Give-Way (Two-Way)
```

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$				ND NS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% B QU [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Flinders Highway													
5 T1	15	26.6	16	26.6	0.031	0.1	LOS A	0.1	1.1	0.14	0.40	0.14	55.7
6 R2	36	2.0	38	2.0	0.031	5.6	LOSA	0.1	1.1	0.14	0.40	0.14	53.3
Approach	51	9.2	54	9.2	0.031	4.0	NA	0.1	1.1	0.14	0.40	0.14	54.0
North: Punchbowl Road													
7 L2	37	7.0	39	7.0	0.042	5.7	LOSA	0.2	1.2	0.11	0.56	0.11	52.7
9 R2	18	8.0	19	8.0	0.042	5.9	LOSA	0.2	1.2	0.11	0.56	0.11	52.0
Approach	55	7.3	58	7.3	0.042	5.8	LOS A	0.2	1.2	0.11	0.56	0.11	52.5
West: Flinders Highway													
10 L2	16	2.0	17	2.0	0.029	5.6	LOS A	0.0	0.0	0.00	0.21	0.00	55.9
11 T1	30	34.0	32	34.0	0.029	0.0	LOSA	0.0	0.0	0.00	0.21	0.00	57.7
Approach	46	22.9	48	22.9	0.029	1.9	NA	0.0	0.0	0.00	0.21	0.00	57.0
All Vehicles	152	12.7	160	12.7	0.042	4.0	NA	0.2	1.2	0.09	0.40	0.09	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BURCHILLS ENGINEERING SOLUTIONS | Licence: NETWORK / 1PC | Processed: Tuesday, 30 May 2023 9:19:06 AM
Project: I:IProjects\2023\BE230071_Vecco Critical Minerals Project!!TrafficISIDRAISIDRA_Punchbowl Rd \& Flinders Hwy_Julia Creek.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Flinders Highway and Punchbowl Road 2025 PM Construction (Site Folder: Flinders Highway and Punchbowl
Road)]

```
New Site
Site Category: (None)
Give-Way (Two-Way)
```

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		JT HV] \%		ND NS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% B [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Flinders Highway													
5 T1	20	16.0	21	16.0	0.033	0.1	LOS A	0.1	1.1	0.13	0.36	0.13	56.1
6 R2	35	2.0	37	2.0	0.033	5.6	LOSA	0.1	1.1	0.13	0.36	0.13	53.7
Approach	55	7.1	58	7.1	0.033	3.6	NA	0.1	1.1	0.13	0.36	0.13	54.6
North: Punchbowl Road													
7 L2	35	2.0	37	2.0	0.039	5.6	LOSA	0.1	1.0	0.09	0.56	0.09	53.0
9 R2	18	2.0	19	2.0	0.039	5.8	LOSA	0.1	1.0	0.09	0.56	0.09	52.4
Approach	53	2.0	56	2.0	0.039	5.7	LOS A	0.1	1.0	0.09	0.56	0.09	52.8
West: Flinders Highway													
10 L2	24	1.0	25	1.0	0.028	5.6	LOS A	0.0	0.0	0.00	0.31	0.00	54.8
11 T1	21	45.0	22	45.0	0.028	0.0	LOSA	0.0	0.0	0.00	0.31	0.00	56.5
Approach	45	21.5	47	21.5	0.028	3.0	NA	0.0	0.0	0.00	0.31	0.00	55.6
All Vehicles	153	9.6	161	9.6	0.039	4.1	NA	0.1	1.1	0.08	0.42	0.08	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BURCHILLS ENGINEERING SOLUTIONS | Licence: NETWORK / 1PC | Processed: Tuesday, 30 May 2023 9:19:07 AM Project: I:IProjects\2023\BE230071_Vecco Critical Minerals Project!!TrafficISIDRAISIDRA_Punchbowl Rd \& Flinders Hwy_Julia Creek.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Flinders Highway and Punchbowl Road 2025 AM
Operation (Site Folder: Flinders Highway and Punchbowl Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$				AND WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh. veh	CK OF UE Dist]	Prop. Que	Effective Stop Rate	Aver. No Cycles	Aver. Speed km/h
East: Flinders Highway													
5 T1	15	26.6	16	26.6	0.023	0.1	LOS A	0.1	0.8	0.12	0.35	0.12	56.2
6 R2	23	4.3	24	4.3	0.023	5.6	LOS A	0.1	0.8	0.12	0.35	0.12	53.7
Approach	38	13.1	40	13.1	0.023	3.5	NA	0.1	0.8	0.12	0.35	0.12	54.7
North: Punchbowl Road													
7 L2	24	7.0	25	7.0	0.027	5.7	LOSA	0.1	0.8	0.11	0.55	0.11	52.7
9 R2	12	8.0	13	8.0	0.027	5.8	LOS A	0.1	0.8	0.11	0.55	0.11	52.0
Approach	36	7.3	38	7.3	0.027	5.8	LOS A	0.1	0.8	0.11	0.55	0.11	52.5
West: Flinders Highway													
10 L2	10	0.0	11	0.0	0.025	5.5	LOSA	0.0	0.0	0.00	0.15	0.00	56.5
11 T1	30	34.5	32	34.5	0.025	0.0	LOSA	0.0	0.0	0.00	0.15	0.00	58.2
Approach	40	25.9	42	25.9	0.025	1.4	NA	0.0	0.0	0.00	0.15	0.00	57.8
All Vehicles	114	15.8	120	15.8	0.027	3.5	NA	0.1	0.8	0.07	0.34	0.07	55.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Flinders Highway and Punchbowl Road 2025 PM
Operation (Site Folder: Flinders Highway and Punchbowl Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$				ND VS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% QU [Veh veh	CK OF JE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Flinders Highway													
$5 \quad \mathrm{~T} 1$	20	16.0	21	16.0	0.025	0.1	LOS A	0.1	0.8	0.11	0.30	0.11	56.7
6 R2	22	2.0	23	2.0	0.025	5.6	LOSA	0.1	0.8	0.11	0.30	0.11	54.3
Approach	42	8.7	44	8.7	0.025	3.0	NA	0.1	0.8	0.11	0.30	0.11	55.5
North: Punchbowl Road													
7 L2	22	2.0	23	2.0	0.025	5.6	LOS A	0.1	0.7	0.09	0.56	0.09	53.0
9 R2	12	2.0	13	2.0	0.025	5.7	LOSA	0.1	0.7	0.09	0.56	0.09	52.4
Approach	34	2.0	36	2.0	0.025	5.7	LOS A	0.1	0.7	0.09	0.56	0.09	52.8
West: Flinders Highway													
10 L2	18	1.0	19	1.0	0.025	5.6	LOS A	0.0	0.0	0.00	0.27	0.00	55.1
11 T1	21	45.0	22	45.0	0.025	0.0	LOSA	0.0	0.0	0.00	0.27	0.00	56.8
Approach	39	24.7	41	24.7	0.025	2.6	NA	0.0	0.0	0.00	0.27	0.00	56.1
All Vehicles	115	12.1	121	12.1	0.025	3.6	NA	0.1	0.8	0.07	0.37	0.07	54.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

∇ Site: 101 [Punchbowl Road and Shaw Street 2023 AM (Site Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

"

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Shaw Street 2023 AM (Site
Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { INF } \\ & \text { VOLI } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	UT MES HV] \%		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	$\begin{gathered} \text { 95\% B B } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km / h
East: Punchbowl Road													
5 T1	1	100.0	1	100.0	0.007	0.0	LOS A	0.0	0.3	0.02	0.56	0.02	55.3
6 R2	9	33.3	9	33.3	0.007	6.1	LOSA	0.0	0.3	0.02	0.56	0.02	51.4
Approach	10	40.0	11	40.0	0.007	5.5	NA	0.0	0.3	0.02	0.56	0.02	51.8
North: Punchbowl Road													
7 L2	1	0.0	1	0.0	0.002	5.5	LOSA	0.0	0.1	0.02	0.59	0.02	52.7
9 R2	1	100.0	1	100.0	0.002	7.0	LOSA	0.0	0.1	0.02	0.59	0.02	48.0
Approach	2	50.0	2	50.0	0.002	6.3	NA	0.0	0.1	0.02	0.59	0.02	50.2
West: Shaw Street													
10 L2	2	50.0	2	50.0	0.002	6.2	LOSA	0.0	0.1	0.06	0.53	0.06	51.9
11 T1	1	0.0	1	0.0	0.002	4.2	LOSA	0.0	0.1	0.06	0.53	0.06	53.9
Approach	3	33.3	3	33.3	0.002	5.5	LOS A	0.0	0.1	0.06	0.53	0.06	52.5
All Vehicles	15	40.0	16	40.0	0.007	5.6	NA	0.0	0.3	0.03	0.56	0.03	51.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Shaw Street 2023 PM (Site
Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOLU } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	$\begin{gathered} \text { 95\% B B } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km / h
East: Punchbowl Road													
5 T1	1	0.0	1	0.0	0.002	0.0	LOSA	0.0	0.1	0.04	0.47	0.04	55.7
6 R2	3	0.0	3	0.0	0.002	5.7	LOSA	0.0	0.1	0.04	0.47	0.04	53.5
Approach	4	0.0	4	0.0	0.002	4.3	NA	0.0	0.1	0.04	0.47	0.04	54.0
North: Punchbowl Road													
7 L2	1	0.0	1	0.0	0.005	5.5	LOSA	0.0	0.2	0.01	0.62	0.01	53.1
9 R2	7	14.3	7	14.3	0.005	5.9	LOSA	0.0	0.2	0.01	0.62	0.01	52.1
Approach	8	12.5	8	12.5	0.005	5.9	NA	0.0	0.2	0.01	0.62	0.01	52.2
West: Shaw Street													
10 L2	1	0.0	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.03	0.54	0.03	54.1
11 T1	1	0.0	1	0.0	0.001	4.2	LOSA	0.0	0.0	0.03	0.54	0.03	54.0
Approach	2	0.0	2	0.0	0.001	4.9	LOS A	0.0	0.0	0.03	0.54	0.03	54.0
All Vehicles	14	7.1	15	7.1	0.005	5.3	NA	0.0	0.2	0.02	0.56	0.02	53.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Shaw Street 2025 AM Background (Site Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		UT MES HV] \%		$\begin{gathered} \text { AND } \\ \text { WS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate		Aver Speed km/h
East: Punchbowl Road													
5 T1	1	100.0	1	100.0	0.007	0.0	LOS A	0.0	0.3	0.02	0.56	0.02	55.3
6 R2	9	33.3	9	33.3	0.007	6.1	LOSA	0.0	0.3	0.02	0.56	0.02	51.4
Approach	10	40.0	11	40.0	0.007	5.5	NA	0.0	0.3	0.02	0.56	0.02	51.8
North: Punchbowl Road													
$7 \quad$ L2	1	0.0	1	0.0	0.002	5.5	LOS A	0.0	0.1	0.02	0.59	0.02	52.7
9 R2	1	100.0	1	100.0	0.002	7.0	LOS A	0.0	0.1	0.02	0.59	0.02	48.0
Approach	2	50.0	2	50.0	0.002	6.3	NA	0.0	0.1	0.02	0.59	0.02	50.2
West: Shaw Street													
10 L2	2	50.0	2	50.0	0.002	6.2	LOS A	0.0	0.1	0.06	0.53	0.06	51.9
11 T1	1	0.0	1	0.0	0.002	4.2	LOSA	0.0	0.1	0.06	0.53	0.06	53.9
Approach	3	33.3	3	33.3	0.002	5.5	LOS A	0.0	0.1	0.06	0.53	0.06	52.5
All Vehicles	15	40.0	16	40.0	0.007	5.6	NA	0.0	0.3	0.03	0.56	0.03	51.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Shaw Street 2025 PM
Background (Site Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOLU } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$		$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate		Aver Speed km/h
East: Punchbowl Road													
5 T1	1	0.0	1	0.0	0.002	0.0	LOS A	0.0	0.1	0.04	0.47	0.04	55.7
6 R2	3	0.0	3	0.0	0.002	5.7	LOSA	0.0	0.1	0.04	0.47	0.04	53.5
Approach	4	0.0	4	0.0	0.002	4.3	NA	0.0	0.1	0.04	0.47	0.04	54.0
North: Punchbowl Road													
$7 \quad$ L2	1	0.0	1	0.0	0.005	5.5	LOS A	0.0	0.2	0.01	0.62	0.01	53.1
9 R2	7	14.3	7	14.3	0.005	5.9	LOS A	0.0	0.2	0.01	0.62	0.01	52.1
Approach	8	12.5	8	12.5	0.005	5.9	NA	0.0	0.2	0.01	0.62	0.01	52.2
West: Shaw Street													
10 L2	1	0.0	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.03	0.54	0.03	54.1
11 T1	1	0.0	1	0.0	0.001	4.2	LOSA	0.0	0.0	0.03	0.54	0.03	54.0
Approach	2	0.0	2	0.0	0.001	4.9	LOS A	0.0	0.0	0.03	0.54	0.03	54.0
All Vehicles	14	7.1	15	7.1	0.005	5.3	NA	0.0	0.2	0.02	0.56	0.02	53.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Shaw Street 2025 AM Construction (Site Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{array}{r} \text { IN } \\ \mathrm{VOL} \\ \text { [Total } \\ \text { veh/h } \end{array}$	UT MES HV] \%		$\begin{gathered} \text { AND } \\ \text { WS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay \qquad	Level of Service	$\begin{aligned} & \text { 95\% B } \\ & \text { QU } \\ & \text { [Veh. } \\ & \text { veh } \end{aligned}$	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Punchbowl Road													
5 T1	1	100.0	1	100.0	0.036	0.0	LOSA	0.2	1.3	0.01	0.61	0.01	54.7
6 R2	59	7.0	62	7.0	0.036	5.8	LOSA	0.2	1.3	0.01	0.61	0.01	52.2
Approach	60	8.6	63	8.6	0.036	5.7	NA	0.2	1.3	0.01	0.61	0.01	52.2
North: Punchbowl Road													
7 L2	50	2.0	53	2.0	0.031	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.2
9 R2	1	0.0	1	0.0	0.031	5.7	LOS A	0.0	0.0	0.00	0.58	0.00	52.9
Approach	51	2.0	54	2.0	0.031	5.6	NA	0.0	0.0	0.00	0.58	0.00	53.2
West: Shaw Street													
10 L2	2	50.0	2	50.0	0.003	6.4	LOS A	0.0	0.1	0.17	0.51	0.17	51.6
11 T1	1	0.0	1	0.0	0.003	4.5	LOS A	0.0	0.1	0.17	0.51	0.17	53.5
Approach	3	33.3	3	33.3	0.003	5.8	LOS A	0.0	0.1	0.17	0.51	0.17	52.2
All Vehicles	114	6.3	120	6.3	0.036	5.6	NA	0.2	1.3	0.01	0.59	0.01	52.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Shaw Street 2025 PM
Construction (Site Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOLI } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	$\begin{gathered} 95 \% \text { B } \\ \text { Qu } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km / h
East: Punchbowl Road													
5 T1	1	0.0	1	0.0	0.032	0.0	LOS A	0.1	1.0	0.04	0.60	0.04	54.6
6 R2	53	2.0	56	2.0	0.032	5.7	LOSA	0.1	1.0	0.04	0.60	0.04	52.3
Approach	54	2.0	57	2.0	0.032	5.6	NA	0.1	1.0	0.04	0.60	0.04	52.4
North: Punchbowl Road													
7 L2	50	2.0	53	2.0	0.035	5.6	LOS A	0.0	0.3	0.00	0.58	0.00	53.2
9 R2	7	14.0	7	14.0	0.035	5.9	LOSA	0.0	0.3	0.00	0.58	0.00	52.2
Approach	57	3.5	60	3.5	0.035	5.6	NA	0.0	0.3	0.00	0.58	0.00	53.1
West: Shaw Street													
10 L2	1	0.0	1	0.0	0.002	5.7	LOS A	0.0	0.0	0.15	0.51	0.15	53.7
11 T1	1	0.0	1	0.0	0.002	4.5	LOSA	0.0	0.0	0.15	0.51	0.15	53.6
Approach	2	0.0	2	0.0	0.002	5.1	LOS A	0.0	0.0	0.15	0.51	0.15	53.7
All Vehicles	113	2.7	119	2.7	0.035	5.6	NA	0.1	1.0	0.03	0.59	0.03	52.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Shaw Street 2025 AM
Operation (Site Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { INF } \\ & \text { VOLI } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { UT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	$\begin{gathered} \text { 95\% B B } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km / h
East: Punchbowl Road													
5 T1	1	100.0	1	100.0	0.026	0.0	LOSA	0.1	0.9	0.01	0.61	0.01	54.7
6 R2	41	9.0	43	9.0	0.026	5.8	LOSA	0.1	0.9	0.01	0.61	0.01	52.1
Approach	42	11.2	44	11.2	0.026	5.7	NA	0.1	0.9	0.01	0.61	0.01	52.2
North: Punchbowl Road													
7 L2	31	4.5	33	4.5	0.019	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.1
9 R2	1	0.0	1	0.0	0.019	5.7	LOSA	0.0	0.0	0.00	0.58	0.00	52.9
Approach	32	4.4	34	4.4	0.019	5.6	NA	0.0	0.0	0.00	0.58	0.00	53.1
West: Shaw Street													
10 L2	2	50.0	2	50.0	0.003	6.3	LOS A	0.0	0.1	0.13	0.52	0.13	51.7
11 T1	1	0.0	1	0.0	0.003	4.4	LOS A	0.0	0.1	0.13	0.52	0.13	53.6
Approach	3	33.3	3	33.3	0.003	5.7	LOS A	0.0	0.1	0.13	0.52	0.13	52.3
All Vehicles	77	9.2	81	9.2	0.026	5.6	NA	0.1	0.9	0.01	0.59	0.01	52.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Shaw Street 2025 PM
Operation (Site Folder: Punchbowl Road and Shaw Street)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{gathered} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec \qquad	Level of Service	$\begin{aligned} & 95 \% \text { B } \\ & \text { QU } \\ & \text { [Veh. } \\ & \text { veh } \end{aligned}$	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Punchbowl Road													
5 T1	1	0.0	1	0.0	0.021	0.0	LOSA	0.1	0.7	0.04	0.59	0.04	54.6
6 R2	34	7.6	36	7.6	0.021	5.8	LOSA	0.1	0.7	0.04	0.59	0.04	52.1
Approach	35	7.4	37	7.4	0.021	5.6	NA	0.1	0.7	0.04	0.59	0.04	52.2
North: Punchbowl Road													
7 L2	31	7.6	33	7.6	0.024	5.6	LOSA	0.0	0.3	0.01	0.58	0.01	52.9
9 R2	7	14.0	7	14.0	0.024	5.9	LOSA	0.0	0.3	0.01	0.58	0.01	52.2
Approach	38	8.8	40	8.8	0.024	5.7	NA	0.0	0.3	0.01	0.58	0.01	52.8
West: Shaw Street													
10 L2	1	0.0	1	0.0	0.002	5.6	LOS A	0.0	0.0	0.12	0.52	0.12	53.8
11 T1	1	0.0	1	0.0	0.002	4.4	LOS A	0.0	0.0	0.12	0.52	0.12	53.7
Approach	2	0.0	2	0.0	0.002	5.0	LOS A	0.0	0.0	0.12	0.52	0.12	53.8
All Vehicles	75	7.9	79	7.9	0.024	5.6	NA	0.1	0.7	0.03	0.59	0.03	52.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

∇ Site: 101 [Punchbowl Road and Access Road 2023 AM (Site
Folder: Punchbowl Road and Access Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)
Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Organisation: BURCHILLS ENGINEERING SOLUTIONS | Licence: NETWORK / 1PC | Created: Monday, 4 September 2023 10:49:07 AM Project: I:\Projects\2023\BE230071_Vecco Critical Minerals Project!!Traffic\SIDRAISIDRA_Punchbowl Rd \& Flinders Hwy_Julia Creek.sip9

MOVEMENT SUMMARY

Site: 101 [Punchbowl Road and Access Road 2023 AM (Site Folder: Punchbowl Road and Access Road)]

New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$		$\begin{gathered} \text { HD } \\ \text { NS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Punchbowl Road													
1 L2	1	0.0	1	0.0	0.008	5.5	LOS A	0.0	0.0	0.00	0.05	0.00	57.7
2 T1	11	40.0	12	40.0	0.008	0.0	LOSA	0.0	0.0	0.00	0.05	0.00	59.3
Approach	12	36.7	13	36.7	0.008	0.5	NA	0.0	0.0	0.00	0.05	0.00	59.1
North: Punchbowl Road													
8 T1	1	0.0	1	0.0	0.001	0.0	LOS A	0.0	0.0	0.05	0.30	0.05	57.2
9 R2	1	0.0	1	0.0	0.001	5.5	LOSA	0.0	0.0	0.05	0.30	0.05	55.1
Approach	2	0.0	2	0.0	0.001	2.8	NA	0.0	0.0	0.05	0.30	0.05	56.1
West: Access Road													
10 L2	1	0.0	1	0.0	0.001	5.6	LOS A	0.0	0.0	0.06	0.57	0.06	53.5
12 R 2	1	0.0	1	0.0	0.001	5.5	LOSA	0.0	0.0	0.06	0.57	0.06	52.9
Approach	2	0.0	2	0.0	0.001	5.6	LOS A	0.0	0.0	0.06	0.57	0.06	53.2
All Vehicles	16	27.5	17	27.5	0.008	1.4	NA	0.0	0.0	0.01	0.15	0.01	57.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [Punchbowl Road and Access Road 2023 PM (Site Folder: Punchbowl Road and Access Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INP } \\ & \text { VOLu } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { VES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { WD } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \\ \hline \end{gathered}$	Prop. Que	Effective Stop Rate	$\begin{aligned} & \text { Aver. } \\ & \text { No. } \\ & \text { Cycles } \end{aligned}$	Aver. Speed km/h
South: Punchbowl Road													
1 L2	1	0.0	1	0.0	0.003	5.5	LOS A	0.0	0.0	0.00	0.12	0.00	57.3
2 T1	4	0.0	4	0.0	0.003	0.0	LOSA	0.0	0.0	0.00	0.12	0.00	58.9
Approach	5	0.0	5	0.0	0.003	1.1	NA	0.0	0.0	0.00	0.12	0.00	58.6
North: Punchbowl Road													
8 T1	7	14.0	7	14.0	0.005	0.0	LOS A	0.0	0.0	0.01	0.08	0.01	59.2
9 R2	1	0.0	1	0.0	0.005	5.5	LOSA	0.0	0.0	0.01	0.08	0.01	56.9
Approach	8	12.3	8	12.3	0.005	0.7	NA	0.0	0.0	0.01	0.08	0.01	58.9
West: Access Road													
10 L2	1	0.0	1	0.0	0.001	5.6	LOS A	0.0	0.0	0.03	0.58	0.03	53.5
12 R 2	1	0.0	1	0.0	0.001	5.5	LOSA	0.0	0.0	0.03	0.58	0.03	53.0
Approach	2	0.0	2	0.0	0.001	5.5	LOSA	0.0	0.0	0.03	0.58	0.03	53.3
All Vehicles	15	6.5	16	6.5	0.005	1.5	NA	0.0	0.0	0.01	0.16	0.01	58.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [Punchbowl Road and Access Road 2025 AM
Construction (Site Folder: Punchbowl Road and Access Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INP } \\ & \text { VOLu } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	JT MES HV] \%		$\begin{gathered} \text { HD } \\ \text { NS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \\ \hline \end{gathered}$	Prop. Que	Effective Stop Rate	$\begin{aligned} & \text { Aver. } \\ & \text { No. } \\ & \text { Cycles } \end{aligned}$	Aver. Speed km/h
South: Punchbowl Road													
1 L2	50	2.0	53	2.0	0.038	5.6	LOS A	0.0	0.0	0.00	0.48	0.00	54.0
2 T1	11	40.0	12	40.0	0.038	0.0	LOS A	0.0	0.0	0.00	0.48	0.00	55.5
Approach	61	8.9	64	8.9	0.038	4.6	NA	0.0	0.0	0.00	0.48	0.00	54.3
North: Punchbowl Road													
8 T1	1	0.0	1	0.0	0.001	0.1	LOS A	0.0	0.0	0.13	0.28	0.13	56.9
9 R2	1	0.0	1	0.0	0.001	5.6	LOSA	0.0	0.0	0.13	0.28	0.13	54.8
Approach	2	0.0	2	0.0	0.001	2.9	NA	0.0	0.0	0.13	0.28	0.13	55.9
West: Access Road													
10 L2	1	0.0	1	0.0	0.043	5.6	LOS A	0.1	1.0	0.10	0.58	0.10	53.4
12 R 2	50	2.0	53	2.0	0.043	5.6	LOSA	0.1	1.0	0.10	0.58	0.10	52.7
Approach	51	2.0	54	2.0	0.043	5.6	LOSA	0.1	1.0	0.10	0.58	0.10	52.7
All Vehicles	114	5.6	120	5.6	0.043	5.0	NA	0.1	1.0	0.05	0.52	0.05	53.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [Punchbowl Road and Access Road 2025 PM
Construction (Site Folder: Punchbowl Road and Access Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOLU } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	$\begin{gathered} 95 \% \text { B } \\ \text { Qu } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate	Aver No. Cycles	Aver. Speed km / h
South: Punchbowl Road													
1 L2	50	2.0	53	2.0	0.032	5.6	LOS A	0.0	0.0	0.00	0.54	0.00	53.9
2 T1	4	0.0	4	0.0	0.032	0.0	LOSA	0.0	0.0	0.00	0.54	0.00	55.3
Approach	54	1.9	57	1.9	0.032	5.2	NA	0.0	0.0	0.00	0.54	0.00	54.0
North: Punchbowl Road													
8 T1	7	14.0	7	14.0	0.005	0.0	LOS A	0.0	0.0	0.04	0.08	0.04	59.1
9 R2	1	0.0	1	0.0	0.005	5.6	LOS A	0.0	0.0	0.04	0.08	0.04	56.8
Approach	8	12.3	8	12.3	0.005	0.7	NA	0.0	0.0	0.04	0.08	0.04	58.8
West: Access Road													
10 L2	1	0.0	1	0.0	0.043	5.6	LOS A	0.1	1.0	0.09	0.58	0.09	53.4
12 R2	50	2.0	53	2.0	0.043	5.6	LOS A	0.1	1.0	0.09	0.58	0.09	52.7
Approach	51	2.0	54	2.0	0.043	5.6	LOS A	0.1	1.0	0.09	0.58	0.09	52.7
All Vehicles	113	2.6	119	2.6	0.043	5.1	NA	0.1	1.0	0.04	0.52	0.04	53.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [Punchbowl Road and Access Road 2025 AM
Operation (Site Folder: Punchbowl Road and Access Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOLI } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	$\begin{gathered} \text { 95\% B B } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km / h
South: Punchbowl Road													
1 L2	31	3.2	33	3.2	0.026	5.6	LOS A	0.0	0.0	0.00	0.43	0.00	54.3
2 T1	11	40.0	12	40.0	0.026	0.0	LOSA	0.0	0.0	0.00	0.43	0.00	55.8
Approach	42	12.9	44	12.9	0.026	4.1	NA	0.0	0.0	0.00	0.43	0.00	54.7
North: Punchbowl Road													
8 T1	1	0.0	1	0.0	0.001	0.1	LOSA	0.0	0.0	0.11	0.29	0.11	57.0
9 R2	1	0.0	1	0.0	0.001	5.6	LOSA	0.0	0.0	0.11	0.29	0.11	54.9
Approach	2	0.0	2	0.0	0.001	2.8	NA	0.0	0.0	0.11	0.29	0.11	55.9
West: Access Road													
10 L2	1	0.0	1	0.0	0.027	5.6	LOS A	0.1	0.6	0.09	0.58	0.09	53.4
12 R2	31	3.2	33	3.2	0.027	5.6	LOS A	0.1	0.6	0.09	0.58	0.09	52.7
Approach	32	3.1	34	3.1	0.027	5.6	LOS A	0.1	0.6	0.09	0.58	0.09	52.7
All Vehicles	76	8.4	80	8.4	0.027	4.7	NA	0.1	0.6	0.04	0.49	0.04	53.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: 101 [Punchbowl Road and Access Road 2025 PM
Operation (Site Folder: Punchbowl Road and Access Road)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{gathered} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	$\begin{aligned} & \text { UT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec \qquad	Level of Service	$\begin{aligned} & 95 \% \text { B } \\ & \text { QU } \\ & \text { [Veh. } \\ & \text { veh } \end{aligned}$	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Punchbowl Road													
1 L2	31	3.2	33	3.2	0.021	5.6	LOSA	0.0	0.0	0.00	0.51	0.00	54.0
2 T1	4	0.0	4	0.0	0.021	0.0	LOSA	0.0	0.0	0.00	0.51	0.00	55.5
Approach	35	2.9	37	2.9	0.021	4.9	NA	0.0	0.0	0.00	0.51	0.00	54.2
North: Punchbowl Road													
8 T1	7	14.0	7	14.0	0.005	0.0	LOSA	0.0	0.0	0.03	0.08	0.03	59.1
9 R2	1	0.0	1	0.0	0.005	5.6	LOSA	0.0	0.0	0.03	0.08	0.03	56.8
Approach	8	12.3	8	12.3	0.005	0.7	NA	0.0	0.0	0.03	0.08	0.03	58.8
West: Access Road													
10 L2	1	0.0	1	0.0	0.027	5.6	LOS A	0.1	0.6	0.07	0.58	0.07	53.4
12 R 2	31	3.2	33	3.2	0.027	5.6	LOS A	0.1	0.6	0.07	0.58	0.07	52.7
Approach	32	3.1	34	3.1	0.027	5.6	LOS A	0.1	0.6	0.07	0.58	0.07	52.7
All Vehicles	75	4.0	79	4.0	0.027	4.8	NA	0.1	0.6	0.03	0.50	0.03	54.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The experience you deserve

Appendix D - Traffic Flow Diagram

Heaw Vencices Distroulion

Total Traffic Bistribuition Operation

Heanvencices sistroution

[^0]: www.burchills.com.au
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^1]: 8 \qquad

[^2]: www.burchills.com.au
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^3]: 8 \qquad www.burchills.com au
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^4]: \qquad

[^5]: www.burchills.com.au
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^6]: \qquad www.burchills.com.au
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^7]: Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^8]: \qquad

[^9]: $>$

[^10]: $>$ \qquad

[^11]: Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^12]: \qquad www.burchills.com.au
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^13]: Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^14]: \qquad

[^15]: 8 Vecco Industrial Pty Ltd (Vecco)
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06

[^16]: \qquad

[^17]: Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^18]: $>$ \square

[^19]: s \qquad
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^20]: \qquad www.burchills.com.au
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^21]: www.burchills.com.au
 Client: Vecco Industrial Pty Ltd (Vecco)
 Doc No.: BE230071-RP-TIA-06
 Doc Title: Traffic Impact Assessment

[^22]:

