

Appendix A Land Resources Assessment

Blackwater Mine - North Extension Project

Land Resources Assessment Report

BM Alliance Coal Operations

BMA Brisbane Offices 480 Queen Street Brisbane, QLD, 4000

Prepared by:

SLR Consulting Australia

Level 16, 175 Eagle Street, Brisbane QLD 4000, Australia

SLR Project No.: 620.014601.00001 Client Reference No.: AU.015980

7 December 2023

Revision: 06

Revision Record

Revision	Date	Prepared By	Checked By	Authorised By
06	10 October 2023	S Krebs	A Koeman	A Koeman
01	12 October 2023 S Krebs A Koeman		A Koeman	A Koeman
02	12 October 2023	S Krebs	A Koeman	A Koeman
03	1 November 2023	S Krebs	A Koeman	A Koeman
04	15 November 2023	S Krebs	A Koeman	A Koeman
05	30 November 2023	S Krebs	A Koeman	A Koeman
06	7 December 2023	S Krebs	A Koeman	A Koeman

Basis of Report

This report has been prepared by SLR Consulting Australia Pty Ltd (SLR) with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with BM Alliance Coal Operations (the Client or BMA). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

Table of Contents

Basi	is of Report	i
Acro	onyms and Abbreviations	V
1.0	Introduction	1
1.1	Background and Overview of the Project	1
1.2	Purpose	3
1.3	Relevant Guidelines and Standards	3
2.0	Methodology	5
2.1	Desktop Review	5
2.2	Strategic Cropping Land	5
2.3	Sampling Program and Assessment	5
2.3.1	1 Sampling Program	5
2.3.2	2 Assessment	6
3.0	Existing Environment	8
3.1	Climate	8
3.2	Geology	8
3.3	Topography and Hydrology	8
3.4	Vegetation and Land-Use	11
3.5	Land Systems	11
4.0	Soil Survey Results	13
4.1	Soil Classification and Description	13
4.1.1	1 Vertosols	13
4.1.2	2 Dermosols	13
4.2	Soil Map Units	14
4.2.1	1 Soil Map Unit 1	17
4.2.2	2 Soil Map Unit 2A	17
	3 Soil Map Unit 2B	
4.2.4	4 Soil Map Unit 3	18
4.3	Soil Resources and Erosion Potential	19
4.3.1	1 Soil Resource Summary	19
4.3.2	2 Erosion Potential	19
5.0	Soil and Land Resource Impact Assessment	20
5.1	Land Suitability Methodology	
5.2	Land Suitability Results	23
	1 Pre-Mining	
5.2.2	2 Post-Mining	23

5.3	Agric	cultural Land Class Assessment	25
5.4	Agric	cultural Land Class Results	26
5.4.1	Pre-l	Mining	26
5.4.2	Post	-Mining	26
5.5	Land	Capability Assessment	28
5.6	Land	Capability Results	30
5.6.1	Pre-l	Mining	30
5.6.2	Post-	-Mining	30
5.7	Graz	ing Suitability Assessment	31
5.8	Graz	ing Suitability Results	32
5.8.1	Pre-l	Mining	32
5.8.2	Post-	-Mining	32
6.0	Reha	abilitation	34
6.1	Reha	abilitation Goals	34
6.2	Reha	abilitation Methodology	34
6.2.1	Soil	and Material Balances	34
6.2.2	Soil S	Sourcing and Substitution	34
6.2.3	Soil I	Placement and Management	35
6.2.4	l Vege	etation Establishment	35
6.2.5	Eros	ion and Sediment Control	36
7.0	Land	Resources Mitigation Measures	38
8.0	Cond	clusion	39
9.0	Refe	rences	41
Tak	oles	in Text	
Table	e 2-1	Field Assessment Parameters	6
Table	e 3-1	Average Monthly Rainfall for Blackwater Water Treatment Plant (1995 to 01 March 2010)	9
Table	e 3-2	Average Monthly Rainfall for Blackwater Airport (July 2022 – August 2023)	9
Table	e 3-3	Land Systems in the Project	. 11
Table	e 4-1	SMU Soil Types and Areas	14
		Field Investigation Sites	
Table	e 4-3	Available Soil Resource Summary	19
		Land Suitability Class	
		Agricultural Land Classes	
		Land Capability Classes	28

Appendix C

Appendix D

Appendix E

Check Site Descriptions

Emerson Aggregate Test Results

Land Suitability Assessment

Table 5-4 L	and Suitability Class for Cattle Grazing on Rehabilitation	32
Table 6-1 E	Erosion Causes and Control – Soil Disturbance Activities	37
Figures	in Text	
Figure 1-1	Project Location	2
Figure 1-2	Project Overview	4
Figure 2-1 F	Field Sampling Plan	7
Figure 3-1 T	Гороgraphy and Hydrology	10
Figure 3-2 L	and Systems	12
Figure 4-1 S	Soil Map Units and Disturbance Areas	15
Figure 4-2 S	Soil Map Units	16
Figure 5-1 C	Conceptual Final Landform	21
Figure 5-2 In	ndicative Final Land Use	22
Figure 5-3 L	and Suitability Class Pre-Mining	24
Figure 5-4 A	Agricultural Land Classes Pre-Mining	27
Figure 5-5 L	and Capability Classes Pre-Mining	29
Figure 5-6 C	Grazing Suitability Pre-Mining	33
Append	lices	
Appendix A	Laboratory Certificates of Analysis	
Appendix E	B Detailed Profile Descriptions	

Acronyms and Abbreviations

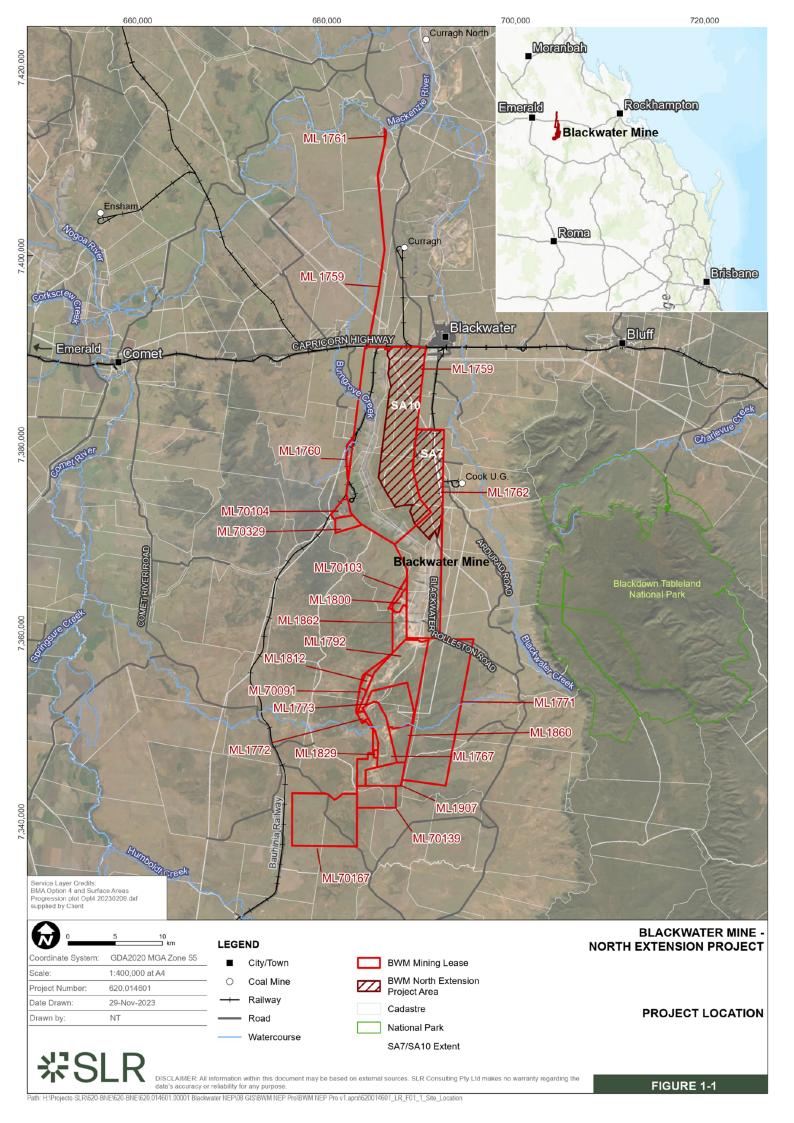
%	Percent
ASRIS	Australian Soil Resource Information System
ASC	Australian Soil Classification
ВоМ	Bureau of Meteorology
ВМА	BM Alliance Coal Operations Pty Ltd
BWM	Blackwater Mine
cm	centimetres
CEC	Cation exchange capacity
CHPP	Coal Handling and Preparation Plant
CSIRO	Commonwealth Scientific and Industrial Research Organisation
SDILGP	State Development, Infrastructure, Local Government and Planning
DNRM	Department of Natural Resources and Mines
DSITIA	Department of Science, Information Technology, Innovation and the Arts
EA	Environmental Authority
EAT	Emerson aggregate test
EC	Electrical conductivity
ECe	Electrical conductivity of a saturated extract
EP Act	Environmental Protection Act 1994 (Qld)
ESC	Erosion and Sediment Controls
ES	Erosion hazard, subsoil erodibility
ESP	Exchangeable sodium percentage
GPS	Global Positioning System
На	hectares
km	Kilometre
m	meters
mm	millimeters
mbgl	Metres below ground level
mAHD	Metres Australian Height Datum
MIA	Mine Infrastructure Area
ML	Mining Lease
MLs	Mining Leases
Mtpa	Million tonnes per annum
NATA	National Association of Testing Authorities
NCST	National Committee on Soil and Terrain
NUMA	Non Use Mining Area
QLD	Queensland

рН	potential of hydrogen					
PAA	Priority Agricultural Areas					
PLA	Priority Living Area					
PMLU	Post Mining Land Use					
PRCP	Progressive Rehabilitation and Closure Plan					
PSA	Particle size analysis					
ROM	Run of Mine					
RPI Act	Regional Planning Interests Act 2014 (Qld)					
SA	Surface Area					
SCA	Strategic Cropping Area					
SCL	Strategic Cropping Land					
SEA	Strategic Environmental Area					
SMU	Soil Map Units					
SLR	SLR Consulting Australia Pty Ltd					
TCP	Thermal Coal Plant					

1.0 Introduction

1.1 Background and Overview of the Project

The Blackwater Mine (BWM) is located approximately 20 kilometres (km) south-west of Blackwater in the Bowen Basin, Queensland (**Figure 1-1**). BWM's Mining Leases (MLs) include ML1759, ML1760, ML1761, ML1762, ML1767, ML1771, ML1772, ML1773, ML1792, ML1800, ML1812, ML1829, ML1860, ML1862, ML1907, ML70091, ML70103, ML70104, ML70139, ML70167 and ML70329 (**Figure 1-1**).


The BWM has been in operation since 1967 and operates in accordance with, amongst other authorisations, Environmental Authority (EA) EPML00717813, granted under the *Environmental Protection Act 1994* (Qld) (EP Act), effective from 29 June 2023. The BWM produces up to 16 million tonnes per annum (Mtpa) of product coal.

BM Alliance Coal Operations Pty Ltd (BMA) seek relevant State and Federal approvals to extend the current mining operation through the BWM – North Extension Project (the Project). The Project would extend the mining area of the existing BWM to within Surface Area (SA)10 on ML1759 and SA7 on ML1762 (**Figure 1-1** and **Figure 1-2**) and increase BWM production to up to 17.6 Mtpa (product coal). Importantly, the Project should be viewed in the context that it is an extension and continuation of ongoing mining operations on a portion of the significantly larger BWM mining operation.

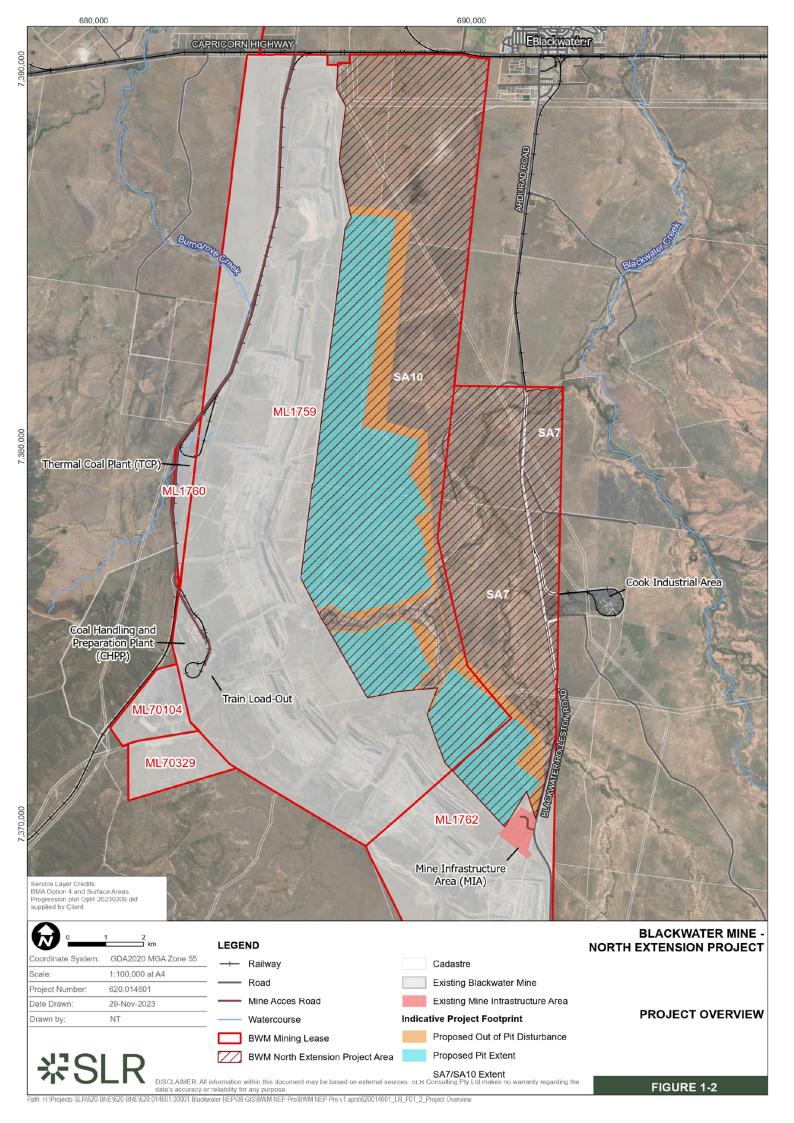
The key elements of the Project include, but are not limited to, the following:

- Vegetation clearing, the removal and stockpiling of topsoil material, drilling and blasting of overburden and interburden material.
- Removal of overburden and interburden material (dragline and truck and shovel/excavator methods) to uncover coal, which is placed as back fill in the mined-out pit voids (in-pit spoil dumps) as mining advances.
- Open cut mining (truck and shovel/excavator methods) of Run of Mine (ROM) coal from the coal measures in SA10 on ML1759 and SA7 on ML1762.
- Continued use of BWM infrastructure (e.g., Coal Handling and Preparation Plant (CHPP), Thermal Coal Plant (TCP), ROM and product stockpiles, train load-out, water management system and other supporting infrastructure).
- Continued disposal of rejects and tailings in accordance with the EA.
- Construction and operation of new or relocated infrastructure within SA10 on ML1759 and SA7 on ML1762 to facilitate and/or support the open cut mining extension such as back access roads, access tracks, water management infrastructure and powerlines, laydown areas and build pads.
- A new dragline crossing across Deep Creek.
- Ongoing exploration activities within ML1759 and ML1762.
- Progressive rehabilitation of the mine site.

Surface Area SA7 on ML1762 and SA10 on ML1759 cover a total area of approximately 9,010 hectares (ha). The extent of the proposed Project open cut mining area and out of pit disturbance areas is approximately 3,761 ha (Figure 1-2). If approved, and subject to customer demand, the extension is projected to extend mining at the BWM to within SA7 on ML1762 and SA10 on ML1759 from 2025 to 2085.

1.2 Purpose

The purpose of this report is to provide an assessment of impacts to the soil and land resources within the Project. The soil and land resource assessment involved a soil survey and assessment to outline:


- Soil types.
- Soil resources available for rehabilitation (including a soil balance).
- Soil qualities (erosion risk, dispersion, and salinity risks).
- Soil and land resource assessment.
- Management and mitigation measures for handling soil resources during the mine extension and rehabilitation.

1.3 Relevant Guidelines and Standards

The following guideline and standards were used for the Land Resource Assessment:

- Department of Natural Resources and Mines (DNRM) and Department of Science, Information Technology, Innovation and the Arts (DSITIA), (2013), Regional Land Suitability Frameworks for Queensland.
- Isbell, R. F., (2021), The Australian Soil Classification Third Edition.
- National Committee on Soil and Terrain (NCST), (2008). Guidelines for Surveying Soil and Land Resources, 2nd edition, Australia.
- NCST, (2009), Australian Soil and Land Survey Field Handbook, 3rd edition. CSIRO Publishing.
- DSITIA & DNRM, (2015). Guidelines for agricultural land evaluation in Queensland (2nd edition).

2.0 Methodology

2.1 Desktop Review

A desktop assessment was undertaken to establish background information on the baseline soil and land resources within the Project. Various sources have been reviewed during the desktop assessment, including, but not limited to:

- Commonwealth Scientific and Industrial Research Organisation (CSIRO) land systems.
- Australian Soil Resource Information System (ASRIS).
- Terrain-based mapping images including contour information.
- Soil and Landscape Grid of Australia.
- Strategic Cropping Land (SCL) trigger mapping via Queensland Globe.

Geology mapping, vegetation mapping, satellite imagery and aerial photos were also used as inputs prior to undertaking the fieldwork component of the assessment.

2.2 Strategic Cropping Land

The Regional Planning Interests Act 2014 (Qld) (RPI Act) identifies and protects areas of regional interest from inappropriate resource activity or regulated activity. Areas of regional interest identified in the RPI Act include Priority Agricultural Areas (PAA), Priority Living Area (PLA), Strategic Environmental Area (SEA) and Strategic Cropping Area (SCA). SCA consists of SCL as identified in the SCL trigger map. A PAA is an area deemed as highly productive agricultural land by the relevant regional council under a regional plan. The Project does not intercept any areas of regional interest.

2.3 Sampling Program and Assessment

2.3.1 Sampling Program

The field soil program was designed as an integrated free survey. An integrated free survey assumes that many land characteristics are interdependent and tend to occur in correlated sets (NCST, 2008). Survey points were irregularly located according to the survey teams' judgement to enable the delineation of soil boundaries. Soil boundaries can be abrupt or gradual, and catena and toposequences are used to aid the description of gradual variation.

Soil survey and mapping was undertaken to exceed a 1:125,000 survey intensity and included collection of the landform pattern and element information, soil profile data, and taxonomic parameters to distinguish soil types and delineations within the Project.

Three types of observations were used for the soil survey:

- Detailed sites, which are observations sites that allow for the identification of any
 physiographic factors or vegetation associations that characterise the site and associated
 map unit, along with the major pedological feature of the soil profile. Soil pits were
 excavated using a backhoe to a maximum depth of 1.2 meters below ground level (mbgl).
- Analysed sites, which are detailed sites from which soil samples are collected and sent to a National Association of Testing Authorities (NATA) accredited laboratory for analysis.
- Check sites, which are mapping observations examined in sufficient detail to allocate the site to a specific soil type and map unit.

43 detailed sites were assessed, with soil samples taken from each site and 37 check sites were assessed to confirm soil type and aid in soil mapping. This methodology produced a survey density of 1 site per 115 ha, which exceeds a 1:125,000 survey scale. The distribution of the field assessment sites is depicted in **Figure 2-1**.

2.3.2 Assessment

Soil profiles within the Project were assessed in accordance with the Australian Soil and Land Survey Field Handbook (NCST, 2009) soil classification procedures. Detailed soil profile descriptions were recorded covering the major parameters provided in **Table 2-1**.

Table 2-1 Field Assessment Parameters

Detailed Field Assessment Parameters								
Horizon depth including distinctiveness and shape	Pan presence and form							
Field texture grade	Permeability and drainage							
Field colour (Munsell colour chart)	Field pH							
Pedality structure, grade and consistence	Field moisture							
Soil fabric and stickiness	Surface condition							
Stones (abundance and size)	Landform pattern / element							
Mottles (amount, size and distinctiveness)	Current land use and previous disturbance							
Segregations (abundance, nature, form and size)	Vegetation							


Soil profile logging was undertaken in the field using SLR soil data sheets, including Global Positioning System (GPS) recordings and photographs of the landforms and soil profiles. Soils were classified in accordance with The Australian Soil Classification (Isbell, 2021).

Full laboratory testing was undertaken for 20 of the detailed sites and typical sample depths were 0-10, 20-30, 50-60 and 90-100 centimetres (cm). Laboratory analysis was performed by Environmental Analysis Laboratory at the Southern Cross University Lismore, a laboratory with NATA accreditation for the analyses conducted. The soil testing suite included:

- pH (1:5 water).
- Electrical conductivity (EC).
- Cation exchange capacity (CEC).
- Exchangeable sodium percentage (ESP).
- Particle size analysis (PSA).
- Colour (Munsell).
- Emerson aggregate test (EAT).

Soil salinity in the laboratory analysed samples was determined through the measurement of the EC of 1:5 soil:water suspensions. These values were converted to the EC of a saturated extract (ECe) based on soil texture. Laboratory certificates of analysis are shown in **Appendix A**.

3.0 Existing Environment

3.1 Climate

The Bureau of Meteorology (BoM) operates the rainfall and evaporation gauges for the nearest meteorological station at Blackwater Water Treatment Plant (BoM Station 035290), located approximately 20 km north of the Project. The annual average rainfall (1995 – 2010) is 542 mm with most rain occurring between December and February. More recent information has been obtained from Blackwater Airport (BoM Station 035134), located approximately 28 km north of the Project for a period between July 2022 and August 2023.

The average monthly rainfall for Blackwater Water Treatment Plant is presented in **Table 3-1**, whilst the average monthly rainfall for Blackwater Airport is presented in **Table 3-2**.

3.2 Geology

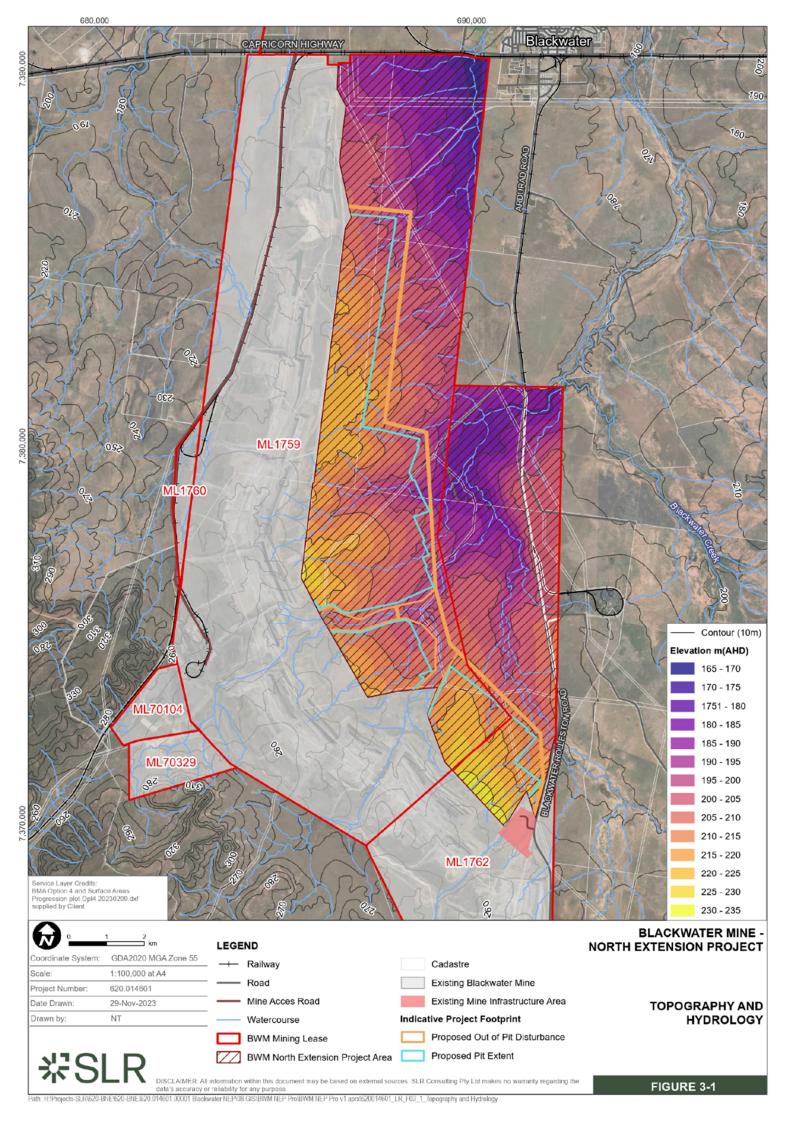
The Project is situated in the northern region of the Bowen Basin, which is a north-south trending basin divided into broad morphotectonic zones. The Bowen Basin is characterised by gentle easterly dips and minor to moderate deformation on a relatively thin accumulation of sediments. The sediments and stratigraphic sequence were formed by the Permo-Triassic sediments of the Bowen Basin, which are overlain by a range of Tertiary and Quaternary sediments and alluvium. The Project occurs in the southern part of the basin, with the Moranbah and Rangal Coal Measures containing the deposit which is currently extracted by BWM as well as the future deposit for the Project.

3.3 Topography and Hydrology

The topographic elevations in and around the Project range from approximately 180 meters Australian Height Datum (mAHD) (northeast of the Project) to 230 mAHD (at the southern end of the extension) as depicted in **Figure 3-1**. Most of the Project is situated on gently undulating lowlands and plains with slopes of 0% to 5%.

The Project lies within the Fitzroy Basin and Mackenzie River sub-basin. Watercourses within the Project are presented in **Figure 3-1**. Watercourses are ephemeral and include Sagittarius Creek and Taurus Creek, with tributaries including Two Mile Gully and Deep Creek. Taurus Creek intersects with Blackwater Creek east of the Project. Downstream of the Project, Blackwater Creek joins with the Mackenzie River. The Nogoa and Comet Rivers merge east of Emerald to form the Mackenzie River, which then joins the Fitzroy River further downstream to discharge into the Coral Sea south-east of Rockhampton, near Port Alma.

7 December 2023 SLR Project No.: 620.014601.00001


Table 3-1 Average Monthly Rainfall for Blackwater Water Treatment Plant (1995 to 01 March 2010)

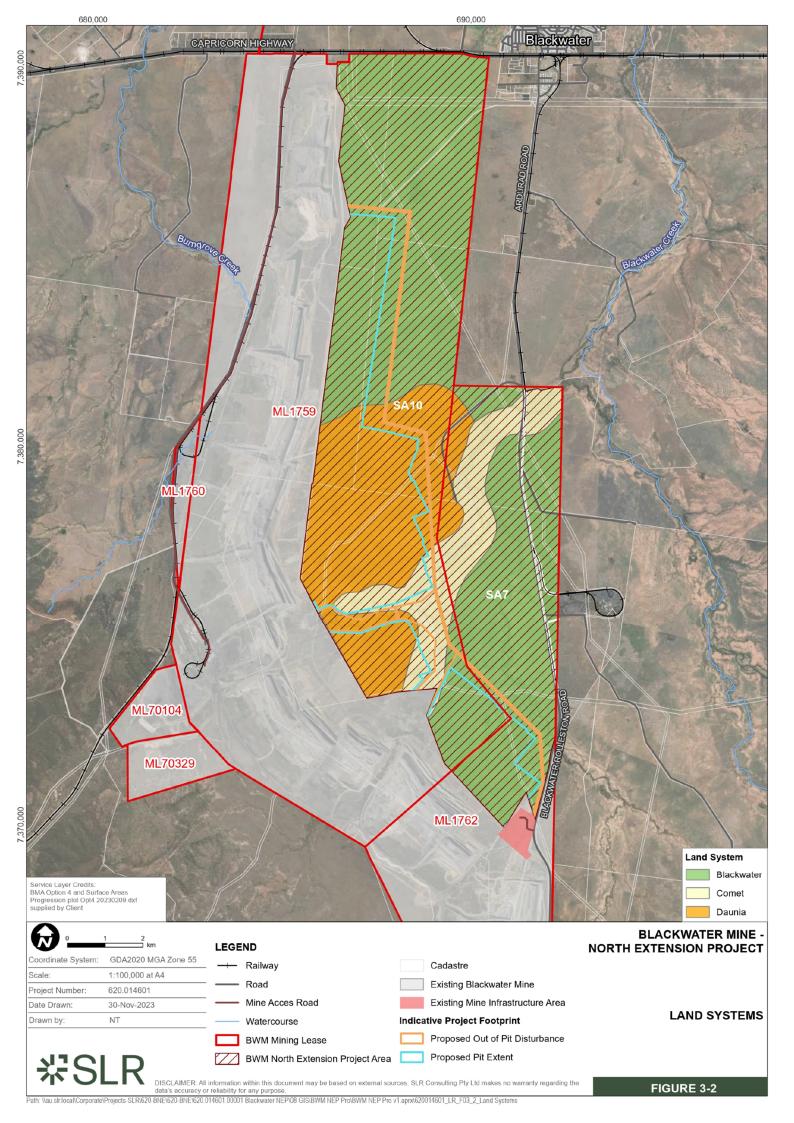
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Mean Rainfall (mm)	68.5	78.8	30.5	28.6	21.4	42.1	15.1	25.9	19.3	66.0	66.3	79.5	542.0

Table 3-2 Average Monthly Rainfall for Blackwater Airport (July 2022 – August 2023)

	Jul-22	Aug-22	Sept- 22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Annual
Mean Rainfall (mm)	75.6	33.6	68.8	160.4	63.4	66.6	136	2.2	2	0	0	0.2	62.6	0	671.4

3.4 Vegetation and Land-Use

Based on a terrestrial ecology study (EMM, 2023), the Project is highly modified from historic vegetation clearing, cattle grazing, weed encroachment and fragmentation whilst being subject to ongoing direct and indirect effects of the operation of BWM. The vegetation within the Project is largely regrowth brigalow and eucalypt woodland communities. The areas of non-remnant vegetation are now largely dominated by introduced Buffel Grass and have been raked of woody debris and rocks and continue to be grazed by livestock.


3.5 Land Systems

Three land systems occur within the Project; the Daunia, Blackwater and Comet. These are dominated by lowlands with brigalow and cracking clay soils on weathered and fresh Permian shales and lithic sandstone. The Project covered by each Land System and a brief description of attributes is presented in **Table 3-3** and depicted in **Figure 3-2**. The Land System mapping indicates Vertosols would comprise the majority soil type within the Project.

Table 3-3 Land Systems in the Project

Land System	Land System Description
Blackwater	Brigalow plains and cracking clay soils on weathered Tertiary clay and older rocks along the central axis of the Project.
Daunia	Lowlands with brigalow and cracking clay soils on weathered and fresh Permian shales and lithic sandstone in the north and centre.
Comet	Alluvial plains with brigalow and cracking clay soils, often flooded, along major streams.

4.0 Soil Survey Results

4.1 Soil Classification and Description

The soils assessment and subsequent laboratory analysis indicated a total of three (3) dominant and four (4) sub-dominant soil orders within the Project. The dominant soil types within the Project are a Self-Mulching Black-Brown Vertosols, Eutrophic Red Dermosols and Eutrophic Black-Brown Dermosols and are summarised in **Section 4.1.1** and **Section 4.1.2**. Detailed profile descriptions are presented in **Appendix B** and check site descriptions are presented in **Appendix C**.

4.1.1 Vertosols

These are soils with the following:

- A clay field texture of 35% or more clay throughout the solum except for a thin, surface crusty horizons 0.03 m or less thick.
- When dry, open cracks occur at some time in most years. These are at least 5 mm wide and extend upward to the surface or to the base of any plough layer, peaty horizon, selfmulching horizon, or thin, surface crusty horizon.
- Slickensides and/or lenticular peds occur at some depth in the solum.

Self-Mulching Black-Brown Vertosols were identified as the dominant soil type.

The Vertosols within the Project generally consisted of brown to black light to heavy clay A horizons (topsoil) with moderate structure, overlying a medium to heavy medium clay B2 horizon with strong subangular blocky structure. The topsoil showed moderately alkaline, non-sodic and non-saline properties. The B2 horizon generally showed strongly alkaline, sodic to strongly sodic and slightly to moderately saline properties.

4.1.2 Dermosols

These are soils other than Vertosols, Hydrosols, Calcarosols and Ferrosols which:

- Have B2 horizons with a moderate or strong structure throughout the major part of the horizon.
- Do not have clear or abrupt textural B horizons.

The Dermosols were further classified into the following dominant soil types:

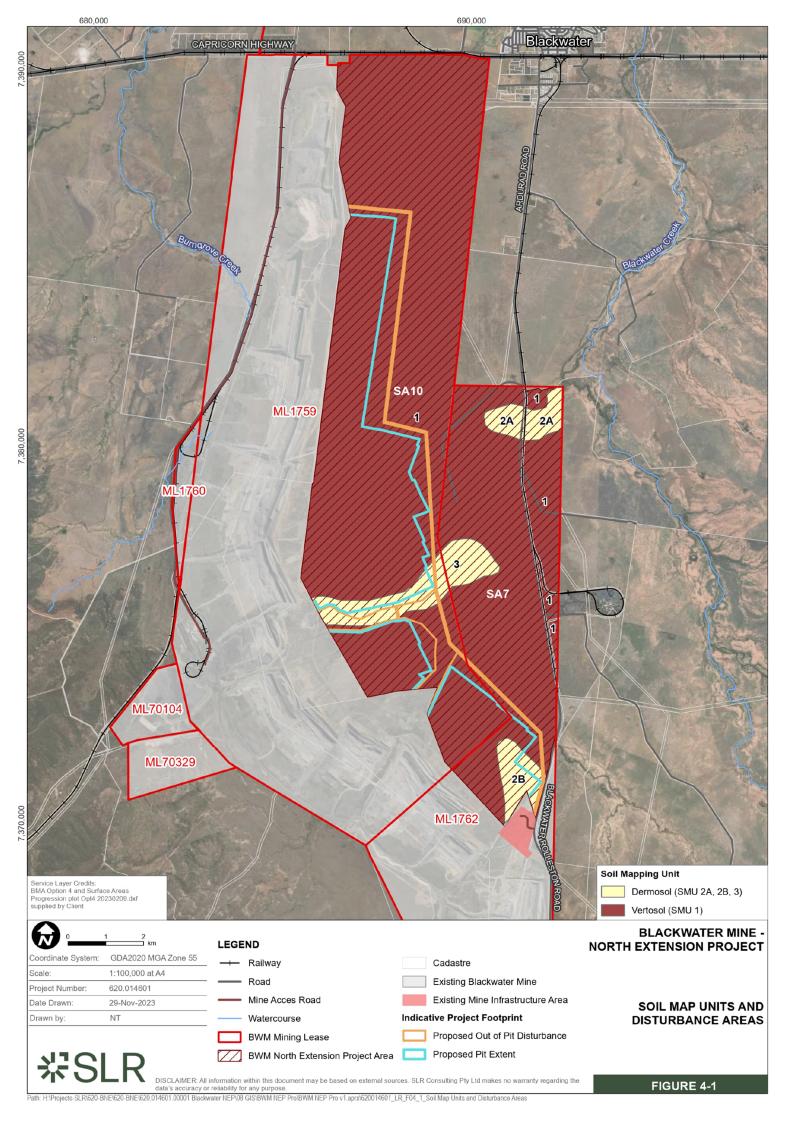
- Eutrophic Black-Brown Dermosols.
- Eutrophic Red Dermosols.

The Dermosols within the Project generally consisted of very dark brown to dark reddishbrown clay loam to light clay A horizons (topsoil) with moderate structure, overlying a typically light clay B2 horizon with strong subangular blocky structure. The topsoil showed neutral, non-sodic and non-saline properties, whilst the B2 horizon generally showed strongly alkaline, strongly sodic and moderately saline properties.

4.2 Soil Map Units

Within the Project, a total of four (4) Soil Map Units (SMU) were identified based on the dominant Australian Soil Classification (ASC) soil types and the SMUs are presented in **Figure 4-1.** The dominant and sub-dominant soil types per SMU are shown in **Table 4-1** and field investigation sites associated with each SMU are presented in **Table 4-2** and presented in **Figure 4-2**. A summary of the SMUs is included in **Sections 4.2.1** to **4.2.4**.

Table 4-1 SMU Soil Types and Areas


Soil Map Unit	Dominant Soil Type	Sub-Dominant Soil Types		
1	Self-Mulching Black-Brown Vertosols	Dermosols, Sodosols		
2A	Eutrophic Red Dermosols	Nil		
2B				
3	Eutrophic Black-Brown Dermosols	Chromosols		

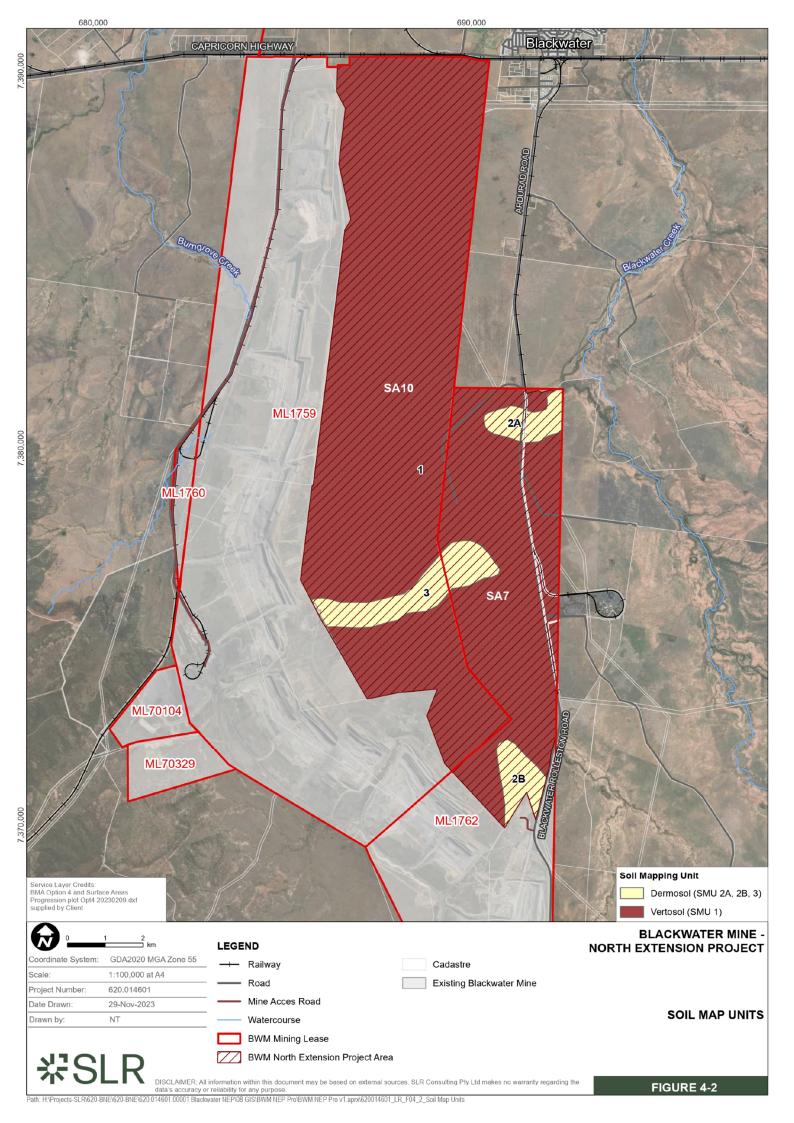

The detailed and check sites per SMU are summarised in **Table 4-2** and depicted in **Figure 4-2**, with ASC soil types also presented.

Table 4-2 Field Investigation Sites

SMU	ASC Soil Type	Detailed Site	Check Site		
1	Self-Mulching Black-Brown Vertosols	B02-B11, B13-B19, B21- B27, B29-B43	C01-C21, C23-C29, C31- C37		
2A	Eutrophic Red Dermosols	B28	-		
2B	Eutrophic Red Dermosols	B01	C30		
3	Eutrophic Black-Brown Dermosols	B12, B20	C22, C35		
	Total Observations	43	37		

4.2.1 Soil Map Unit 1

4.2.1.1 Description

The SMU 1 dominant soil types were Black and Brown Self-Mulching Vertosols and subdominant soil types included Dermosols and Sodosols.

4.2.1.2 Location

SMU 1 is located across the majority of the site.

4.2.1.3 Land-Use

At the time of the field assessment, the land use within SMU 1 was cattle grazing.

4.2.1.4 Management Considerations

The topsoil within SMU 1 is suitable for stripping and reuse using standard Erosion and Sediment Controls (ESC). The subsoil generally exhibits strong alkalinity, high sodicity and moderate salinity.

If the subsoil is exposed and not managed, in addition to severe agricultural productivity limitations, impacts may include:

- Erosion hazards including tunnel erosion.
- Impeded soil infiltration and permeability.
- Slumping failure of batters.
- Soil dispersion leading to soil structure breakdown, increased run-off and increased turbidity run-off.

4.2.2 Soil Map Unit 2A

4.2.2.1 Description

The SMU 2A dominant soil type was Eutrophic Red Dermosols.

4.2.2.2 Location

SMU 2A is located in the eastern portion of the Project.

4.2.2.3 Land-Use

At the time of the field assessment, the land use within SMU 2A was cattle grazing.

4.2.2.4 Management Considerations

The topsoil within SMU 2A is suitable for stripping and reuse using standard ESC. The subsoil generally exhibits very strong alkalinity, high sodicity and moderate salinity.

If the subsoil is exposed and not managed, in addition to severe agricultural productivity limitations, impacts may include:

- Erosion hazards including tunnel erosion.
- Impeded soil infiltration and permeability.
- Slumping failure of batters.
- Soil dispersion leading to soil structure breakdown, increased run-off and increased turbidity run-off.

4.2.3 Soil Map Unit 2B

4.2.3.1 Description

The SMU 2B dominant soil type was Eutrophic Red Dermosols.

4.2.3.2 Location

SMU 2B is located in the southern portion of the Project.

4.2.3.3 Land-Use

At the time of the field assessment, the land use within SMU 2B was cattle grazing.

4.2.3.4 Management Considerations

The topsoil with SMU 2B is suitable for stripping and reuse using standard ESC. The subsoil generally exhibits very strong alkalinity, sodicity and moderate salinity. If the subsoil is exposed and not managed, in addition to severe agricultural productivity limitations, impacts may include:

- Erosion hazards including tunnel erosion.
- Impeded soil infiltration and permeability.
- Slumping failure of batters.
- Soil dispersion leading to soil structure breakdown, increased run-off and increased turbidity run-off.

4.2.4 Soil Map Unit 3

4.2.4.1 Description

The SMU 3 dominant soil type was Eutrophic Black-Brown Dermosols and subdominant soil types included Chromosols.

4.2.4.2 Location

SMU 3 is located in the western and central portion.

4.2.4.3 Land-Use

At the time of the field assessment, the land use within SMU 3 was cattle grazing.

4.2.4.4 Management Considerations

The topsoil within SMU 3 is suitable for stripping and reuse using standard ESC. The subsoil generally exhibits very strong alkalinity, sodicity and moderate salinity.

If the subsoil is exposed and not managed, in addition to severe agricultural productivity limitations, impacts may include:

- Erosion hazards including tunnel erosion.
- Impeded soil infiltration and permeability.
- Slumping failure of batters.
- Soil dispersion leading to soil structure breakdown, increased run-off and increased turbidity run-off.

4.3 Soil Resources and Erosion Potential

4.3.1 Soil Resource Summary

Based on the soil survey results, topsoil resources available in the Project are summarised in **Table 4-3**. It is noted that these soil resources are presented for informative purposes.

Table 4-3 Available Soil Resource Summary

Topsoil Map Unit	ASC Soil Type	Hectares	Topsoil Depth (m)	Topsoil Volume (m³)
1	Self-Mulching Black- Brown Vertosol	8,275	0.1	8,275,000
2A	Eutrophic Red Dermosol	167	0.1	167,000
2B	Eutrophic Red Dermosol	168	0.2	336,000
3	Eutrophic Black- Brown Dermosol	400	0.1	400,000
Topsoil Volume Available				9,178,000

4.3.2 Erosion Potential

An Emerson Aggregate Test (EAT) semi-quantitatively classifies the coherence of soil aggregates in water to provide an indication of dispersive properties and susceptibility to erosion. The ratings are based on a hierarchical class system where a rating of 1 being the most dispersive and 8 being non-dispersive. Approximately 30% of the analysed sites have topsoil with negligible potential for dispersion, having an EAT rating of 4. The remaining 70% analysed topsoil sites have EAT ratings of 2 and 3, which indicates a moderately high to high potential for dispersion. Approximately 95% of subsoil samples have EAT ratings of 2 and 3, indicating a moderately high to high potential for dispersion. Only 5% or one (1) analysed site has subsoil with a negligible dispersion potential of EAT 4. Full EAT results are presented in **Appendix D**.

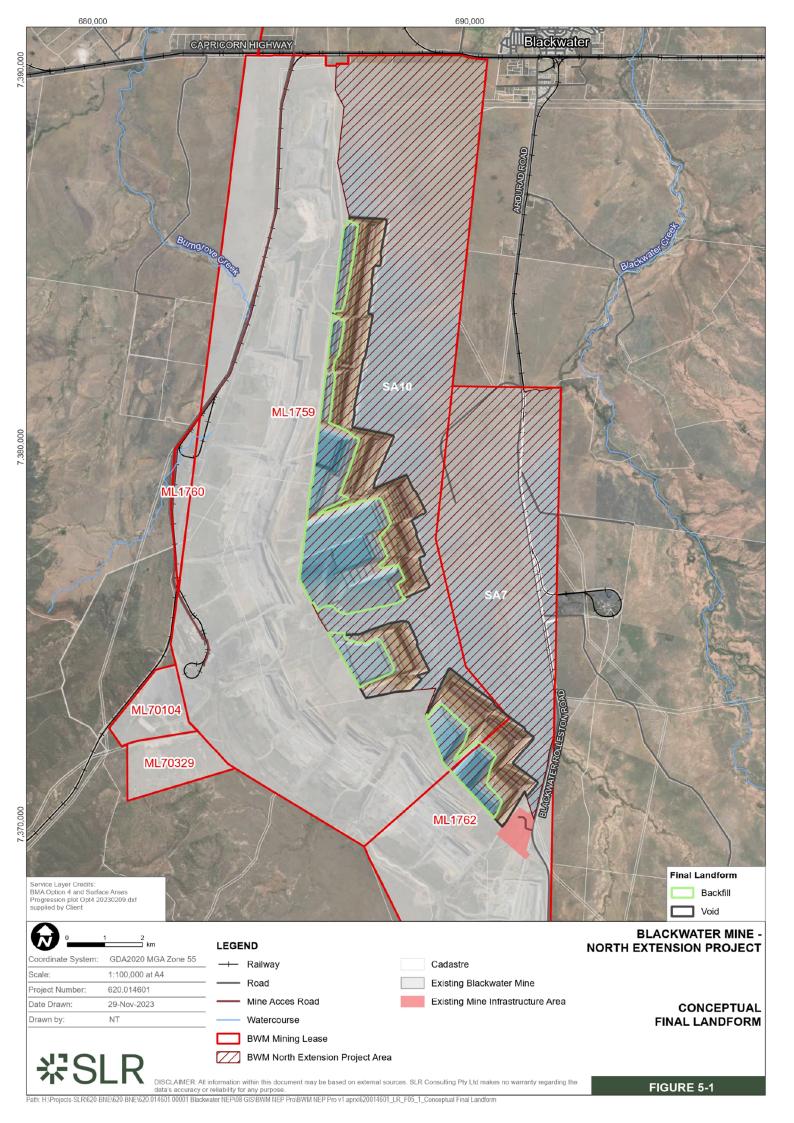
5.0 Soil and Land Resource Impact Assessment

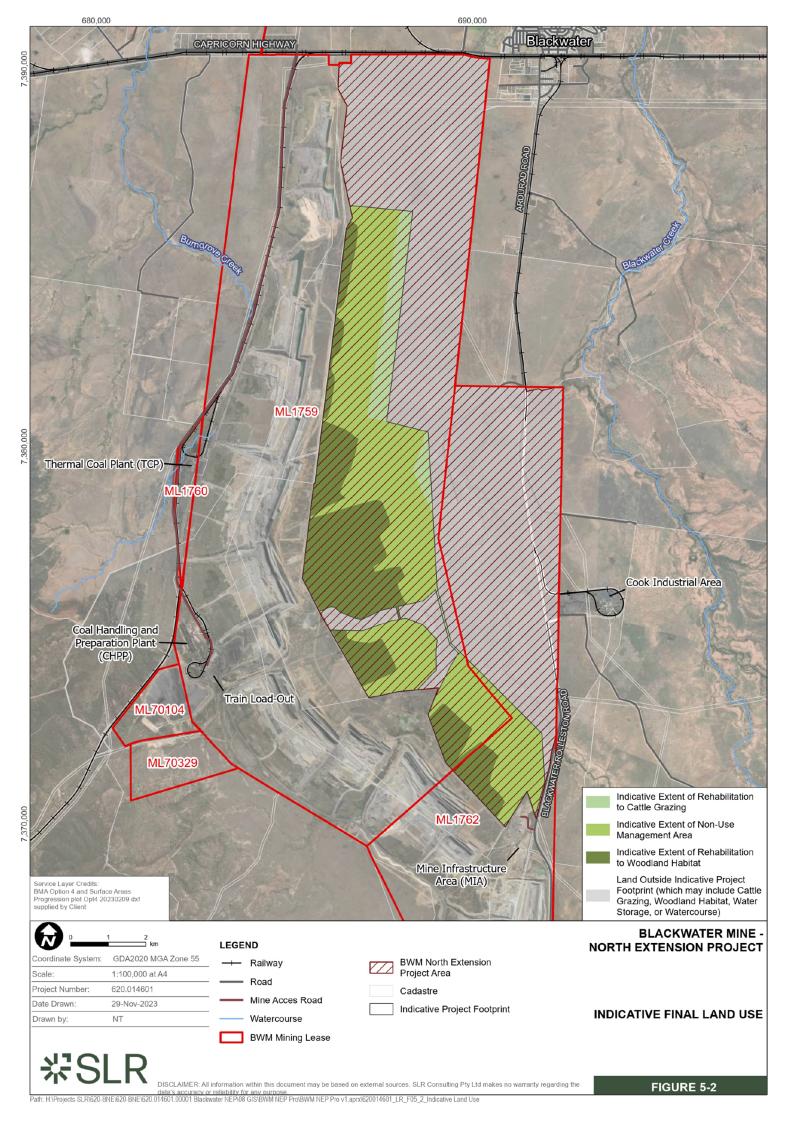
The soil and land resource impact assessment takes into consideration land suitability, agricultural land, grazing suitability and land capability assessments.

As per current practice at BWM, mining for the Project will continue to the east and the minedout void areas to the west will be progressively back-filled and rehabilitated. Final voids will remain at the conclusion of mining in some of the pits. In addition to the void, the relief and slope of the rehabilitated area (created by backfilling the pits) will increase compared to premining. This rehabilitated area is located west of the final void area and east of the western boundary of the Project. The final conceptual landform is depicted in **Figure 5-1**.

The conceptual post-mining land use depicted in **Figure 5-2** includes indicative areas for:

- Cattle grazing.
- · Woodland habitat.
- Non-Use Management Area (NUMA).
- Land outside the indicative project footprint (which may include areas of cattle grazing, woodland habitat, water storage or watercourses).


5.1 Land Suitability Methodology


The information required for the land suitability assessment was collected during the desktop assessment and verified on the ground during the field survey and laboratory testing program. The land suitability classification was applied across the Project in accordance with the Regional Land Suitability Frameworks for Queensland (DSITI & DNRM, 2013), in particular Section 10 Suitability Framework for the Inland Fitzroy and Southern Burdekin Area and the Guidelines for Agricultural Land Evaluation in Queensland, 2nd Edition (DSITI & DNRM, 2015). This framework uses the biophysical features of the land and soil to derive detailed ratings tables for a range of land and soil hazards. The scheme consists of eight (8) limitations that classify the land based on severity against the suitability subclasses for various land management options. The eight (8) limitations associated with the biophysical features that are assessed by the framework are:

- Water erosion (E).
- Erosion hazard, subsoil erodibility (Es).
- Soil water availability (M).
- Narrow moisture range (Pm).
- Surface condition (Ps).
- Rockiness (R).
- Microrelief (Tm).
- Wetness (W).

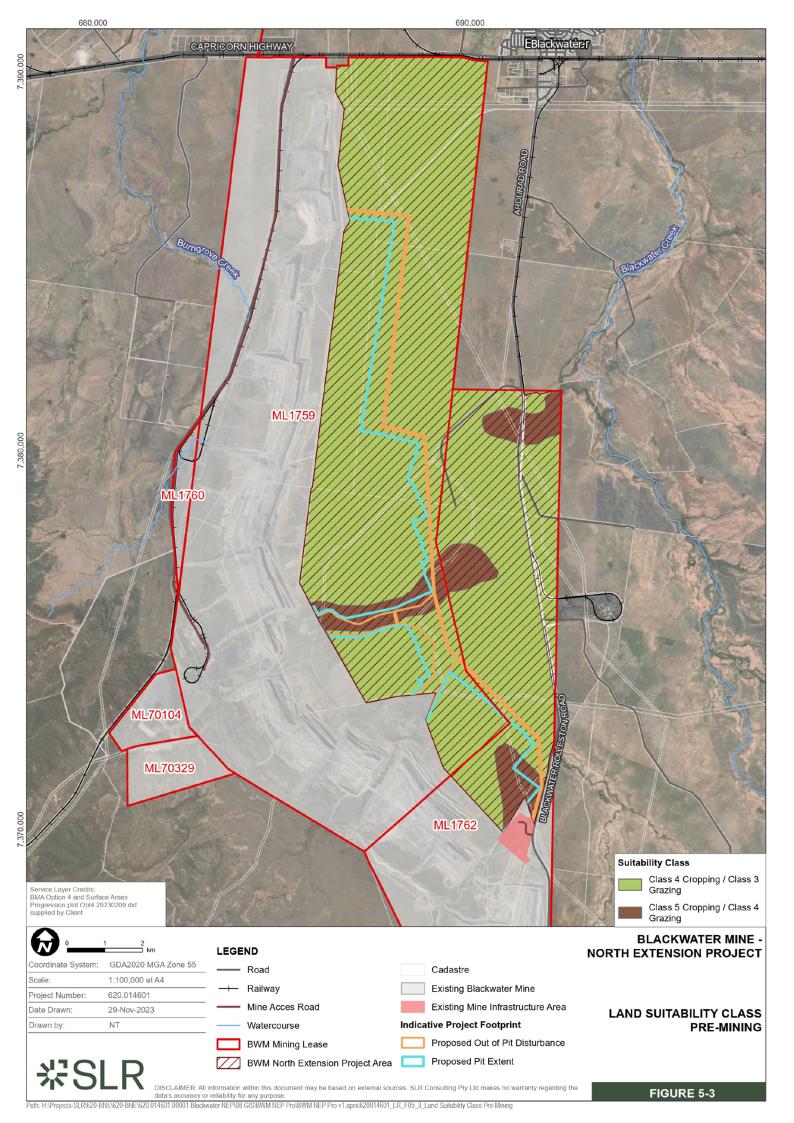
The suitability framework provides the detail for assessing which cropping and cattle grazing activities are suitable for individual mapped areas of land or soil. Each hazard was assessed against set criteria tables, as described in the framework, with each hazard ranked from 1 (most suitable) through to 5 (least suitable) with the overall ranking of the land determined by its most significant limitation, as described in **Table 5-1**.

Table 5-1 Land Suitability Class

Class	Description
1	Suitable land with negligible limitations and is highly productive requiring only simple management practices.
2	Suitable land with minor limitations which either reduce production or require more than simple management practices to sustain the use.
3	Suitable land with moderate limitations. Land which is moderately suited to a proposed use but which requires significant inputs to ensure sustainable use.
4	Marginal land with severe limitations which make it doubtful whether the inputs required to achieve and maintain production outweigh the benefits in the long term.
5	Unsuitable land with extreme limitations that precludes its use.

5.2 Land Suitability Results

5.2.1 Pre-Mining


The land suitability assessment has rated SMU 1, which covers the majority of the Project, as Class 4 for cropping and Class 3 for grazing, with the main limitations being soil wetness (W) and soil water availability (M). SMUs 2A, 2B and 3 are rated as Class 5 for cropping and Class 4 for grazing, with the same limitations as SMU 1. Results for the pre-mining Land Suitability Assessment are shown in **Figure 5-3** and the detailed land suitability assessment is presented in **Appendix E**.

5.2.2 Post-Mining

Land suitability (cropping and grazing) classes for areas not scheduled for the proposed mining activity disturbances are likely to remain the same. This includes some Class 4 and 5 cropping and Class 3 and 4 grazing areas located in the eastern portion of the Project. Areas scheduled for the proposed mining activity disturbances will be managed and rehabilitated to meet the Rehabilitation Requirements included in Table E1 as per their assigned Post Mining Land Use (PMLU). The PMLU within the disturbance areas will have the following implications to the pre-mining land suitability classes:

- The PMLU areas to be rehabilitated to cattle grazing will likely retain the pre-mining land suitability classes.
- The PMLU areas to be rehabilitated to woodland habitat will present additional limitations (e.g. steeper slopes and increased rockiness) to the land, which will reduce the land suitability class to marginal land with severe limitations (Class 4) or unsuitable land (Class 5).

5.3 Agricultural Land Class Assessment

Agricultural Land Classification in Queensland follows a simple hierarchical scheme that is applicable across the state. It allows the presentation of interpreted land evaluation data to indicate the location and extent of agricultural land that can be used sustainably for a wide range of land uses with minimal land degradation. Provision is also made to highlight areas that may be suitable for one specific crop considered important in a particular area. Three broad classes of agricultural land (Class A to Class C) and one non-agricultural land class (Class D) are identified in the Agricultural Land Class system (DSITI & DNRM, 2015) presented in **Table 5-2**:

Table 5-2 Agricultural Land Classes

Class	Description
А	Crop land – Land that is suitable for current and potential crops with limitations to production which range from none to moderate levels.
A1	Suitable for a wide range of current and potential broadacre and horticultural crops.
A2	Suitable for a wide range of current and potential horticultural crops only.
В	Limited crop land – Land that is marginal for current and potential crops due to severe limitations; and suitable for pastures. Engineering and/or agronomic improvements may be required before the land is considered suitable for cropping.
С	Pasture land – Land that is suitable only for improved or native pastures due to limitations which preclude continuous cultivation for crop production; but some areas may tolerate a short period of ground disturbance for pasture establishment.
C1	Suitable for grazing sown pastures requiring ground disturbance for establishment; or native pastures on higher fertility soils.
C2	Suitable for grazing native pastures, with or without the introduction of pasture, and with lower fertility soils than C1.
C3	Suitable for light grazing of native pastures in accessible areas, and includes steep land more suited to forestry or catchment protection
D	Non-agricultural land – Land not suitable for agricultural uses due to extreme limitations. This may be undisturbed land with significant habitat, conservation and/or catchment values or land that may be unsuitable because of very steep slopes, shallow soils, rock outcrop or poor drainage.

5.4 Agricultural Land Class Results

5.4.1 Pre-Mining

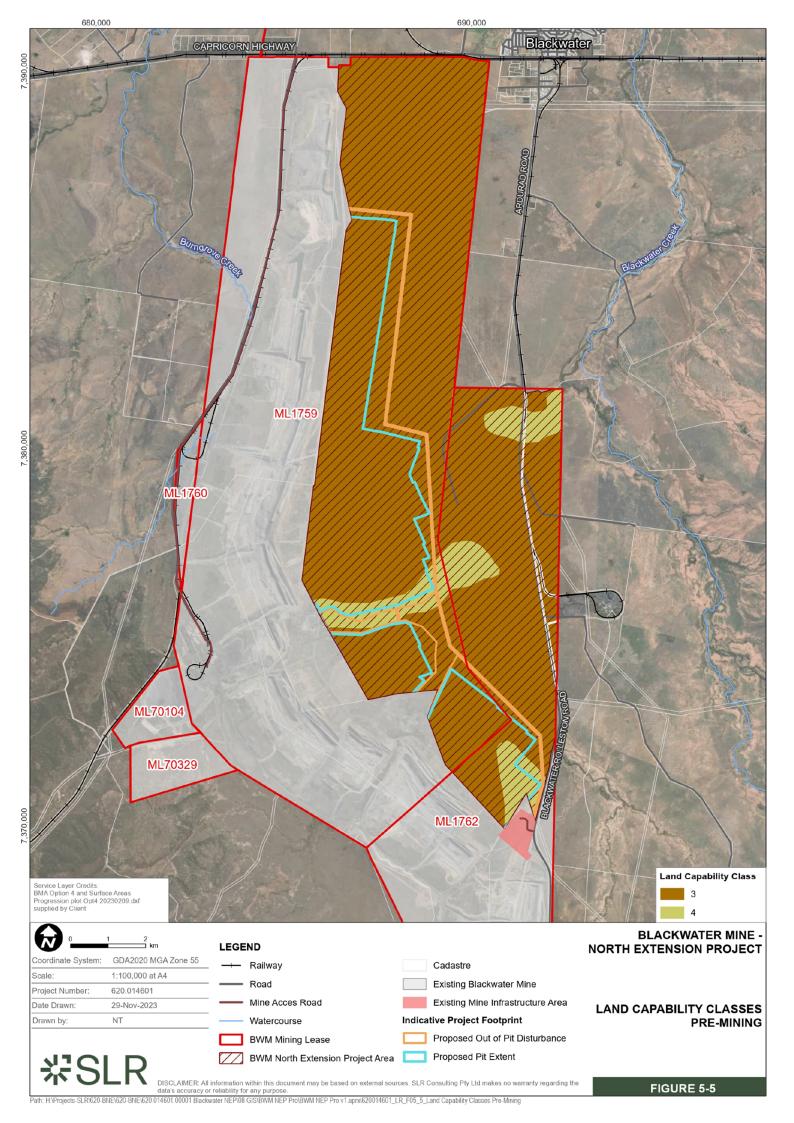
The agricultural Land Assessment indicates the Project, consisting of SMU 1, 2A, 2B & 3, is rated as Class C1, pastureland, suitable for grazing improved and native pastures. Results for the pre-mining agricultural land assessment are presented in **Figure 5-4**.

5.4.2 Post-Mining

Agricultural land classes for areas not scheduled for the proposed mining activity disturbances are likely to remain the same. This includes some Class C1 located in the eastern portion of the Project. Areas scheduled for the proposed mining activity disturbances will be managed and rehabilitated to meet the Rehabilitation Requirements included in Table E1 as per their assigned PMLU. The PMLU within the disturbance areas will have the following implications to the pre-mining land suitability classes:

- The PMLU areas to be rehabilitated to cattle grazing will likely retain the pre-mining agricultural land classes.
- The PMLU areas to be rehabilitated to woodland habitat will present additional limitations (e.g., steeper slopes and increased rockiness) to that land, which will result in a Class C3 or Class D agricultural land class classification.

5.5 Land Capability Assessment


Land capability classification evaluates the potential of land for broadly defined land uses, e.g., cropping, pastoral, non-agricultural. In Queensland, it is generally only used for broad scale assessment of land.

The system uses eight classes, described in **Table 5-3**, with limitations and hazards to agricultural and pastoral use becoming progressively greater from Class I to Class VIII, accompanied by a decreasing adaptability and choice of use. Lower-numbered classes (Classes I to III) are suited to more intense uses while higher-numbered classes are suited only to low-intensity agricultural use or conservation. Class VIII is unsuited to either cultivation or grazing.

Table 5-3 Land Capability Classes

Class	Description
I	Land suitable for all agricultural and pastoral uses
II	Land suitable for all agricultural uses but with slight restrictions for cultivation
III	Land suitable for all agricultural uses but with moderate restrictions for cultivation
IV	Land primarily suited to pastoral use but which may be safely used for occasional cultivation with careful management
V	Land that in all other characteristics would be arable but has limitations that make cultivation impractical and/or uneconomic
VI	Land that is not suitable for cultivation but is well suited to pastoral use
VII	Land that is not suitable for cultivation but on which pastoral use is possible only with careful management
VIII	Land that has such severe limitations that it is unsuited for either cultivation or grazing

5.6 Land Capability Results

5.6.1 Pre-Mining

The Land capability assessment indicates SMU 1 is rated as Class III land suitable for all agricultural uses but with moderate restrictions for cultivation. The main limitations of the Class III area are wetness, soil salinity/sodicity and landscape complexity. The balance of the Project is rated as Class IV, which is land primarily suited to pastoral use but may be safely used for occasional cultivation with careful management. The main limitations of the Class IV area are soil water availability, soil salinity/sodicity and landscape complexity. Results for the pre-mining land capability assessment are presented in **Figure 5-4** and the detailed Land capability assessment is provided in **Appendix E.**

5.6.2 Post-Mining

Land capability classes for areas not scheduled for the proposed mining activity disturbances are likely to remain the same. This includes some Class III and Class IV areas located in the eastern portion of the Project. Areas scheduled for the proposed mining activity disturbances will be managed and rehabilitated to meet the Rehabilitation Requirements included in Table E1 as per their assigned PMLU. The PMLU within the disturbance areas will have the following implications to the pre-mining land suitability classes:

- The PMLU areas to be rehabilitated to cattle grazing will likely retain the pre-mining land capability classes.
- The PMLU areas to be rehabilitated to woodland habitat will present additional limitations (e.g., steeper slopes and increased rockiness) to that land, which will result in a Class VII or Class VIII land capability classification.

5.7 Grazing Suitability Assessment

As part of the rehabilitation requirements of the EA, a grazing suitability assessment is required. The information required for applying the Queensland land suitability classification for cattle grazing specifically to the assessment of open-cut coal mine rehabilitation in Queensland's Bowen Basin was collected during the desktop assessment and verified on the ground during the field survey and laboratory testing program. The land suitability classification was applied across the Project in accordance with a rule-set for land suitability assessment of sustainable beef cattle grazing on land rehabilitated after open-cut mining in the Bowen Basin, Queensland draft (Short, 2013), of which the Guidelines for Agricultural Land Evaluation in Queensland, 2nd Edition (DSITI & DNRM, 2015) forms the basis. This framework and the typical soil and land features of grazing systems in the Bowen Basin derive detailed ratings tables for a range of land and soil hazards. The scheme consists of 11 limitations for cattle grazing in coal mine rehabilitation and have been selected based upon:

- The target post-mining land use of sustainable cattle grazing.
- The regional scale of application across the Bowen Basin.
- Diagnostic attributes that can be readily correlated to mapping units at potential mapping scales of 1:50,000 and larger.

The 11 limitations and land-use associated with the biophysical features assessed by the framework are:

- Water availability (M) adequate water storage in the soil profile to maintain plant growth.
- Nutrient supply adequate nutrient supply (Nd) and soil pH is suitable for plant growth and does not cause nutrient toxicities or deficiencies (Nr).
- Soil physical factors, surface condition (Ps) ease of seed germination and establishment.
- Salinity (Sa) low level of soluble salts in the soil profile.
- Rockiness (R) minimal impact from gravel, stone and rock at the soil surface.
- Topography* accessible slope gradients (Ts) and accessible surface micro-relief (Tm).
- Water erosion (E) minimal soil loss and land degradation.
- Subsoil erosion (ES) minimal soil loss and land degradation.
- Potentially acid forming materials (D) minimal environmental and agronomic impacts from low pH drainage.

*Note: These limitations are to do with restrictions to safe and efficient access by vehicles and stock (cattle and horses).

The suitability framework provides the detail for assessing which cattle grazing activities are suitable and for what grazing system for individual mapped areas of land or soil. Each hazard was assessed against set criteria tables, as described in the framework, with each hazard ranked from 1 (most suitable) through to 5 (unsuitable) with the overall ranking of the land determined by its most significant limitation, as described in **Table 5-4**.

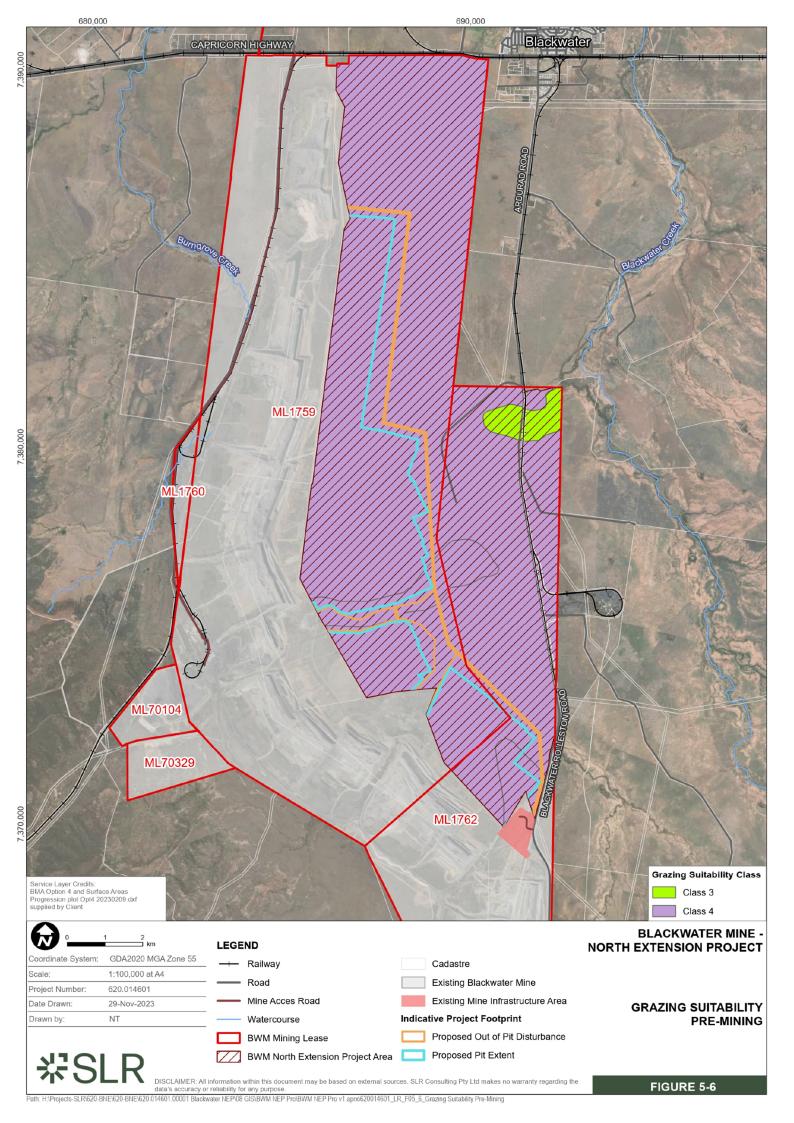
Table 5-4 Land Suitability Class for Cattle Grazing on Rehabilitation

Class	Suitability	Grazing System	Description
1	Suitable	Fattening/ finishing	Rehabilitation capable of attaining maximum grazing productivity, i.e., production of young, finished, grass fed, export quality cattle in most seasons.
2	Suitable	Growing	Rehabilitation on which younger cattle perform well but may be difficult to finish at a young age, depending on seasonal conditions.
3	Suitable	Breeding	Rehabilitation able to carry breeding stock all year round depending on seasons.
4	Unsuitable	Sometimes	Rehabilitation that is unsuitable most of the time but may be grazed in better seasons for short periods in conjunction with other country.
5	Unsuitable	Never	Rehabilitation that is not suitable for cattle grazing.

5.8 Grazing Suitability Results

5.8.1 Pre-Mining

The grazing suitability assessment indicates SMU 1 is rated as Class 4, with the main limitations being soil water availability (m), nutrient supply (Nr), soil physical factors and subsoil erosion (Es). SMU2A is rated as Class 3 with the main limitations of soil water availability and salinity. The balance of the Project made up of SMU2B and SMU3 are rated as Class 4, with the main limitations of soil water availability (m) and soil physical factors (p). Results for the pre-mining Grazing Suitability Assessment are shown in **Figure 5-6** and the detailed grazing suitability assessment is presented in **Appendix E**.


5.8.2 Post-Mining

Grazing suitability classes for areas not scheduled for the proposed mining activity disturbances are likely to remain the same. This includes the Class 3 and some Class 4 areas located in the eastern portion of the Project.

Areas scheduled for the proposed mining activity disturbances will be managed and rehabilitated to meet the Rehabilitation Requirements included in Table E1 as per their assigned PMLU. The PMLU within the disturbance areas will have the following implications to the pre-mining grazing suitability classes:

 The PMLU areas to be rehabilitated to cattle grazing will likely retain the pre-mining grazing suitability.

6.0 Rehabilitation

6.1 Rehabilitation Goals

The BWM PRCP is yet to be developed. BWM has a transitional notice for the PRCP and once developed, submitted, and approved, the PRCP will guide the long-term rehabilitation and closure strategy for BWM. The BWM PRCP is due to be submitted in November 2024.

In accordance with the conditions of the BWM Environmental Authority (EPML00717813), all areas significantly disturbed by mining activities will be rehabilitated in accordance with Table E1 of the EA. Table E1 outlines objectives, indicators and acceptance criteria for rehabilitation relating to goals for creating land that is:

- Safe to humans and wildlife.
- Non-polluting.
- Stable.
- Able to sustain an agreed post-mining land use.

The stability of the post-mine landform will be achieved by applying sound rehabilitation practices. Landforms will be established following mining, using soils capable of supporting vegetation communities adapted to the local environment. The rehabilitation practices are designed to stabilise the landform, protect downstream water quality, and aid a sustainable outcome for the Project area.

6.2 Rehabilitation Methodology

Rehabilitation of the Project will be in accordance with the BWM rehabilitation commitments as per the upcoming PRCP and the BWM EA.

6.2.1 Soil and Material Balances

Soils for rehabilitation are salvaged and made available for reuse in establishing a soil profile on the post-mining landform. Volume calculations and soil balance will be determined to inform post-mining requirements for soil depths. The estimated volume of suitable soil throughout the Project is summarised in **Section 4.3.1** and an includes 9,178,000 m³ of topsoil (as shown in **Table 4-3**). The soil survey and laboratory results were used to determine depth of soil material suitable for recovery and reuse as material in rehabilitation. Factors requiring management considerations include sodicity, salinity and alkalinity.

6.2.2 Soil Sourcing and Substitution

Suitable topsoil will be stripped for use in later rehabilitation. The topsoil will either be stockpiled until suitable re-contoured areas are available, or directly returned across areas to be rehabilitated. The results of the land resources assessment identified that the topsoil resources are adequate for the rehabilitation of the disturbed areas.

Where practicable, soil will be stripped in a slightly moist condition and not be stripped in either an excessively dry or wet condition to prevent pulverisation of the natural soil aggregates or damage of the resource through compaction by equipment.

To reduce soil degradation during stripping operations preference will be given to using equipment which can grade or push soil into windrows such as graders or dozers for later collection by conventional truck and shovel techniques. This will minimise compaction impacts of heavy equipment that is often necessary for economical transport of soil material. These techniques are examples of preferential, less aggressive soil handling systems which may be adopted.

6.2.3 Soil Placement and Management

All soils removed will be placed in designated stockpile areas or returned to areas available for immediate rehabilitation. Freshly stripped and placed topsoil retains seed, microorganisms and nutrients than stockpiled soil and vegetation establishment is generally improved by the direct return of topsoil and is considered 'best practice' topsoil management. Where long term storage stockpiles be proposed, accurate records are required indicating stockpile volumes and locations. Soil stockpiles within work areas could be used as long-term batters or bunds to facilitate noise amelioration, visual screening and surface water diversion where required.

The following management and mitigation strategies and/or the BWM Topsoil Management Procedure (where applicable) is to be implemented to reduce degradation during stockpiling operations.

- Locations of stockpiles will be recorded using GPS along with data relating to the soil type and volume. An inventory of available soil is maintained and updated regularly to ensure adequate topsoil will be available for planned rehabilitation activities.
- The surface of soil stockpiles will be left in as coarsely structured condition where practicable to promote rainfall infiltration and minimise erosion prior to cover vegetation becoming established.
- Soil types with significantly different properties should be stockpiled separately.
- Storage time will be minimised, where possible. If long term stockpiling is planned, stockpiles should be seeded with an annual cover crop.
- Growth media including topsoil will be spread to depths according to target requirements.
- Where possible, suitable growth media will be re-spread directly onto rehabilitation areas. Growth media will be treated with fertiliser and seeded in one consecutive operation, reducing the potential for compaction and topsoil loss to wind and water erosion.

Stockpiles are not disturbed until required for rehabilitation, weed management, erosion control or for seeding and fertilising purposes. Ameliorants are applied post-spreading of soil resources on rehabilitation areas.

6.2.4 Vegetation Establishment

6.2.4.1 Timing

Revegetation operations will consider both the season and timing of potential germination during the drier months. The preferred seeding timing for woodland habitat is expected to be in September/early October or April/May when there is sufficient soil moisture in the profile.

6.2.4.2 Revegetation

Revegetation methods for all types of disturbed land within the Project will normally consist of the following:

- Respreading of freshly stripped or stockpiled topsoil.
- Contour ripping.
- Application of appropriate fertiliser and ameliorants for plant establishment, after soil chemical analysis, if required.
- Seeding with the appropriate seed mix.

Contour ripping is used as an erosion control measure immediately after surface preparation and before revegetation. A seed mix containing pasture grass and/or local native shrub and tree species is used to establish a sustainable vegetation cover suitable for the post mining land use.

6.2.5 Erosion and Sediment Control

The principal objectives of erosion and sediment control for rehabilitation areas are to:

- Minimise erosion and sedimentation from all active and rehabilitated areas, thereby minimising sediment ingress into surrounding surface waters.
- Segregate contact water (surface run-off from disturbed catchments e.g., active areas of
 disturbance, stockpiles and rehabilitated areas until stabilised) from clean water (surface
 run-off from catchments that are undisturbed or relatively undisturbed by Project-related
 activities and rehabilitated catchments) and maximise the retention time of contact water
 so that any discharge from the disturbance area is in line with the EA.
- Avoid the potential for runoff and incorporate suitable erosion and sediment control measures in accordance with the BWM ESC Plan.
- Manage surface flows upstream of any surface disturbance during Project works so that rehabilitation activities are not affected by excessive run-on water.
- Establish sustainable long-term surface water management features following rehabilitation of the site, including implementation of an effective revegetation and maintenance program.
- Monitor the effectiveness of erosion and sediment controls and maintain, in accordance with the requirements of the BWM ESC Plan.
- Land disturbance will be restricted to that necessary for the Project.
- Disturbance will be controlled using the BWM Permit to Disturb process and in accordance with the EA.
- All available topsoil will be salvaged for use in rehabilitation, where practicable.
- Erosion from topsoil stockpiles will be managed in accordance with the BWM ESC Plan
 which requires stockpile sites to be located outside the limits of drainage lines, with
 controls to prevent mobilising stockpiled material and capture sediment.
- Topsoil stockpiles will be managed in accordance with the BWM Topsoil Management Procedure.
- Stormwater and runoff from catchments directly upstream of the Project will be diverted away from the site during Project works.
- Vehicles to utilise maintained tracks and roads.

Table 6-1 summarises the risks associated with surface disturbance and the associated erosion and sediment control measures which can be applied.

Table 6-1 Erosion Causes and Control – Soil Disturbance Activities

Area	Control Measure
Cleared Land	Restrict clearing to areas essential for the Project works.
	Windrow vegetation debris along the contour.
	Minimise length of time soil is exposed.
	Divert run-off from undisturbed areas away from the Project works.
	Direct run-off from cleared areas to be dealt with as outlined in the BWM ESC Plan.
Rehabilitation	Install drainage control works as outlined in the BWM ESC Plan.
	Spread topsoil or appropriate growth media, rip on the contour and seed with appropriate seed mix.
Infrastructure	Vehicles to utilise maintained tracks and roads.
	Sediment will be controlled as outlined in the BWM ESC Plan.
	Rehabilitate disturbed areas around work sites as soon as practicable after becoming available.

7.0 Land Resources Mitigation Measures

Potential impacts to land resources and rehabilitation have been considered, and include the following:

- Impacts to land due to disturbance from mining activities (and changes to land use.
- Soil loss due to wind or water erosion.
- Reduction in soil quality and fertility including nutrient loss.
- Inability to achieve post-mine land uses.
- Contamination of land due to leaks or spills from plant, storage facilities or infrastructure and/or transport of contaminated soil or water and introduction into previously uncontaminated areas.

The following general mitigation strategies are to be implemented by the Project to minimise the extent and severity of land disturbance and constraints on rehabilitation, thus mitigating risks that could result in environmental impacts:

- Clearing will occur within the area approved via the BWM's Permit to Disturb process.
- Appropriate storage and management of hydrocarbons and hazardous materials within the MIA to prevent contamination of land e.g., bunding.
- Disturbance to be undertaken in consideration of water flows that could affect land resources during early mining activities.
- Topsoil will be stripped prior to mining and direct re-spread is the preferred method to minimise topsoil handling and reduce damage to soil structure and propagules.
- Topsoil that is not directly re-spread will be stockpiled for re-use in rehabilitation.
- Appropriate surface water management measures are to be implemented including clean water diversions, and use of in-pit sumps and sediment dams to capture mine affected runoff and stormwater as outlined in the Water Management Plan.
- Monitoring and maintenance of rehabilitation until post-mining land use criteria and relinquishment have been achieved.

8.0 Conclusion

The objective of the Soil and Land Resource Assessment was to identify the soil types, qualities and resources available for rehabilitation and conduct an impact assessment. This was to determine the impacts on existing soils and recommend practical and reasonable mitigation measures.

In line with this approach, four (4) Soil Map Units (SMU) were identified in the assessment, comprising the following:

- SMU 1A Self-Mulching Brown-Black Vertosol.
- SMU 2A Eutrophic Red Dermosol.
- SMU 2B Eutrophic Red Dermosol.
- SMU 3 Eutrophic Red-Brown Dermosol.

The land suitability assessment indicates:

- SMU 1A are rated as Class 4 (marginal land with severe limitations) for cropping and Class 3 (suitable land with moderate limitations) for grazing, with the main limitations being soil wetness (w) and soil water availability (m).
- SMU 2A, 2B and 3 is rated as Class 5 (unsuitable land) for cropping and Class 4 (marginal land with severe limitations) for grazing, with the main limitations being soil wetness (w) and soil water availability (m).
- The PMLU areas to be rehabilitated to cattle grazing will likely retain the pre-mining land suitability classes.
- The PMLU area to be rehabilitated to woodland habitat will present additional limitations to the land, which will reduce the land suitability class to marginal land with severe limitations (Class 4) or unsuitable land (Class 5).

The agricultural land assessment indicates:

- SMU 1, 2A, 2B and 3 are rated as Agricultural Land Class C1, pasture land suitable for grazing both native and improved pasture species.
- The PMLU areas to be rehabilitated to cattle grazing will likely retain the pre-mining agricultural land classes.
- The PMLU areas to be rehabilitated to woodland habitat will present additional limitations to that land, which will result in a Class C3 or Class D agricultural land class classification.

The land capability assessment indicates:

- SMU 1 is rated as Class III land that is suitable for all agricultural uses but with moderate restrictions for cultivation.
- SMU 2A, 2B and 3 are rated as Class IV, land primarily suited to pastoral use but which may be safely used for occasional cultivation with careful management.
- The PMLU areas to be rehabilitated to cattle grazing will likely retain the pre-mining land capability classes.
- The PMLU area to be rehabilitated to woodland habitat will present additional limitations to that land, which will result in a Class VII or Class VIII land capability classification.

The grazing land suitability assessment indicates:

- SMU 1, 2B and 3 is rated as Class 4 and is noted as land that is unsuitable for high intensity grazing, however, may be utilised in above average seasonal rainfall conditions.
- SMU 2A is rated as Class 3 (167 ha) and is noted as land that is suitable to carry breeding stock all your round depending on seasons.
- The PMLU areas to be rehabilitated to cattle grazing will likely retain the pre-mining grazing suitability.
- The PMLU area to be rehabilitated to woodland habitat will present additional limitation to that land, which will result in unsuitable (Class 4 or 5) grazing suitability.

9.0 References

DNRM & DSITIA, (2013). Regional Land Suitability Frameworks for Queensland, Brisbane: Department of Natural Resources and Mines and the Department of Science, Information Technology, Innovation and the Arts. State of Queensland.

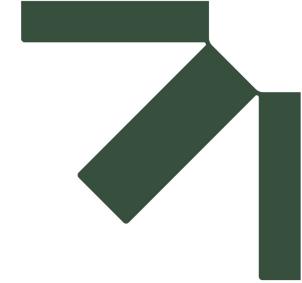
DSITI & DNRM, (2015). Guidelines for agricultural land evaluation in Queensland (2nd edition), Queensland Government (Department of Science, Information Technology and Innovation and Department of Natural Resources and Mines), Brisbane, Queensland.

EMM, (2023). Aquatic Ecology Baseline Assessment – Blackwater Mine North Extension Project.

FutureBeef, (2023), Land condition, accessed on 29 August 2023 at https://futurebeef.com.au/knowledge-centre/land-condition/

Isbell, R. F., (2021). The Australian Soil Classification, Third Edition. Clayton South Victoria: CSIRO Publishing.

NCST, (2008). Guidelines for Surveying Soil and Land Resources, 2nd edition, Australia: National Committee on Soil and Terrain CSIRO Publishing.


NCST, (2009). Australian Soil and Land Survey Field Handbook, 3rd edition, Collingwood, Australia: National Committee on Soil and Terrain CSIRO Publishing.

Regional Planning Interest Act 2014. State of Queensland.

Regional Planning Interests Regulation 2014. State of Queensland.

Short, T., (2013). A rule-set for land suitability assessment of sustainable beef cattle grazing on land rehabilitated after open-cut coal mining in the Bowen Basin, Queensland. Highlands Environmental, pp.1-10

Appendix A Laboratory Certificates of Analysis

Land Resources Assessment Report

BM Alliance Coal Operations

SLR Project No.: 620.014601.00001

7 December 2023

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

0 Kings Road NEW LAMBTON NSW 2305		Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	
		Sample ID:	B01	B01	B01	B01	B05
		Crop:	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/1	K0498/2	K0498/3	K0498/4	K0498/5
pН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	6.79	7.68	9.03	9.19	8.20
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.151	0.125	0.402	0.609	0.128
	(cmol ₊ /kg)		11	11	22	13	29
Exchangeable Calcium	(kg/ha)		4,771	5,078	10,006	6,021	13,106
	(mg/kg)		2,130	2,267	4,467	2,688	5,851
	(cmol ₊ /kg)		2.1	2.7	9.3	1.8	6.8
Exchangeable Magnesium	(kg/ha)		580	738	2,540	496	1,848
	(mg/kg)	Rayment & Lyons 2011 - 15D3	259	330	1,134	221	825
	(cmol ₊ /kg)	(Ammonium Acetate)	0.55	0.21	0.27	<0.12	1.0
Exchangeable Potassium	(kg/ha)		485	188	235	<112	919
	(mg/kg)		216	84	105	<50	410
	(cmol ₊ /kg)]	0.40	1.1	4.5	1.3	0.37
Exchangeable Sodium	(kg/ha)		208	580	2,302	644	188
	(mg/kg)		93	259	1,028	288	84
	(cmol ₊ /kg)		0.01	0.01	0.02	0.02	0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	2.3	2.4	3.0	3.1	2.5
	(mg/kg)		1.0	1.1	1.4	1.4	1.1
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	<1	<1	<1	<1
	(mg/kg)	(Actually Intration)	<1	<1	<1	<1	<1
Effective Cation Exchange Capa (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	14	15	36	17	37
Calcium (%)			77	74	61	81	78
Magnesium (%)			16	18	26	11	18
Potassium (%)		**Base Saturation Calculations -	4.0	1.4	0.74	0.30	2.8
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	2.9	7.3	12	7.6	0.98
Aluminium (%)			0.08	0.08	0.04	0.09	0.03
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	5.0	4.2	2.4	7.4	4.3
			5 YR 3/4	5 YR 3/4	7.5 YR 3/4	5 YR 3/4	7.5 YR 2.5/2
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Dark Reddish Brown	Dark Reddish Brown	Dark Brown	Dark Reddish Brown	Very Dark Brov
Mottles Munsell Colour							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 1 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Parameter	Method reference	K0498/1	K0498/2	K0498/3	K0498/4	K0498/5	1
	Client:	ВМА	ВМА	ВМА	ВМА	ВМА	1
	Crop:	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	1
	Sample IV:	BUI	BUI	BUI	BUI	805	

Notes:

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwood.
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013, Schedule B(1) - Guideline on Investigation Levels for Soil and Groundwater, Table 5-A Background Ranges,
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil results'.
- 10. Conversions for 1 cmol₊/kg = 230 mg/kg Sodium, 390 mg/kg Potassium, 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer scu.edu.au/eal).
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020

Quality Checked: Kris Saville Agricultural Co-Ordinator

Accreditation No. 14960 Accredited for compliance with ISO/IEC 17025 - Testing

CRICOS Provider: 01241G Page 2 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

0 Kings Road NEW LAMBTON NSW 2305		Sample 6	Sample 7	Sample 8	Sample 9	Sample 10	
		Sample ID:	B05	B05	B05	B07	B07
		Crop:	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/6	K0498/7	K0498/8	K0498/9	K0498/10
pН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.91	9.03	8.97	7.89	8.79
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.159	0.298	0.688	0.102	0.076
	(cmol ₊ /kg)		39	36	28	15	18
Exchangeable Calcium	(kg/ha)		17,563	15,968	12,411	6,713	8,234
	(mg/kg)		7,841	7,129	5,541	2,997	3,676
	(cmol ₊ /kg)		9.3	13	12	6.0	6.7
Exchangeable Magnesium	(kg/ha)		2,526	3,474	3,147	1,640	1,813
	(mg/kg)	Rayment & Lyons 2011 - 15D3	1,128	1,551	1,405	732	809
	(cmol ₊ /kg)	(Ammonium Acetate)	0.47	0.48	0.34	0.36	0.20
Exchangeable Potassium	(kg/ha)		414	424	301	312	172
	(mg/kg)	lkg)	185	189	134	139	77
	(cmol ₊ /kg)		1.7	4.2	5.8	0.55	1.6
Exchangeable Sodium	(kg/ha)		858	2,157	2,965	282	803
	(mg/kg)		383	963	1,324	126	359
	(cmol ₊ /kg)		0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	2.4	1.5	1.3	1.9	1.6
	(mg/kg)		1.1	<1	<1	<1	<1
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	<1	<1	<1	<1
	(mg/kg)		<1	<1	<1	<1	<1
Effective Cation Exchange Capac (ECEC) (cmol,/kg)	ity	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol./kg)	51	53	45	22	27
Calcium (%)			77	67	61	68	69
Magnesium (%)			18	24	26	28	25
Potassium (%)		**Base Saturation Calculations -	0.94	0.91	0.76	1.6	0.73
Sodium - ESP (%)		Cation cmol ₊ /kg / ECEC x 100	3.3	7.9	13	2.5	5.8
Aluminium (%)			0.02	0.01	0.01	0.04	0.03
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	4.2	2.8	2.4	2.5	2.8
		-	10 YR 2/1	5 YR 2.5/1	7.5 YR 3/4	5 YR 3/3	10 YR 3/3
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Black	Black	Dark Brown	Dark Reddish Brown	Dark Brown
Manta a Mora all Calaco		minouse iviurisen son Colour Classification					
Mottles Munsell Colour							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 3 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater	
10 Kings Road NEW LAMBTON NSW 2305	

	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID:	B05	B05	B05	B07	B07
Crop:	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30
Client:	ВМА	ВМА	ВМА	ВМА	ВМА
	K0498/6	K0498/7	K0498/8	K0498/9	K0498/10

	No	es:
--	----	-----

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo

Method reference

- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.

Parameter

- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol₊/kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 4 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

Kings Road NEW LAMBTON N	SW 2305	Sample ID:	Sample 11 B07	Sample 12 B07	Sample 13 B09	Sample 14 B09	Sample 15 B09
		Crop:	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/11	K0498/12	K0498/13	K0498/14	K0498/15
pН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	9.25	9.21	8.56	9.00	9.02
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.423	0.875	0.109	0.266	0.522
	(cmol ₊ /kg)		23	19	29	26	25
Exchangeable Calcium	(kg/ha)		10,279	8,747	12,824	11,686	11,103
	(mg/kg)		4,589	3,905	5,725	5,217	4,957
	(cmol ₊ /kg)		8.6	10	11	11	13
Exchangeable Magnesium	(kg/ha)		2,336	2,791	3,046	3,024	3,404
	(mg/kg)	Rayment & Lyons 2011 - 15D3	1,043	1,246	1,360	1,350	1,520
	(cmol ₊ /kg)	(Ammonium Acetate)	0.17	0.21	0.68	0.42	0.42
Exchangeable Potassium	(kg/ha)		152	187	596	370	368
	(mg/kg)		68	84	266	165	164
	(cmol ₊ /kg)		4.7	8.2	1.2	4.1	7.1
Exchangeable Sodium	(kg/ha)		2,434	4,237	610	2,134	3,670
	(mg/kg)		1,087	1,892	272	953	1,639
	(cmol₊/kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	1.5	1.3	1.8	1.7	1.9
	(mg/kg)		<1	<1	<1	<1	<1
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1	<1	<1	<1	<1	<1
	(mg/kg)	(Acidity Titration)	<1	<1	<1	<1	<1
Effective Cation Exchange Capa (ECEC) (cmol ₊ /kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol,/kg)	36	38	42	42	45
Calcium (%)			63	51	69	62	55
Magnesium (%)			24	27	27	27	28
Potassium (%)		**Base Saturation Calculations -	0.48	0.56	1.6	1.0	0.94
Sodium - ESP (%)		Cation cmol,/kg / ECEC x 100	13	22	2.8	9.9	16
Aluminium (%)			0.02	0.02	0.02	0.02	0.02
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	2.7	1.9	2.6	2.3	2.0
			7.5 YR 3/4	7.5 YR 4/6	5 YR 2.5/2	7.5 YR 3/2	7.5 YR 3/
Moist Munsell Colour	**Inhouse Munsell Soil Colour Classification	Dark Brown	Strong Brown	Dark Reddish Brown	Dark Brown	Very Dark G	
Mottles Munsell Colour							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 5 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10	Kings Road NEW LAMBTON NSW 2305		Sample 11	Sample 12	Sample 13	Sample 14	Sample 15
		Sample ID:	B07	B07	B09	B09	B09
		Crop:	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
	Parameter	Method reference	K0498/11	K0498/12	K0498/13	K0498/14	K0498/15

No	es:
----	-----

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol₊/kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer so
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 6 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

0 Kings Road NEW LAMBTON NSW 2305		Sample 16	Sample 17	Sample 18	Sample 19	Sample 20	
		Sample ID:	B09	B10	B10	B10	B10
		Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/16	K0498/17	K0498/18	K0498/19	K0498/20
рН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.81	8.53	8.57	8.68	6.15
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.889	0.155	0.258	0.797	1.058
	(cmol,/kg)		29	23	23	19	11
Exchangeable Calcium	(kg/ha)		13,007	10,398	10,288	8,704	5,069
	(mg/kg)		5,807	4,642	4,593	3,886	2,263
	(cmol₊/kg)		14	9.3	10.0	11	10
Exchangeable Magnesium	(kg/ha)		3,740	2,520	2,712	3,035	2,770
	(mg/kg)	Rayment & Lyons 2011 - 15D3	1,670	1,125	1,211	1,355	1,237
	(cmol ₊ /kg)	(Ammonium Acetate)	0.49	0.60	0.56	0.42	0.33
Exchangeable Potassium	(kg/ha)		431	528	488	367	291
	(mg/kg)		192	236	218	164	130
	(cmol₊/kg)		9.8	1.4	2.7	8.0	10
Exchangeable Sodium	(kg/ha)		5,055	707	1,380	4,129	5,256
	(mg/kg)		2,257	316	616	1,844	2,347
	(cmol₊/kg)		<0.01	0.01	0.01	0.01	0.16
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	1.6	2.4	2.6	2.5	32
	(mg/kg)		<1	1.1	1.2	1.1	14
	(cmol₊/kg)	HD 401 0011 1501	<0.01	<0.01	<0.01	<0.01	0.03
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	<1	<1	<1	<1
	(mg/kg)	(in the state of	<1	<1	<1	<1	<1
Effective Cation Exchange Capac (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	53	34	36	39	32
Calcium (%)			55	67	63	50	35
Magnesium (%)			26	27	28	29	32
Potassium (%)		**Base Saturation Calculations -	0.93	1.8	1.5	1.1	1.0
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	19	4.0	7.4	21	32
Aluminium (%)			0.02	0.03	0.04	0.03	0.50
Hydrogen (%)			0.00	0.00	0.00	0.00	0.10
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol ₊ /kg)	2.1	2.5	2.3	1.7	1.1
			7.5 YR 3/1	7.5 YR 3/3	5 YR 3/3	7.5 YR 3/4	7.5 YR 3/4
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Very Dark Gray	Dark Brown	Dark Reddish Brown	Dark Brown	Dark Brown
Mottles Munsell Colour		iiiiouse munsen son colour classification					
Workes Willisell Colour							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 7 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON	NSW 2305	Sample 16	Sample 17	Sample 18	Sample 19	Sample 20
	Sample ID:	B09	B10	B10	B10	B10
	Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
	Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter	Method reference	K0498/16	K0498/17	K0498/18	K0498/19	K0498/20

Notes:

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{\star}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer so
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

Kings Road NEW LAMBTON NS	SW 2305		Sample 21	Sample 22	Sample 23	Sample 24	Sample 25
		Sample ID:	B12	B12	B12	B12	B17
		Crop:	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10
		Client:	BMA	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/21	K0498/22	K0498/23	K0498/24	K0498/25
pН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	6.87	7.04	8.28	8.89	7.51
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.046	0.042	0.130	0.498	0.078
	(cmol ₊ /kg)		8.7	8.6	11	14	16
Exchangeable Calcium	(kg/ha)		3,922	3,875	5,078	6,077	7,176
	(mg/kg)		1,751	1,730	2,267	2,713	3,204
	(cmol ₊ /kg)		4.4	4.4	6.6	8.3	10
Exchangeable Magnesium	(kg/ha)		1,196	1,208	1,789	2,249	2,755
	(mg/kg)	Rayment & Lyons 2011 - 15D3	534	539	799	1,004	1,230
	(cmol ₊ /kg)	(Ammonium Acetate)	0.45	0.40	0.53	0.63	0.69
Exchangeable Potassium	(kg/ha)		392	351	460	549	603
	(mg/kg)		175	157	205	245	269
	(cmol ₊ /kg)		0.64	0.57	0.91	2.7	1.5
Exchangeable Sodium	(kg/ha)		330	295	471	1,403	782
	(mg/kg)		147	132	210	627	349
	(cmol₊/kg)		0.01	0.01	0.01	0.01	0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	2.7	2.3	2.2	2.1	2.3
	(mg/kg)		1.2	1.0	1.0	<1	1.0
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	<1	<1	<1	<1
	(mg/kg)	(Acidity Hitation)	<1	<1	<1	<1	<1
Effective Cation Exchange Capac (ECEC) (cmol,/kg)	ity	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol,/kg)	14	14	19	25	28
Calcium (%)			61	61	59	54	56
Magnesium (%)			31	32	34	33	36
Potassium (%)		**Base Saturation Calculations -	3.1	2.9	2.7	2.5	2.4
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	4.5	4.1	4.7	11	5.4
Aluminium (%)			0.09	0.08	0.06	0.04	0.04
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	2.0	1.9	1.7	1.6	1.6
			7.5 YR 2.5/3	7.5 YR 2.5/2	7.5 YR 3/4	7.5 YR 3/4	10 YR 3/
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Very Dark Brown	Very Dark Brown	Dark Brown	Dark Brown	Dark Brov
Mottles Munsell Colour		loade manden don dollar diaddineation					
Mottles Mulisell Colour							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 9 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 K	ings Road NEW LAMBTON NSW 2305		Sample 21	Sample 22	Sample 23	Sample 24	Sample 25
		Sample ID:	B12	B12	B12	B12	B17
		Crop:	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
	Parameter	Method reference	K0498/21	K0498/22	K0498/23	K0498/24	K0498/25

Ν	otes:	

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{\star}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer so
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 10 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

Kings Road NEW LAMBTON NS	SW 2305		Sample 26	Sample 27	Sample 28	Sample 29	Sample 30
		Sample ID:	B17	B17	B17	B20	B20
		Crop:	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/26	K0498/27	K0498/28	K0498/29	K0498/30
pН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.44	8.83	8.24	7.39	8.64
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.145	0.779	1.025	0.047	0.096
	(cmol ₊ /kg)		19	18	13	9.7	16
Exchangeable Calcium	(kg/ha)		8,747	7,900	5,723	4,365	7,000
	(mg/kg)		3,905	3,527	2,555	1,949	3,125
	(cmol ₊ /kg)		11	11	13	1.3	3.6
Exchangeable Magnesium	(kg/ha)		2,894	2,988	3,561	365	988
	(mg/kg)	Rayment & Lyons 2011 - 15D3	1,292	1,334	1,590	163	441
	(cmol ₊ /kg)	(Ammonium Acetate)	0.38	0.33	0.36	0.90	0.45
Exchangeable Potassium	(kg/ha)		331	292	314	789	397
	(mg/kg)		148	130	140	352	177
	(cmol ₊ /kg)		3.7	8.3	11	0.18	0.14
Exchangeable Sodium	(kg/ha)		1,881	4,257	5,771	92	74
	(mg/kg)	840	1,901	2,577	41	33	
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	1.4	1.5	1.3	1.7	2.1
	(mg/kg)		<1	<1	<1	<1	<1
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1	<1	<1	<1	<1	<1
	(mg/kg)	(Acidity Titration)	<1	<1	<1	<1	<1
Effective Cation Exchange Capac (ECEC) (cmol./kg)		**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol+/kg)	34	37	37	12	20
Calcium (%)			57	47	34	80	79
Magnesium (%)			31	30	35	11	18
Potassium (%)		**Base Saturation Calculations -	1.1	0.90	0.96	7.4	2.3
Sodium - ESP (%)		Cation cmol₁/kg / ECEC x 100	11	22	30	1.5	0.72
Aluminium (%)			0.02	0.02	0.02	0.07	0.05
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	1.8	1.6	0.97	7.3	4.3
-		3 (4 4 4 4 5)	5 YR 2.5/1	7.5 YR 2.5/2	7.5 YR 3/4	7.5 YR 2.5/2	5 YR 3/4
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Black	Very Dark Brown	Dark Brown	Very Dark Brown	Dark Redo Brown
Mattles Munsell Calana		iiiilouse iviuliseli soli Coloul Classilication					
Mottles Munsell Colour							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 11 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305

Sample ID:
B17
B17
B17
B20
B20
Crop:
0.20-0.30
0.50-0.60
0.90-1.0
0.0-0.10
0.20-0.30

	Crop:	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30
	Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter	Method reference	K0498/26	K0498/27	K0498/28	K0498/29	K0498/30

Notes:

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{\star}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of CI mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer so
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305		Sample 31	Sample 32	Sample 33	Sample 34	Sample 35	
		Sample ID:	B20	B20	B21	B21	B21
		Crop:	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/31	K0498/32	K0498/33	K0498/34	K0498/35
рН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.79	9.21	7.83	8.81	9.25
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.100	0.150	0.067	0.050	0.131
	(cmol ₊ /kg)		13	20	5.4	7.6	6.8
Exchangeable Calcium	(kg/ha)		5,931	9,000	2,443	3,413	3,039
	(mg/kg)		2,648	4,018	1,091	1,524	1,357
	(cmol ₊ /kg)		4.8	7.5	0.91	6.3	7.7
Exchangeable Magnesium	(kg/ha)		1,310	2,046	248	1,704	2,095
	(mg/kg) Rayment & Lyons 2011 - 15D3	585	913	111	761	935	
	(cmol ₊ /kg)	(Ammonium Acetate)	0.37	0.38	0.38	0.33	0.37
Exchangeable Potassium	(kg/ha)		320	332	333	289	320
	(mg/kg)		143	148	149	129	143
	(cmol ₊ /kg)		0.24	0.82	<0.065	0.98	2.1
Exchangeable Sodium	(kg/ha)		124	420	<33	502	1,082
	(mg/kg)		55	188	<15	224	483
	(cmol₊/kg)		0.01	<0.01	0.01	0.01	0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	2.2	1.6	2.3	2.9	2.3
	(mg/kg)		<1	<1	1.0	1.3	1.0
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1	<1	<1	<1	<1	<1
	(mg/kg)	(Acidity Titration)	<1	<1	<1	<1	<1
Effective Cation Exchange Capac (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	19	29	6.8	15	17
Calcium (%)			71	70	80	50	40
Magnesium (%)			26	26	13	41	45
Potassium (%)		**Base Saturation Calculations -	2.0	1.3	5.6	2.2	2.2
Sodium - ESP (%)		Cation cmol,/kg / ECEC x 100	1.3	2.8	0.52	6.4	12
Aluminium (%)			0.06	0.03	0.17	0.10	0.07
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	2.7	2.7	6.0	1.2	0.88
			5 YR 4/6	7.5 YR 4/6	7.5 YR 3/4	7.5 YR 4/4	7.5 YR 3/3
Moist Munsell Colour			Yellowish Red	Strong Brown	Dark Brown	Brown	Dark Brown
		**Inhouse Munsell Soil Colour Classification					7.5 YR 5/6
Mottles Munsell Colour							Strong Brown
Degree of Mottling (%)							40

CRICOS Provider: 01241G Page 13 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Ki	ngs Road NEW LAMBTON NSW 2305		Sample 31	Sample 32	Sample 33	Sample 34	Sample 35
		Sample ID:	B20	B20	B21	B21	B21
		Crop:	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
	Parameter	Method reference	K0498/31	K0498/32	K0498/33	K0498/34	K0498/35

N	lotes:	
---	--------	--

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, Table 5-A Background Ranges,
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol₊/kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of CI mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 14 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305		Sample 36	Sample 37	Sample 38	Sample 39	Sample 40
	Sample ID:	B21	B23	B23	B23	B23
	Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
	Client:	BMA	BMA	ВМА	ВМА	ВМА
Parameter	Method reference	K0498/36	K0498/37	K0498/38	K0498/39	K0498/40
рН	Rayment & Lyons 2011 - 4A1 (1:5 Water)	9.25	8.62	8.69	9.13	9.11
Electrical Conductivity (dS/m)	Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.731	0.110	0.091	0.568	0.911
(cmol.	kg)	20	26	26	25	26
Exchangeable Calcium (kg/ha		8,870	11,704	11,558	11,148	11,858
(mg/k)	3,960	5,225	5,160	4,977	5,294
(cmol.	kg)	9.0	4.2	6.4	10.0	11
Exchangeable Magnesium (kg/ha		2,464	1,155	1,731	2,710	2,961
(mg/k) Rayment & Lyons 2011 - 15D3	1,100	516	773	1,210	1,322
(cmol.	(Ammonium Acetate)	0.35	0.46	0.28	0.26	0.26
Exchangeable Potassium (kg/ha		310	404	245	230	230
(mg/k)	138	180	109	103	103
(cmol.		5.8	0.28	1.5	8.1	11
Exchangeable Sodium (kg/ha		2,978	143	761	4,159	5,599
(mg/k)	1,330	64	340	1,857	2,500
(cmol	kg)	<0.01	0.01	0.01	<0.01	0.01
Exchangeable Aluminium (kg/ha	**Inhouse S37 (KCI)	1.7	2.2	2.3	1.8	2.0
(mg/k)	<1	<1	1.0	<1	<1
(cmol	kg)	<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen (kg/ha	**Rayment & Lyons 2011 - 15G1	<1	<1	<1	<1	<1
(mg/k	(Acidity Titration)	<1	<1	<1	<1	<1
Effective Cation Exchange Capacity (ECEC) (cmol,/kg)	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	35	31	34	43	48
Calcium (%)		57	84	76	58	55
Magnesium (%)		26	14	19	23	22
Potassium (%)	**Base Saturation Calculations -	1.0	1.5	0.83	0.61	0.54
Sodium - ESP (%)	Cation cmol₊/kg / ECEC x 100	17	0.90	4.4	19	22
Aluminium (%)		0.02	0.03	0.03	0.02	0.02
Hydrogen (%)		0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio	**Calculation: Calcium / Magnesium (cmol,/kg)	2.2	6.1	4.0	2.5	2.4
		7.5 YR 4/4	7.5 YR 3/2	7.5 YR 3/1	10 YR 4/3	10 YR 3/3
Moist Munsell Colour		Brown	Dark Brown	Very Dark Gray	Brown	Dark Brown
	**Inhouse Munsell Soil Colour Classification					
Mottles Munsell Colour						
Degree of Mottling (%)						

CRICOS Provider: 01241G Page 15 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305	Sample 36	Sample 37	Sample 38	Sample 39	Sample 40
Sample ID:	B21	B23	B23	B23	B23
Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
Client*	ВМΔ	ВΜΔ	ВΜΔ	RMΔ	ВΜΔ

	Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
	Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter	Method reference	K0498/36	K0498/37	K0498/38	K0498/39	K0498/40
Notes:			·	·	·	

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, Table 5-A Background Ranges,
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol₊/kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 16 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

0 Kings Road NEW LAMBTON N	SW 2305		Sample 41	Sample 42	Sample 43	Sample 44	Sample 45
		Sample ID:	B25	B25	B25	B25	B28
		Crop:	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/41	K0498/42	K0498/43	K0498/44	K0498/45
рН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	7.26	6.80	8.06	9.13	7.39
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.117	0.087	0.189	0.147	0.043
	(cmol ₊ /kg)		19	23	28	20	12
Exchangeable Calcium	(kg/ha)		8,747	10,227	12,714	9,157	5,259
	(mg/kg)		3,905	4,566	5,676	4,088	2,348
	(cmol ₊ /kg)		6.7	7.9	8.3	5.7	2.4
Exchangeable Magnesium	(kg/ha)		1,830	2,141	2,260	1,549	656
	(mg/kg)	Rayment & Lyons 2011 - 15D3	817	956	1,009	692	293
	(cmol ₊ /kg)	(Ammonium Acetate)	0.56	0.37	0.36	0.18	0.32
Exchangeable Potassium	(kg/ha)		490	323	314	154	284
	(mg/kg)		219	144	140	69	127
	(cmol ₊ /kg)		0.42	0.62	0.91	1.2	0.10
Exchangeable Sodium	(kg/ha)		218	320	471	614	52
	(mg/kg)		98	143	210	274	23
	(cmol₊/kg)		0.01	0.02	0.01	0.01	0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	2.2	3.1	2.8	2.2	2.7
	(mg/kg)		<1	1.4	1.2	<1	1.2
	(cmol₄/kg)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)		<1	<1	<1	<1	<1
	(mg/kg)	(Actually Thruthorn)	<1	<1	<1	<1	<1
Effective Cation Exchange Capa (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	27	32	38	27	15
Calcium (%)			72	72	75	74	80
Magnesium (%)			25	25	22	21	17
Potassium (%)		**Base Saturation Calculations -	2.1	1.2	0.95	0.64	2.2
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	1.6	2.0	2.4	4.3	0.69
Aluminium (%)			0.04	0.05	0.04	0.04	0.09
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	2.9	2.9	3.4	3.6	4.9
			7.5 YR 3/3	7.5 YR 3/3	10 YR 4/2	5 YR 3/3	5 YR 3/3
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Dark Brown	Dark Brown	Dark Grayish Brown	Dark Reddish Brown	Dark Reddish Brown
Mottles Munsell Colour		louse municin con colour clussification					
Mottles Mulisell Colour							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 17 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kir	ngs Road NEW LAMBTON NSW 2305		Sample 41	Sample 42	Sample 43	Sample 44	Sample 45
		Sample ID:	B25	B25	B25	B25	B28
		Crop:	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
	Parameter	Method reference	K0498/41	K0498/42	K0498/43	K0498/44	K0498/45

No	tes:
----	------

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{\star}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 18 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

0 Kings Road NEW LAMBTON N	SW 2305		Sample 46	Sample 47	Sample 48	Sample 49	Sample 50
		Sample ID:	B28	B28	B28	B29	B29
		Crop:	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/46	K0498/47	K0498/48	K0498/49	K0498/50
рН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.58	9.21	9.54	8.77	9.18
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.069	0.214	0.544	0.162	0.211
	(cmol₊/kg)		11	8.9	18	28	29
Exchangeable Calcium	(kg/ha)		5,091	3,996	8,184	12,626	13,216
	(mg/kg)		2,273	1,784	3,654	5,637	5,900
	(cmol ₊ /kg)		5.6	6.4	8.7	9.7	12
Exchangeable Magnesium	(kg/ha)		1,521	1,744	2,370	2,641	3,299
	(mg/kg)	Rayment & Lyons 2011 - 15D3	679	779	1,058	1,179	1,473
	(cmol ₊ /kg)	(Ammonium Acetate)	0.26	0.21	0.26	0.37	0.32
Exchangeable Potassium	(kg/ha)		227	184	226	322	277
	(mg/kg)		101	82	101	144	124
	(cmol ₊ /kg)		1.5	2.4	4.5	1.6	2.9
Exchangeable Sodium	(kg/ha)		759	1,225	2,342	836	1,494
	(mg/kg)		339	547	1,046	373	667
	(cmol₊/kg)		0.02	0.01	<0.01	0.01	0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	3.5	2.7	1.5	2.6	2.3
	(mg/kg)		1.5	1.2	<1	1.2	1.0
	(cmol₊/kg)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)		<1	<1	<1	<1	<1
	(mg/kg)		<1	<1	<1	<1	<1
Effective Cation Exchange Capa (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	19	18	32	40	45
Calcium (%)			61	50	57	71	66
Magnesium (%)			30	36	27	24	27
Potassium (%)		**Base Saturation Calculations -	1.4	1.2	0.81	0.92	0.71
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	7.9	13	14	4.1	6.5
Aluminium (%)			0.09	0.08	0.02	0.03	0.03
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	2.0	1.4	2.1	2.9	2.4
			5 YR 3/3	5 YR 3/4	7.5 YR 4/4	7.5 YR 2.5/2	10 YR 3/2
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Dark Reddish Brown	Dark Reddish Brown	Brown	Very Dark Brown	Very Dark Grayish Brown
Mottles Munsell Colour							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 19 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Ki	ngs Road NEW LAMBTON NSW 2305		Sample 46	Sample 47	Sample 48	Sample 49	Sample 50
		Sample ID:	B28	B28	B28	B29	B29
		Crop:	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
	Parameter	Method reference	K0498/46	K0498/47	K0498/48	K0498/49	K0498/50

	No	es:
--	----	-----

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{+}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of CI mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 20 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305		Sample 51	Sample 52	Sample 53	Sample 54	Sample 55
	Sample	D: B29	B29	B31	B31	B31
	Cr	р: 0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60
	Clie	nt: BMA	BMA	ВМА	ВМА	ВМА
Parameter	Method reference	K0498/51	K0498/52	K0498/53	K0498/54	K0498/55
рН	Rayment & Lyons 2011 - 4A1 (1:5 Water)	9.03	7.43	8.30	9.02	8.89
Electrical Conductivity (dS/m)	Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.765	1.271	0.089	0.211	0.673
(cm	/kg)	20	13	22	22	19
Exchangeable Calcium (kg/)	9,049	5,723	9,717	9,820	8,695
(mg	g)	4,040	2,555	4,338	4,384	3,882
(cm	/kg)	12	15	9.0	8.1	11
Exchangeable Magnesium (kg/)	3,400	4,029	2,455	2,206	2,885
(mg	g) Rayment & Lyons 2011 - 15D3	1,518	1,799	1,096	985	1,288
(cm	/kg) (Ammonium Acetate)	0.28	0.29	0.45	0.31	0.34
Exchangeable Potassium (kg/)	244	253	391	273	295
(mg	g)	109	113	174	122	132
(cm	/kg)	7.9	13	0.97	2.6	6.7
Exchangeable Sodium (kg/ha))	4,062	6,441	501	1,315	3,446
(mg	g)	1,814	2,876	224	587	1,539
(cm	/kg)	0.01	0.01	0.02	0.01	0.01
Exchangeable Aluminium (kg/	**Inhouse S37 (KCI)	2.6	2.5	3.1	3.0	2.9
(mg	g)	1.2	1.1	1.4	1.3	1.3
(cm	/kg)	<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen (kg/	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	<1	<1	<1	<1
(mg	g)	<1	<1	<1	<1	<1
Effective Cation Exchange Capacity (ECEC) (cmol./kg)	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol ₊ /kg)	41	40	32	33	37
Calcium (%)		49	32	67	67	52
Magnesium (%)		31	37	28	25	29
Potassium (%)	**Base Saturation Calculations -	0.68	0.71	1.4	0.95	0.91
Sodium - ESP (%)	Cation cmol₊/kg / ECEC x 100	19	31	3.0	7.8	18
Aluminium (%)		0.03	0.03	0.05	0.05	0.04
Hydrogen (%)		0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio	**Calculation: Calcium / Magnesium (cmol,/kg	1.6	0.86	2.4	2.7	1.8
		5 YR 3/2	5 YR 4/4	7.5 YR 3/3	7.5 YR 4/3	5 YR 3/3
Moist Munsell Colour	ttiphouse Muncell Cail Colour Classification	Dark Reddish Brown	Reddish Brown 10%	Dark Brown	Brown	Dark Reddish Brown
M. W	**Inhouse Munsell Soil Colour Classification		5 YR 3/1			
Mottles Munsell Colour			Very Dark Gray			
Degree of Mottling (%)			10			

CRICOS Provider: 01241G Page 21 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LA	AMBTON NSW 2305		Sample 51	Sample 52	Sample 53	Sample 54	Sample 55
		Sample ID:	B29	B29	B31	B31	B31
		Crop:	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Pa	rameter	Method reference	K0498/51	K0498/52	K0498/53	K0498/54	K0498/55

Notes:

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{\star}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer so
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 22 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

Kings Road NEW LAMBTON N	SW 2305	: SLR 620.13452.20000 Blackwater	Sample 56	Sample 57	Sample 58	Sample 59	Sample 60
•		Sample ID:	B31	B32	B32	B32	B32
		Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
		Client:	BMA	BMA	BMA	BMA	BMA
Parameter		Method reference	K0498/56	K0498/57	K0498/58	K0498/59	K0498/60
рН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.20	7.25	7.55	9.12	9.11
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	1.128	0.039	0.041	0.819	1.064
	(cmol ₊ /kg)		12	10	11	23	15
Exchangeable Calcium	(kg/ha)		5,492	4,553	5,010	10,342	6,914
	(mg/kg)		2,452	2,033	2,237	4,617	3,087
	(cmol ₊ /kg)		11	5.3	5.1	11	9.6
Exchangeable Magnesium	(kg/ha)		2,986	1,431	1,394	3,055	2,602
	(mg/kg)	Rayment & Lyons 2011 - 15D3	1,333	639	623	1,364	1,162
	(cmol ₊ /kg)	(Ammonium Acetate)	0.26	0.85	0.31	0.20	0.20
Exchangeable Potassium	(kg/ha)		232	744	271	176	172
	(mg/kg)		104	332	121	79	77
	(cmol₊/kg)		12	0.44	0.76	6.4	7.3
Exchangeable Sodium	(kg/ha)		6,018	227	394	3,276	3,764
	(mg/kg)		2,687	101	176	1,463	1,681
	(cmol₊/kg)		0.01	0.02	0.02	0.02	0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	2.8	3.9	3.8	3.7	2.8
(mg/kg)	(mg/kg)		1.3	1.7	1.7	1.6	1.3
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	<1	<1	<1	<1
	(mg/kg)	(totally made ny	<1	<1	<1	<1	<1
Effective Cation Exchange Capac (ECEC) (cmol ₊ /kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	35	17	17	41	32
Calcium (%)			35	61	64	56	47
Magnesium (%)			31	31	29	27	29
Potassium (%)		**Base Saturation Calculations -	0.75	5.1	1.8	0.49	0.60
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	33	2.6	4.4	16	23
Aluminium (%)			0.04	0.11	0.11	0.04	0.04
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	1.1	1.9	2.2	2.1	1.6
		7.5 YR 4/4	5 YR 3/3	5 YR 4/4	7.5 YR 4/6	5 YR 5/4	
Moist Munsell Colour		Brown	Dark Reddish Brown	Reddish Brown	Strong Brown	Reddish Brown	
		**Inhouse Munsell Soil Colour Classification	10 YR 4/1				5 YR 6/8
Mottles Munsell Colour			Dark Gray				Reddish Yellov
Degree of Mottling (%)			2				20

CRICOS Provider: 01241G Page 23 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

	Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
	Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter	Method reference	K0498/56	K0498/57	K0498/58	K0498/59	K0498/60

Notes:

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{+}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of CI mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer so
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 24 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

0 Kings Road NEW LAMBTON NSW 2305		Sample 61	Sample 62	Sample 63	Sample 64	Sample 65	
	Sample ID:		B34	B34	B34	B34	B36
		Crop:	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/61	K0498/62	K0498/63	K0498/64	K0498/65
рН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.99	8.80	8.51	8.13	7.31
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.173	0.211	1.512	1.745	0.058
	(cmol₊/kg)		36	31	18	16	13
Exchangeable Calcium	(kg/ha)		16,045	13,784	8,214	7,194	5,649
	(mg/kg)		7,163	6,154	3,667	3,212	2,522
	(cmol ₊ /kg)		10.0	7.1	13	13	4.8
Exchangeable Magnesium	(kg/ha)		2,712	1,930	3,481	3,416	1,320
	(mg/kg) Rayment & Lyons 2011 - 15D3 (cmol,/kg) (Ammonium Acetate)	1,211	861	1,554	1,525	589	
		(Ammonium Acetate)	0.53	0.42	0.41	0.42	0.29
Exchangeable Potassium	(kg/ha)		466	372	358	370	255
	(mg/kg)		208	166	160	165	114
	(cmol ₊ /kg)		2.2	2.3	12	13	0.91
Exchangeable Sodium	(kg/ha)		1,140	1,183	6,305	6,844	467
	(mg/kg)	509	528	2,815	3,056	209	
	(cmol₊/kg)		0.01	0.02	<0.01	<0.01	0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	2.9	3.5	1.3	1.4	2.2
	(mg/kg)		1.3	1.6	<1	<1	<1
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	<1	<1	<1	<1
	(mg/kg)	(Notally Thruston)	<1	<1	<1	<1	<1
Effective Cation Exchange Capa (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	48	41	44	42	19
Calcium (%)			74	76	42	38	68
Magnesium (%)			21	17	29	30	26
Potassium (%)		**Base Saturation Calculations -	1.1	1.0	0.94	1.00	1.6
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	4.6	5.7	28	31	4.9
Aluminium (%)			0.03	0.04	0.01	0.02	0.06
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	3.6	4.3	1.4	1.3	2.6
			10 YR 3/2	7.5 YR 3/1	7.5 YR 2.5/2	5 YR 3/2	7.5 YR 3/4
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Very Dark Grayish Brown	Very Dark Gray	Very Dark Brown	Dark Reddish Brown	Dark Brown
Mattles Muneell Calann		iiiilouse Muliseli soli Coloui Classification				7.5 YR 4/6	
Mottles Munsell Colour						Strong Brown	
Degree of Mottling (%)						40	

CRICOS Provider: 01241G Page 25 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10	Kings Road NEW LAMBTON NSW 2305		Sample 61	Sample 62	Sample 63	Sample 64	Sample 65
		Sample ID:	B34	B34	B34	B34	B36
		Crop:	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
	Parameter	Method reference	K0498/61	K0498/62	K0498/63	K0498/64	K0498/65

	No	es:
--	----	-----

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{+}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

O Kings Road NEW LAMBTON N		: SLR 620.13452.20000 Blackwater	Sample 66	Sample 67	Sample 68	Sample 69	Sample 70
		Sample ID:	B36	B36	B36	B38	B38
		Crop:	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30
		Client:	ВМА	BMA	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/66	K0498/67	K0498/68	K0498/69	K0498/70
pH		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.78	9.29	9.38	8.98	9.19
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.178	0.528	0.749	0.178	0.344
	(cmol ₊ /kg)		25	24	23	32	29
Exchangeable Calcium	(kg/ha)		11,105	10,908	10,272	14,246	13,045
	(mg/kg)		4,958	4,870	4,586	6,360	5,824
	(cmol ₊ /kg)		8.4	12	10.0	6.3	7.5
Exchangeable Magnesium	(kg/ha)		2,287	3,214	2,719	1,724	2,034
	(mg/kg)	Rayment & Lyons 2011 - 15D3	1,021	1,435	1,214	770	908
	(cmol ₊ /kg)	(Ammonium Acetate)	0.32	0.29	0.20	0.46	0.31
Exchangeable Potassium	(kg/ha)		280	251	174	406	268
	(mg/kg)		125	112	78	181	120
	(cmol₊/kg)	2.0	7.4	8.2	2.1	4.8	
Exchangeable Sodium	(kg/ha)		1,026	3,791	4,217	1,103	2,454
	(mg/kg)	4	458	1,693	1,883	493	1,096
	(cmol ₊ /kg)		0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	2.2	1.9	1.4	2.0	1.9
(mg/	(mg/kg)		<1	<1	<1	<1	<1
	(cmol ₊ /kg)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)		<1	<1	<1	<1	<1
	(mg/kg)	(Actually Thruthorn)	<1	<1	<1	<1	<1
Effective Cation Exchange Capa (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	35	44	41	41	42
Calcium (%)			70	56	55	78	70
Magnesium (%)			24	27	24	16	18
Potassium (%)		**Base Saturation Calculations -	0.90	0.65	0.48	1.1	0.74
Sodium - ESP (%)		Cation cmol,/kg / ECEC x 100	5.6	17	20	5.3	11
Aluminium (%)			0.03	0.02	0.02	0.02	0.02
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	2.9	2.1	2.3	5.0	3.9
		10 YR 3/3	10 YR 3/3	10 YR 5/4	7.5 YR 3/4	7.5 YR 3/4	
Moist Munsell Colour			Dark Brown	Dark Brown	Yellowish Brown	Dark Brown	Dark Brown
	**Inhouse			1			
Mottles Munsell Colour							
Degree of Mottling (%)				**			
2 3 3 3 Motting (**)				"			**

CRICOS Provider: 01241G Page 27 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498

Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater	
10 Kings Road NEW LAMBTON NSW 2305	

101	Kings Road NEW LAMBTON NSW 2305		Sample 66	Sample 67	Sample 68	Sample 69	Sample 70
		Sample ID:	B36	B36	B36	B38	B38
		Crop:	0.20-0.30	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
	Parameter	Method reference	K0498/66	K0498/67	K0498/68	K0498/69	K0498/70

Notes:

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, Table 5-A Background Ranges,
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol₊/kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 28 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305		Sample 71	Sample 72	Sample 73	Sample 74	Sample 75	
	Sample ID:		B38	B38	B40	B40	B40
		Crop:	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/71	K0498/72	K0498/73	K0498/74	K0498/75
рН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	9.17	9.19	8.68	8.96	9.02
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.976	1.225	0.130	0.812	0.892
	(cmol₄/kg)		24	22	24	24	23
Exchangeable Calcium	(kg/ha)		10,908	9,923	10,637	10,926	10,272
	(mg/kg)		4,870	4,430	4,749	4,878	4,586
	(cmol ₊ /kg)		8.3	8.7	7.2	12	12
Exchangeable Magnesium	(kg/ha)		2,260	2,365	1,969	3,322	3,348
	(mg/kg)	Rayment & Lyons 2011 - 15D3	1,009	1,056	879	1,483	1,495
	(cmol₊/kg)	(Ammonium Acetate)	0.28	0.24	0.60	0.36	0.34
Exchangeable Potassium	(kg/ha)		244	211	522	316	301
	(mg/kg)		109	94	233	141	134
	(cmol ₊ /kg)		9.1	11	0.68	8.3	9.5
Exchangeable Sodium	(kg/ha)		4,674	5,919	348	4,284	4,893
	(mg/kg)	2	2,087	2,643	155	1,913	2,185
	(cmol₊/kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	1.9	1.5	1.9	1.8	1.7
	(mg/kg)		<1	<1	<1	<1	<1
	(cmol₊/kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1	<1	<1	<1	<1	<1
	(mg/kg)	(Acidity Titration)	<1	<1	<1	<1	<1
Effective Cation Exchange Capa (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol₊/kg)	42	43	32	45	45
Calcium (%)			58	52	74	54	51
Magnesium (%)			20	20	22	27	27
Potassium (%)		**Base Saturation Calculations -	0.66	0.57	1.9	0.80	0.76
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	22	27	2.1	18	21
Aluminium (%)			0.02	0.02	0.03	0.02	0.02
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol ₊ /kg)	2.9	2.5	3.3	2.0	1.9
			10 YR 4/4	7.5 YR 3/4	7.5 YR 3/2	10 YR 4/2	10 YR 3/2
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Dark Yellowish Brown	Dark Brown	Dark Brown	Dark Grayish Brown	Very Dark Grayish Brown
Mottles Munsell Colour		iodoc Mariocii con colodi cidosinediloti					
Wottes Wallsell Coloui							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 29 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305	Sample 71	Sample 72	Sample 73	Sample 74	Sample 75
Sample ID:	B38	B38	B40	B40	B40
Crop:	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60
Client:	ВМА	ВМА	ВМА	ВМА	ВМА

Nο	es.						
	Parameter	Method reference	K0498/71	K0498/72	K0498/73	K0498/74	K0498/75
		Client:	ВМА	BMA	ВМА	ВМА	BMA
		Crop:	0.50-0.60	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, Table 5-A Background Ranges,
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol₊/kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 30 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

Kings Road NEW LAMBTON N	SW 2305		Sample 76	Sample 77	Sample 78	Sample 79	Sample 80
		Sample ID:	B40	B42	B42	B42	B42
		Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
		Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Parameter		Method reference	K0498/76	K0498/77	K0498/78	K0498/79	K0498/80
pH		Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.58	8.93	9.23	9.38	9.45
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	1.197	0.077	0.178	0.921	1.124
	(cmol ₊ /kg)		14	21	17	23	17
Exchangeable Calcium (kg/ha) (mg/kg)		6,247	9,392	7,844	10,115	7,499	
	(mg/kg)		2,789	4,193	3,502	4,516	3,348
	(cmol ₊ /kg)		12	8.2	6.6	9.2	9.6
Exchangeable Magnesium	(kg/ha)		3,286	2,243	1,793	2,513	2,609
(mg/kg)	Rayment & Lyons 2011 - 15D3	1,467	1,001	801	1,122	1,165	
	(cmol ₊ /kg)	(Ammonium Acetate)	0.34	0.37	0.27	0.19	0.17
exchangeable Potassium (kg/ha) (mg/kg)		299	324	237	165	150	
		134	145	106	74	67	
	(cmol₄/kg)		11	2.6	2.5	9.7	11
Exchangeable Sodium	(kg/ha)		5,711	1,319	1,286	5,003	5,693
	(mg/kg)		2,550	589	574	2,234	2,542
	(cmol₊/kg)		<0.01	0.01	<0.01	<0.01	0.01
Exchangeable Aluminium (kg/ha) (mg/kg)	**Inhouse S37 (KCI)	1.6	2.2	1.6	1.7	2.0	
	(mg/kg)		<1	<1	<1	<1	<1
	(cmol ₊ /kg)		<0.01	<0.01	<0.01	<0.01	<0.01
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1	<1	<1	<1	<1	<1
	(mg/kg)	(Acidity Titration)	<1	<1	<1	<1	<1
Effective Cation Exchange Capa (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol./kg)	37	32	27	42	38
Calcium (%)		3.1 1 1 (1 3)	37	65	65	54	45
Magnesium (%)			32	26	25	22	26
Potassium (%)		**Base Saturation Calculations -	0.91	1.2	1.0	0.45	0.46
Sodium - ESP (%)		Cation cmol₁/kg / ECEC x 100	30	8.0	9.3	23	29
Aluminium (%)			0.02	0.03	0.03	0.02	0.03
Hydrogen (%)			0.00	0.00	0.00	0.00	0.00
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	1.2	2.5	2.7	2.4	1.7
		•	7.5 YR 5/6	7.5 YR 3/2	10 YR 3/3	10 YR 3/3	10 YR 3/
Moist Munsell Colour		**Inhouse Munsell Soil Colour Classification	Strong Brown	Dark Brown	Dark Brown	Dark Brown	Dark Brov
Mottles Munsell Colour		sse wanten con colour classification					
Morries Minisell Coloni							
Degree of Mottling (%)							

CRICOS Provider: 01241G Page 31 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON NSW 2305		Sample 76	Sample 77	Sample 78	Sample 79	Sample 80
	Sample ID:	B40	B42	B42	B42	B42
	Crop:	0.90-1.0	0.0-0.10	0.20-0.30	0.50-0.60	0.90-1.0
	Client:	ВМА	ВМА	ВМА	ВМА	ВМА
Barameter	M-4hdf	V0400/76	V0400/77	V0400/70	V0400/70	V0400/00

		Not	es:
--	--	-----	-----

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- 8. National Environmental Protection (Assessment of Site Contamination) Measure 2013,
- Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{+}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer so
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 32 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10 Kings Road NEW LAMBTON N		Sample ID:	Heavy Soil	Medium Soil	Light Soil	Sandy Soil
		Crop:				
		Client:	Clay	Clay Loam	Loam	Loamy Sand
Parameter		Method reference	Indicative	e guidelines -	refer to Note	
рН		Rayment & Lyons 2011 - 4A1 (1:5 Water)	6.5	6.5	6.3	6.3
Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.200	0.150	0.120	0.100
	(cmol ₊ /kg)		15.6	10.8	5.0	1.9
Exchangeable Calcium	(kg/ha)		7000	4816	2240	840
	(mg/kg)		3125	2150	1000	375
	(cmol ₊ /kg)		2.4	1.7	1.2	0.60
Exchangeable Magnesium	(kg/ha)		650	448	325	168
	(mg/kg)	Rayment & Lyons 2011 - 15D3	290	200	145	75
	(cmol ₊ /kg)	(Ammonium Acetate)	0.60	0.50	0.40	0.30
Exchangeable Potassium	(kg/ha)		526	426	336	224
	(mg/kg)		235	190	150	100
	(cmol ₊ /kg)		0.3	0.26	0.22	0.11
Exchangeable Sodium	(kg/ha)		155	134	113	57
	(mg/kg)		69	60	51	25
	(cmol ₊ /kg)		0.6	0.5	0.4	0.2
Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	121	101	73	30
	(mg/kg)		54	45	32	14
	(cmol ₊ /kg)	+-D	0.6	0.5	0.4	0.2
Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	13	11	8	3
	(mg/kg)	(is any is a surry	6	5	4	2
Effective Cation Exchange Capa (ECEC) (cmol,/kg)	city	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol ₊ /kg)	20.1	14.3	7.8	3.3
Calcium (%)			77.6	75.7	65.6	57.4
Magnesium (%)			11.9	11.9	15.7	18.1
Potassium (%)		**Base Saturation Calculations -	3.0	3.5	5.2	9.1
Sodium - ESP (%)		Cation cmol₊/kg / ECEC x 100	1.5	1.8	2.9	3.3
Aluminium (%)			6.0	7.1	10.5	12.1
Hydrogen (%)			0.0	7.1	10.5	12.1
Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	6.5	6.4	4.2	3.2
Moist Munsell Colour						
Mottles Munsell Colour		**Inhouse Munsell Soil Colour Classification				
Degree of Mottling (%)						

CRICOS Provider: 01241G Page 33 / 34

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

AGRICULTURAL SOIL ANALYSIS RE-ISSUED REPORT

80 samples supplied by SLR Consulting Australia Pty Ltd on 11/11/2020. Lab Job No.K0498 Analysis requested by Murray Fraser. Your Job: SLR 620.13452.20000 Blackwater

10	Kings Road NEW LAMBTON NSW 2305	Sample ID:	Heavy Soil	Medium Soil	Light Soil	Sandy Soil
		Crop:				
		Client:	Clay	Clay Loam	Loam	Loamy Sand
	Parameter	Method reference	Indicative	guidelines -	refer to Note	s 6 and 8

Notes:

- 1. All results presented as a 40°C oven dried weight. Soil sieved and lightly crushed to < 2 mm.
- 2. Methods from Rayment and Lyons, 2011. Soil Chemical Methods Australasia. CSIRO Publishing: Collingwo
- 3. Soluble Salts included in Exchangeable Cations NO PRE-WASH (unless requested).
- 4. 'Morgan 1 Extract' adapted from 'Science in Agriculture', 'Non-Toxic Farming' and LaMotte Soil Handbook.
- 5. Guidelines for phosphorus have been reduced for Australian soils.
- 6. Indicative guidelines are based on 'Albrecht' and 'Reams' concepts.
- 7. Total Acid Extractable Nutrients indicate a store of nutrients.
- National Environmental Protection (Assessment of Site Contamination) Measure 2013,
 Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater. Table 5-A Background Ranges.
- 9. Information relating to testing colour codes is available on sheet 2 'Understanding your agricultural soil res
- 10. Conversions for 1 cmol $_{\star}$ /kg = 230 mg/kg Sodium, 390 mg/kg Potassium,
 - 122 mg/kg Magnesium, 200 mg/kg Calcium
- 11. Conversions to kg/ha = mg/kg x 2.24
- 12. The chloride calculation of Cl mg/L = EC x 640 is considered an estimate, and most likely an over-estimate
- 13. ** NATA accreditation does not cover the performance of this service.
- 14. Analysis conducted between sample arrival date and reporting date.
- 15. This report is not to be reproduced except in full. Results only relate to the item tested.
- 16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer sc
- 17. This report issued 2/12/2020 replaces the original report issued on 30/11/2020.

Quality Checked: Kris Saville Agricultural Co-Ordinator

CRICOS Provider: 01241G Page 34 / 34

GRAIN SIZE ANALYSIS (hydrometer and sieving techniques)
80 soil samples supplied by SLR Consulting Australia pty Ltd on 11 November, 2020 - Lab Job No. K0498
Analysis requested by Murray Fraser
10 Kings Board NEWL (AMETON NSW 2005)

10 Kings Road NE	W LAMBTON NSW 2	305	1			1	1		1			1		
SAMPLE ID	DEPTH INTERVAL (m)	Lab Code	EMERSON AGGREGATE CLASS		WET MUNSELL COLOUR	MOISTURE CONTENT (% of water in airdry sample)	TOTAL GRAVEL > 2 mm (% of total oven- dry equivalent)	GRAVEL > 4.75 mm (% of total oven-dry equivalent)	GRAVEL 2.00-4.75 mm (% of total ovendry equivalent)	COARSE SAND 200-2000 µm (0.2-2.0 mm) (% of total oven- dry equivalent)	FINE SAND 20-200 µm (0.02-0.2 mm) (% of total oven- dry equivalent)	SILT 2-20 µm ISSS (% of total oven-dry equivalent)	CLAY < 2 µm (% of total oven-dry equivalent)	Total soil fractions (incl. Gravel)
B01	0.0-0.10	K0498/1	3	5 YR 3/4	Dark Reddish Brown	3.4%	0.3%	0.0%	0.3%	15.3%	46.0%	10.6%	28.0%	100.0%
B01	0.20-0.30	K0498/2	3	5 YR 3/4	Dark Reddish Brown	9.0%	0.2%	0.0%	0.2%	14.6%	33.8%	15.2%	36.1%	100.0%
B01	0.50-0.60	K0498/3	2	7.5 YR 3/4	Dark Brown	11.6%	3.5%	0.0%	3.5%	12.5%	19.3%	25.8%	38.9%	100.0%
B01	0.90-1.0	K0498/4	2	5 YR 3/4	Dark Reddish Brown	11.1%	45.1%	39.9%	5.3%	9.6%	12.1%	7.4%	25.7%	100.0%
B05	0.0-0.10	K0498/5	4	7.5 YR 2.5/2	Very Dark Brown	7.7%	0.8%	0.0%	0.8%	9.0%	24.7%	19.1%	46.3%	100.0%
B05	0.20-0.30	K0498/6	4	10 YR 2/1	Black	11.5%	0.1%	0.0%	0.1%	7.2%	15.5%	12.6%	64.5%	100.0%
B05	0.50-0.60	K0498/7	4	5 YR 2.5/1	Black	12.7%	1.3%	0.0%	1.3%	5.3%	10.4%	15.1%	67.9%	100.0%
B05	0.90-1.0	K0498/8	4	7.5 YR 3/4	Dark Brown	8.2%	8.3%	1.2%	7.1%	13.2%	23.4%	17.3%	37.8%	100.0%
B07	0.0-0.10	K0498/9	4	5 YR 3/3	Dark Reddish Brown	5.1%	1.7%	0.2%	1.5%	25.5%	27.4%	8.5%	37.0%	100.0%
B07	0.20-0.30	K0498/10	3	10 YR 3/3	Dark Brown	7.2%	0.7%	0.0%	0.7%	26.7%	11.4%	5.8%	55.4%	100.0%
B07	0.50-0.60	K0498/11	3	7.5 YR 3/4	Dark Brown	7.5%	2.1%	0.8%	1.3%	22.4%	20.0%	11.3%	44.2%	100.0%
B07	0.90-1.0	K0498/12	2	7.5 YR 4/6	Strong Brown	8.4%	0.2%	0.0%	0.2%	18.4%	23.1%	10.3%	48.0%	100.0%
B09	0.0-0.10	K0498/13	4	5 YR 2.5/2	Dark Reddish Brown	8.0%	1.2%	0.0%	1.2%	4.6%	14.4%	71.5%	8.2%	100.0%
B09	0.20-0.30	K0498/14	3	7.5 YR 3/2	Dark Brown	11.5%	2.0%	0.9%	1.1%	3.8%	9.9%	18.2%	66.0%	100.0%
B09	0.50-0.60	K0498/15	2	7.5 YR 3/1	Very Dark Gray	12.5%	5.0%	0.8%	4.2%	3.4%	6.6%	16.8%	68.2%	100.0%
B09	0.90-1.0	K0498/16	3	7.5 YR 3/1	Very Dark Gray	13.0%	7.0%	2.4%	4.7%	2.8%	6.9%	17.4%	65.9%	100.0%
B10	0.0-0.10	K0498/17	3	7.5 YR 3/3	Dark Brown	6.8%	0.0%	0.0%	0.0%	2.4%	27.9%	18.0%	51.7%	100.0%
B10	0.20-0.30	K0498/18	3	5 YR 3/3	Dark Reddish Brown	8.7%	0.0%	0.0%	0.0%	1.6%	15.5%	19.0%	64.0%	100.0%
B10	0.50-0.60	K0498/19	3	7.5 YR 3/4	Dark Brown	11.6%	0.0%	0.0%	0.0%	2.0%	15.5%	16.7%	65.7%	100.0%
B10	0.90-1.0	K0498/20	2	7.5 YR 3/4	Dark Brown	10.7%	0.0%	0.0%	0.0%	2.8%	25.6%	29.0%	42.6%	100.0%
B12	0.0-0.10	K0498/21	3	7.5 YR 2.5/3	Very Dark Brown	2.2%	0.0%	0.0%	0.0%	18.8%	50.8%	12.1%	18.3%	100.0%
B12	0.20-0.30	K0498/22	3	7.5 YR 2.5/2	Very Dark Brown	4.9%	0.1%	0.0%	0.1%	12.5%	48.1%	6.0%	33.2%	100.0%
B12	0.50-0.60	K0498/22 K0498/23	3	7.5 YR 3/4	Dark Brown	6.1%	0.0%	0.0%	0.0%	9.7%	44.4%	9.7%	36.2%	100.0%
B12	0.90-1.0	K0498/23 K0498/24	2	7.5 YR 3/4	Dark Brown	6.9%	0.3%	0.0%	0.3%	11.6%	41.2%	11.4%	35.6%	100.0%
B17	0.0-0.10	K0498/25	2	10 YR 3/3	Dark Brown	5.1%	0.6%	0.0%	0.6%	2.9%	22.8%	22.2%	51.5%	100.0%
B17	0.20-0.30	K0498/25 K0498/26	2	5 YR 2.5/1	Black	8.8%	0.0%	0.0%	0.0%	2.1%	18.5%	20.0%	59.4%	100.0%
B17	0.50-0.60	K0498/27	2	7.5 YR 2.5/2		10.8%	0.0%	0.0%	0.0%	3.2%	24.6%	18.7%	53.4%	100.0%
B17	0.90-1.0		2	7.5 YR 2.5/2 7.5 YR 3/4	Very Dark Brown Dark Brown	12.7%	0.3%	0.0%	0.3%	1.9%	15.9%	25.1%	56.9%	100.0%
B20	0.90-1.0	K0498/28 K0498/29	3			2.9%	2.4%	1.3%	1.1%	33.0%	41.9%	6.4%	16.2%	100.0%
B20 B20	0.20-0.10	K0498/29 K0498/30	2	7.5 YR 2.5/2 5 YR 3/4	Very Dark Brown Dark Reddish Brown	6.8%	2.4%	0.0%	2.0%	26.8%	26.6%	6.8%	37.8%	100.0%
			4											
B20	0.50-0.60	K0498/31		5 YR 4/6	Yellowish Red	5.5%	1.6%	0.0%	1.6%	29.6%	35.3%	2.5%	30.9%	100.0%
B20	0.90-1.0	K0498/32	2	7.5 YR 4/6	Strong Brown	4.8%	31.0%	25.1%	5.9%	19.5%	23.7%	4.6%	21.1%	100.0%
B21	0.0-0.10	K0498/33	3	7.5 YR 3/4	Dark Brown	7.4%	2.7%	0.0%	2.7%	56.0%	29.0%	3.4%	8.9%	100.0%
B21	0.20-0.30	K0498/34	2	7.5 YR 4/4	Brown	7.3%	2.1%	0.0%	2.1%	35.5%	20.9%	2.0%	39.6%	100.0%
B21	0.50-0.60	K0498/35	2	7.5 YR 3/3 with 40% 7.5 YR 5/6	Dark Brown with 40% Strong Brown	6.3%	1.9%	0.0%	1.9%	36.6%	21.3%	3.4%	36.7%	100.0%
B21	0.90-1.0	K0498/36	2	7.5 YR 4/4	Brown	5.7%	5.8%	1.4%	4.4%	29.2%	19.0%	11.3%	34.7%	100.0%
B23	0.0-0.10	K0498/37	4	7.5 YR 3/2	Dark Brown	10.6%	19.1%	12.7%	6.4%	8.1%	18.9%	12.3%	41.6%	100.0%
B23	0.20-0.30	K0498/38	3	7.5 YR 3/1	Very Dark Gray	11.1%	2.4%	0.0%	2.4%	6.6%	18.8%	13.8%	58.4%	100.0%
B23	0.50-0.60	K0498/39	3	10 YR 4/3	Brown	12.5%	6.6%	0.5%	6.0%	8.8%	18.2%	10.7%	55.7%	100.0%
B23	0.90-1.0	K0498/40	3	10 YR 3/3	Dark Brown	12.3%	10.8%	0.0%	10.8%	8.6%	12.9%	10.4%	57.3%	100.0%

Graham Lancaster (Nata signatory) Laboratory Manager

SAMPLE ID	DEPTH	Lab Code	EMERSON		WET	MOISTURE	TOTAL	GRAVEL	GRAVEL	COARSE SAND	FINE SAND	SILT	CLAY	Total
	INTERVAL		AGGREGATE		MUNSELL	CONTENT	GRAVEL	> 4.75 mm	2.00-4.75 mm	200-2000 um	20-200 μm	2-20 µm	< 2 um	soil
	INTERVAL		CLASS		COLOUR	CONTENT	> 2 mm	74.75 11111	2.00-4.73 11111			ISSS	ν 2 μ ιιι	fractions
			CLASS		COLOUR		> 2 111111	(% of total		(0.2-2.0 mm)	(0.02-0.2 mm)	(% of total	(% of total	(incl. Gravel)
						(% of water in air-	(% of total oven-	oven-dry	(% of total oven-	(% of total oven-	(% of total oven-	oven-dry	oven-dry	(Incl. Gravel)
	(m)					dry sample)	dry equivalent)	equivalent)	dry equivalent)	dry equivalent)	dry equivalent)	equivalent)	equivalent)	
	(111)					ary carriple)	ary equivalent)	equivalent	ary equivalents	ary equivalently	ary equivalents	equivalent)	equivalenty	
B25	0.0-0.10	K0498/41	3	7.5 YR 3/3	Dark Brown	5.9%	0.0%	0.0%	0.0%	2.4%	27.8%	12.9%	56.9%	100.0%
	0.20-0.30	K0498/42	4	7.5 YR 3/3	Dark Brown	10.6%	0.0%	0.0%	0.0%	2.2%	23.1%	15.8%	58.9%	100.0%
	0.50-0.60	K0498/42	4	10 YR 4/2	Dark Gravish Brown	10.8%	2.8%	0.8%	1.9%	3.7%	23.9%	18.1%	51.6%	100.0%
	0.90-1.0	K0498/44	4	5 YR 3/3	Dark Reddish Brown	6.9%	4.6%	0.8%	3.8%	21.2%	28.0%	21.3%	24.9%	100.0%
	0.0-0.10	K0498/45	3	5 YR 3/3	Dark Reddish Brown	3.1%	0.0%	0.0%	0.0%	33.2%	32.8%	11.9%	22.0%	100.0%
	0.20-0.30	K0498/46	2	5 YR 3/3	Dark Reddish Brown	7.2%	0.2%	0.0%	0.2%	26.4%	20.6%	11.1%	41.7%	100.0%
	0.50-0.60	K0498/47	2	5 YR 3/4	Dark Reddish Brown	7.0%	0.4%	0.0%	0.4%	31.2%	24.4%	8.9%	35.1%	100.0%
	0.90-1.0	K0498/48	2	7.5 YR 4/4	Brown	5.6%	0.5%	0.0%	0.5%	37.3%	22.7%	10.9%	28.7%	100.0%
	0.0-0.10	K0498/49	4	7.5 YR 2.5/2	Very Dark Brown	9.3%	0.0%	0.0%	0.0%	6.5%	29.1%	14.2%	50.2%	100.0%
	0.20-0.30	K0498/50	3	10 YR 3/2	Very Dark Grayish Brown	11.8%	0.5%	0.0%	0.5%	4.9%	18.6%	15.2%	60.8%	100.0%
B29	0.50-0.60	K0498/51	2	5 YR 3/2	Dark Reddish Brown	12.6%	1.4%	0.0%	1.4%	4.9%	18.4%	16.3%	59.0%	100.0%
B29	0.90-1.0	K0498/52	2	5 YR 4/4 with 10% 5 YR 3/1	Reddish Brown with 10% Very Dark Gray	14.3%	0.0%	0.0%	0.0%	2.0%	16.6%	16.6%	64.8%	100.0%
	0.0-0.10	K0498/53	4	7.5 YR 3/3	Dark Brown	7.2%	0.0%	0.0%	0.0%	4.4%	32.1%	16.1%	47.4%	100.0%
	0.20-0.30	K0498/54	3	7.5 YR 4/3	Brown	11.0%	0.5%	0.0%	0.5%	3.7%	21.7%	15.5%	58.6%	100.0%
B31	0.50-0.60	K0498/55	2	5 YR 3/3	Dark Reddish Brown	11.2%	2.4%	0.0%	2.4%	4.3%	18.0%	17.6%	57.7%	100.0%
B31	0.90-1.0	K0498/56	2	7.5 YR 4/4 with 2% 10 YR 4/1	Brown with 2% Dark Grav	12.7%	0.1%	0.0%	0.1%	4.2%	20.4%	22.4%	53.0%	100.0%
B32	0.0-0.10	K0498/57	2	5 YR 3/3	Dark Reddish Brown	3.7%	0.1%	0.0%	0.1%	3.4%	38.5%	16.9%	41.1%	100.0%
	0.20-0.30	K0498/58	3	5 YR 4/4	Reddish Brown	8.0%	0.0%	0.0%	0.0%	4.0%	36.2%	15.4%	44.5%	100.0%
B32	0.50-0.60	K0498/59	3	7.5 YR 4/6	Strong Brown	10.7%	0.8%	0.0%	0.8%	5.5%	23.2%	16.0%	54.4%	100.0%
B32	0.90-1.0	K0498/60	3	5 YR 5/4 with 20% 5 YR 6/8	Reddish Brown with 20% Reddish Yellow	8.9%	1.5%	0.0%	1.5%	5.1%	37.5%	14.5%	41.3%	100.0%
B34	0.0-0.10	K0498/61	3	10 YR 3/2	Very Dark Grayish Brown	12.2%	0.2%	0.0%	0.2%	6.0%	14.2%	14.2%	65.3%	100.0%
B34	0.20-0.30	K0498/62	3	7.5 YR 3/1	Very Dark Gray	13.5%	0.3%	0.0%	0.3%	4.9%	12.2%	13.4%	69.2%	100.0%
B34	0.50-0.60	K0498/63	3	7.5 YR 2.5/2	Very Dark Brown	13.5%	0.9%	0.0%	0.9%	6.7%	9.6%	14.8%	68.0%	100.0%
B34	0.90-1.0	K0498/64	3	5 YR 3/2 with 40% 7.5 YR 4/6	Dark Reddish Brown with 40% Strong Brown	15.2%	0.9%	0.0%	0.9%	4.6%	10.0%	15.5%	69.0%	100.0%
B36	0.0-0.10	K0498/65	3	7.5 YR 3/4	Dark Brown	5.8%	0.0%	0.0%	0.0%	4.2%	50.2%	14.7%	30.8%	100.0%
B36	0.20-0.30	K0498/66	3	10 YR 3/3	Dark Brown	10.9%	0.1%	0.0%	0.1%	4.4%	31.4%	8.9%	55.1%	100.0%
B36	0.50-0.60	K0498/67	2	10 YR 3/3	Dark Brown	13.7%	1.5%	0.0%	1.5%	5.7%	23.3%	8.0%	61.6%	100.0%
	0.90-1.0	K0498/68	2	10 YR 5/4	Yellowish Brown	9.7%	2.1%	0.0%	2.1%	8.2%	31.4%	17.1%	41.2%	100.0%
	0.0-0.10	K0498/69	2	7.5 YR 3/4	Dark Brown	8.1%	0.3%	0.0%	0.3%	4.0%	32.0%	14.9%	48.8%	100.0%
	0.20-0.30	K0498/70	2	7.5 YR 3/4	Dark Brown	11.3%	0.7%	0.0%	0.7%	4.6%	25.6%	12.7%	56.5%	100.0%
	0.50-0.60	K0498/71	3	10 YR 4/4	Dark Yellowish Brown	10.8%	1.7%	0.0%	1.7%	8.4%	25.3%	13.8%	50.8%	100.0%
	0.90-1.0	K0498/72	2	7.5 YR 3/4	Dark Brown	10.0%	0.8%	0.0%	0.8%	5.5%	31.8%	22.6%	39.2%	100.0%
	0.0-0.10	K0498/73	3	7.5 YR 3/2	Dark Brown	10.9%	0.8%	0.0%	0.8%	5.4%	16.9%	14.1%	62.8%	100.0%
B40	0.20-0.30	K0498/74	3	10 YR 4/2	Dark Grayish Brown	13.1%	2.3%	0.0%	2.3%	8.3%	43.7%	33.6%	12.1%	100.0%
B40	0.50-0.60	K0498/75	2	10 YR 3/2	Very Dark Grayish Brown	13.9%	5.3%	0.0%	5.3%	5.2%	4.9%	12.4%	72.2%	100.0%
B40	0.90-1.0	K0498/76	2	7.5 YR 5/6	Strong Brown	15.2%	0.2%	0.0%	0.2%	3.4%	11.5%	15.7%	69.0%	100.0%
	0.0-0.10	K0498/77	2	7.5 YR 3/2	Dark Brown	7.8%	0.0%	0.0%	0.0%	6.8%	31.7%	12.6%	48.9%	100.0%
B42	0.20-0.30	K0498/78	2	10 YR 3/3	Dark Brown	8.5%	5.7%	3.7%	2.1%	11.2%	22.7%	15.7%	44.7%	100.0%
B42	0.50-0.60	K0498/79	2	10 YR 3/3	Dark Brown	8.4%	4.4%	3.8%	0.6%	6.6%	25.6%	18.4%	45.0%	100.0%
B42	0.90-1.0	K0498/80	2	10 YR 3/3	Dark Brown	9.9%	0.0%	0.0%	0.0%	2.5%	27.8%	29.0%	40.8%	100.0%

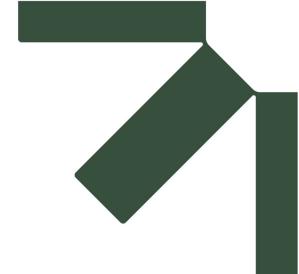
Note

1: The Hydrometer Analysis method was used to determine the percentage sand, silt and clay,

modified from SOP meth004 (California Dept of Pesticide Regulation), using method of Gee & Bauder (1986),

in Methods of Soil Analysis. Part 1 Agron. Monogr. 9 (2nd Ed). Klute, A., American Soc. of Agronomy Inc., Soil Sci. Soc. America Inc., Madison WI: 383-411.

checked: Graham Lancaster (Nata signatory) Laboratory Manager


^{2:} Australian Standard 1289.3.8.1-1997 (see attached)

^{3.} Analysis conducted between sample arrival date and reporting date.

^{4.} All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer scu.edu.au/eal or on request).

^{5.} Results relate to the samples tested.

^{6.} This report was issued on 03/12/2020.

Appendix B Detailed Profile Descriptions

Land Resources Assessment Report

BM Alliance Coal Operations

SLR Project No.: 620.014601.00001

7 December 2023

Table 1 Summary: Self-Mulching Black Vertosol (Site B02)

Overview Landscape Site B02 **ASC Name** Self Mulching Black Vertosol **Representative Site** B02 Other Mapped Sites B03-B11, B13-B19, B21-B27, B29-B43 **Survey Type** Detailed **Dominant Topography** Plain **Dominant Land Use** Pasture Microrelief Incipient Linear Gilgai Vegetation Brigalow, Carrisa Slope (%) 1-3% Aspect Nil

Table 2 Profile: Self-Mulching Black Vertosol (Site B02)

Profile	Horizon / Depth (m)	Description
	A1 0.0 – 0.30	Very dark greyish brown (10YR 3/2) light clay, strong structure of 90 mm subangular blocky peds with a rough fabric and very firm consistence. 20%, <5mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m & 0.20 – 0.30m.
	B21 0.30 – 0.60	Dark brown (10YR 3/3) light-medium clay, strong structure of 140mm subangular blocky peds with a rough fabric and firm consistence. 25% pale faint mottling; 10%, <5mm metamorphic stone content; 5% ferromanganiferous concretions <5mm and 5% calcareous soft segregations <5mm, <2% highly calcareous soft segregations; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
To a go to the state of the sta	B22 +0.60	Yellowish-red (5YR 4/6) light clay, strong structure of 160mm subangular blocky peds with a rough fabric and firm consistence. 25% pale distinct mottling; 10%, <5mm metamorphic stone content; 10% ferromanganiferous concretions <2mm and 30% very highly calcareous soft segregations 10mm; coarse roots common. Sampled 0.90 – 1.0m.

Table 3 Summary: Self-Mulching Black Vertosol (Site B03)

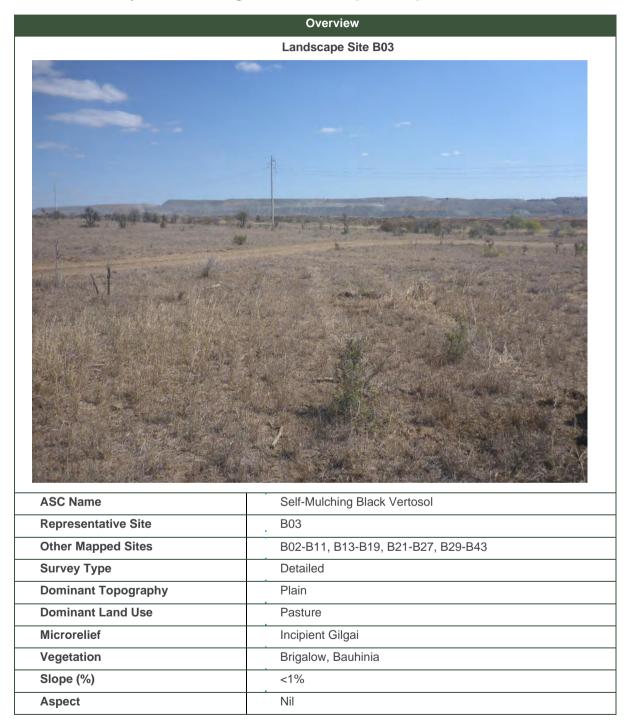


Table 4 Profile: Self-Mulching Black Vertosol (Site B03)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.10	Dusky red (2.5YR 3/2) light-medium clay, strong structure of 70 mm subangular blocky peds with a rough fabric and firm consistence. 10%, 10mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary.
	B21 0.10 – 0.30	Sampled 0.00 – 0.10m. Black (2.5Y 2.5/1) light clay, strong structure of 200+mm subangular blocky peds with a rough fabric and very firm consistence. 10% pale faint mottling; 20%, 20mm metamorphic stone content; 10% calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary.
	B22 0.30 - 0.40	Sampled 0.20 – 0.30m. Olive brown (2.5Y 4/3) light clay, strong structure of <5mm subangular blocky peds with a rough fabric and very firm consistence. 50%, 40mm metamorphic stone content; coarse roots common; gradual and wavy boundary. Sampled 0.30 – 0.40m.
and and an analysis of the second sec	BC +0.40	Weathered parent material. Not sampled.

Table 5 Summary: Self-Mulching Black Vertosol (Site B04)

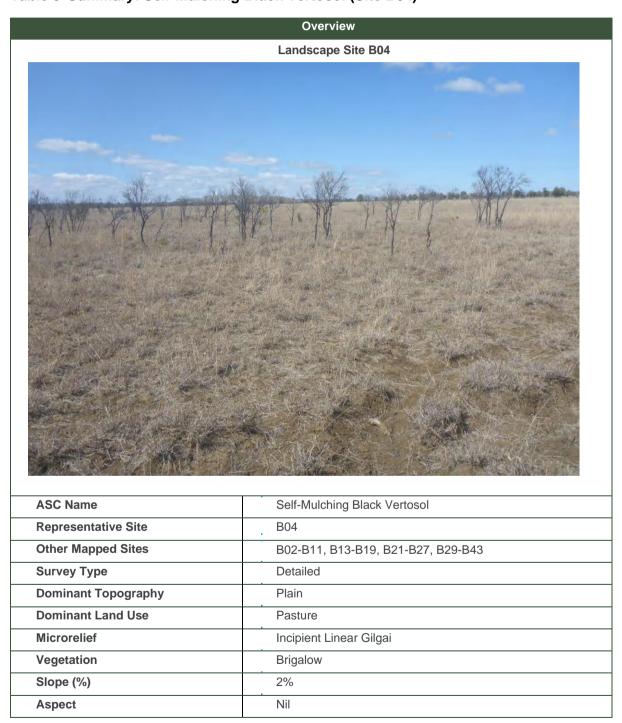


Table 6 Profile: Self-Mulching Black Vertosol (Site B04)

Profile	Horizon / Depth (m)	Description
	A1 · 0.00 – 0.10	Very dark greyish brown (2.5Y 3/2) light clay, strong structure of 50mm subangular blocky peds with a rough fabric and very firm consistence. Abundant fine roots; imperfectly drained; gradual and wavy boundary.
	B21 0.10 – 0.40	Sampled 0.00 – 0.10m. Very dark grey (2.5Y 3/1) light-medium clay, strong structure of 120mm subangular blocky peds with a rough fabric and very firm consistence. Many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
	B22 0.40 – 1.00	Black (2.5Y 2.5/1) light clay, strong structure of 140mm subangular blocky peds with a rough fabric and firm consistence. 30% olive faint mottling; 10%, <2mm metamorphic stone content; 20% slightly calcareous soft segregations <5mm; coarse roots common; gradual and wavy boundary. Sampled 0.50 – 0.60m & 0.90 – 1.00m.
	B23 +1.00	Weathered parent material. Not sampled.

Soil Unit 1: Self-Mulching Black-Brown Vertosol Sub-Dominant Soil Type: Self-Mulching Red Vertosol

Table 7 Summary: Self-Mulching Red Vertosol (Site B06)

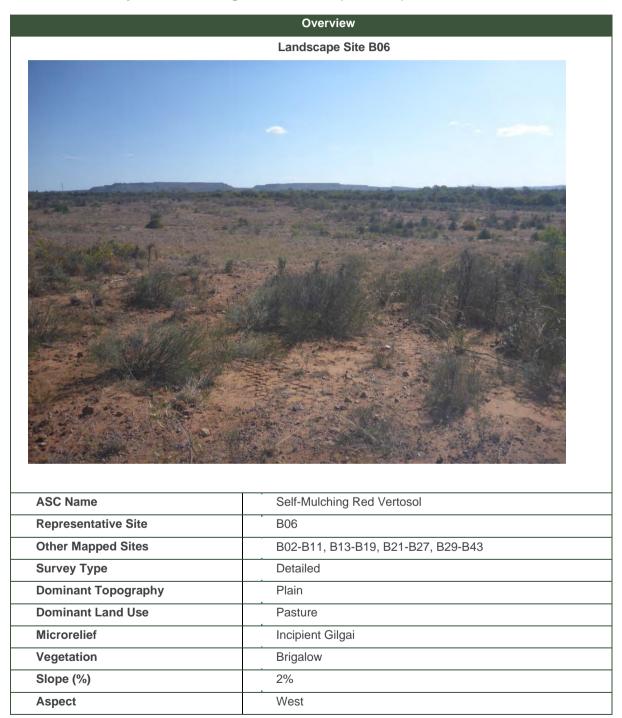


Table 8 Profile: Self-Mulching Red Vertosol (Site B06)

Profile	Horizon / Depth (m)	Description
manusudani	A1 · 0.00 – 0.20	Very dark brown (7.5YR 2.5/2) clay loam, moderate structure of 100mm subangular blocky peds with a rough fabric and firm consistence. 10%, 60mm stone content; <10% ferromanganiferous concretions <5mm; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.20 – 0.50	Yellowish-red (5YR 4/6) light-medium clay, strong structure of 140mm subangular blocky peds with a rough fabric and very firm consistence. 20% orange faint mottling; 10%, 20mm metamorphic stone content; <5% ferromanganiferous concretions <5mm and <2% slight to moderately calcareous soft segregations <2mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
Aurindania de la Santania del Santania de la Santania del Santania de la Santania	B22 +0.50	Yellowish-red (5YR 4/6) light-medium clay, strong structure of 100mm subangular blocky peds with a rough fabric and very firm consistence. 20% pale faint mottling; 5%, 20mm metamorphic stone content; <2% ferromanganiferous concretions 40mm and <2% moderately calcareous soft segregations <10mm; coarse roots common. Sampled 0.50 – 0.60m & 0.90 – 1.00m. Layer continues beyond sample depth.

Soil Unit 1: Self-Mulching Black-Brown Vertosol Sub-Dominant Soil Type: Self-Mulching Grey Vertosol

Table 9 Summary: Self-Mulching Grey Vertosol (Site B08)

Overview Landscape Site B08 **ASC Name** Self-Mulching Grey Vertosol **Representative Site** B08 **Other Mapped Sites** B02-B11, B13-B19, B21-B27, B29-B43 **Survey Type** Detailed **Dominant Topography** Plain **Dominant Land Use** Pasture Microrelief Normal Gilgai Vegetation Lime Bauhinia Slope (%) 1% Aspect North West

Table 10 Profile: Self-Mulching Grey Vertosol (Site B08)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Dark brown (10YR 3/3) light clay, strong structure of 80 mm subangular blocky peds with a rough fabric and weak consistence. <5%, 30mm metamorphic stone content; <5% ferromanganiferous concretions <2mm; abundant fine roots; imperfectly drained; clear and wavy boundary.
		Sampled 0.00 – 0.10m.
	B21 0.20 – 0.60	Pale brown (10YR 6/3) light-medium clay, strong structure of 80mm subangular blocky peds with a rough fabric and strong consistence. 10% pale faint mottling; <2%, 30mm metamorphic stone content; <5% ferromanganiferous concretions <2mm and 10% very highly calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
	B22 +0.60	Yellowish-brown (10YR 5/8) light-medium clay, strong structure of 90mm subangular blocky peds with a rough fabric and very firm consistence. 20% pale distinct mottling; stone content; <2% ferromanganiferous concretions <2mm and <5% very highly calcareous soft segregations <2mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 11 Summary: Self-Mulching Black Vertosol (Site B09)

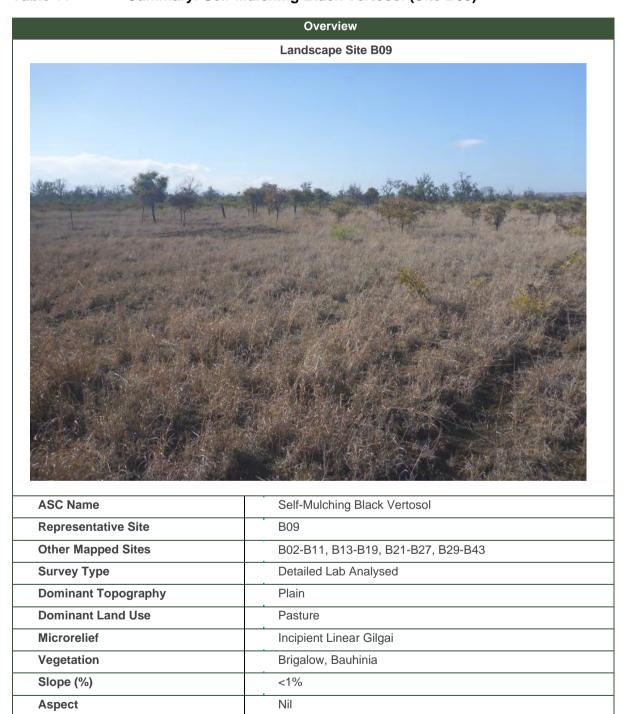


Table 12 Profile: Self-Mulching Black Vertosol (Site B09)

Profile	Horizon / Depth (m)	Description
	A1 0.0 0– 0.30	Dark reddish-brown (5YR 2.5/2) silty clay, strong structure of 120mm subangular blocky peds with a rough fabric and very firm consistence. 5%, 60mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m & 0.20 – 0.30m.
	B21 0.30 – 0.80	Very dark grey (7.5YR 3/1) heavy clay, strong structure of 170mm subangular blocky peds with a rough fabric and firm consistence. 10% pale faint mottling; 10% slightly calcareous soft segregations tubules <5mm, slight calcareous effervescence; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
Hundred Hands Hand	B22 +0.80	Very dark grey (7.5YR 3/1) heavy clay, strong structure of 150mm subangular blocky peds with a rough fabric and firm consistence. 40% orange distinct mottling; 30% moderately calcareous soft segregations 10mm, moderate calcareous effervescence; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Soil Unit 1: Self-Mulching Black-Brown Vertosol Sub-Dominant Soil Type: Self-Mulching Red Vertosol

Table 13 Summary: Self-Mulching Red Vertosol (Site B10)

Overview Landscape Site B10

Self-Mulching Red Vertosol	
B10	
B02-B11, B13-B19, B21-B27, B29-B43	
Detailed Lab Analysed	
Plain	
Pasture	
Incipient Linear Gilgai	
Brigalow	
<1%	
Nil	

Table 14 Profile: Self-Mulching Red Vertosol (Site B10)

Profile	Horizon / Depth (m)	Description
	A1 0.0 – 0.10	Dark brown (7.5YR 3/3) heavy clay, strong structure of 100mm subangular blocky peds with a rough fabric and firm consistence. <2% ferromanganiferous concretions <2mm; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.10 – 0.50	Dark reddish-brown (5YR 3/3) heavy clay, strong structure of 140mm subangular blocky peds with a rough fabric and firm consistence. 25% pale faint mottling; <2%, <2mm metamorphic stone content; <2% highly calcareous soft segregations 5mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
	B22 +0.50	Dark brown (7.5YR 3/4) heavy clay, strong structure of 160mm subangular blocky peds with a rough fabric and firm consistence. 25% yellow distinct and 25% red distinct mottling; 30%, 10mm metamorphic stone content; <2% ferromanganiferous concretions 2mm; coarse roots common. Sampled 0.50 – 0.60 & 0.90 – 1.00m. Layer continues beyond sample depth.

Table 15 Summary: Self-Mulching Black Vertosol (Site B11)

Self-Mulching Black Vertosol
B11
B02-B11, B13-B19, B21-B27, B29-B43
Detailed
Plain
Pasture
Incipient Linear Gilgai
Wilga
<1%
Nil

Table 16 Profile: Self-Mulching Black Vertosol (Site B11)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.15	Very dark brown (10YR 2/2) light-medium clay, strong structure of 100mm subangular blocky peds with a rough fabric and firm consistence. Abundant fine roots; imperfectly drained; gradual and wavy boundary.
	B21 0.15 – 0.50	Sampled 0.00 – 0.10m. Very dark greyish brown (2.5Y 3/2) light clay, strong structure of 140mm subangular blocky, lenticular peds with a rough fabric and very firm consistence. 20%, <5mm metamorphic stone content; 20% ferromanganiferous concretions <2mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
	B22 0.50 – 0.85	Very dark greyish brown (2.5Y 3/2) light clay, strong structure of 150mm subangular blocky peds with a rough fabric and very firm consistence. 30% pale faint mottling; 30%, 50mm metamorphic stone content; 40% moderately calcareous soft segregations 10mm; coarse roots common; clear and wavy boundary. Sampled 0.50 – 0.60m.
	+0.85	Weathered parent material. Not sampled.

Table 17 Summary: Self-Mulching Black Vertosol (Site B13)

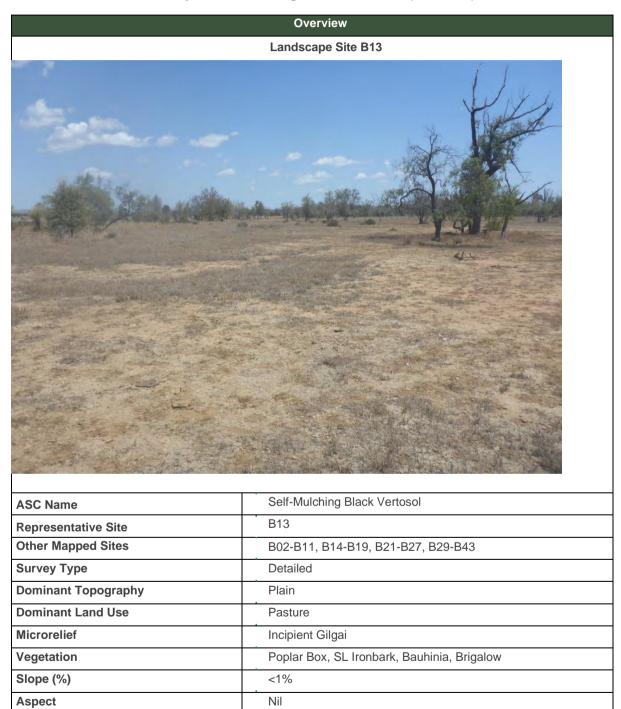


Table 18 Profile: Self-Mulching Black Vertosol (Site B13)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Very dark brown (10YR 2/2) light clay, strong structure of 90mm subangular blocky peds with a rough fabric and very firm consistence. Abundant fine roots; imperfectly drained; gradual and wavy boundary.
一个一个		Sampled 0.00 – 0.10m.
	B21 0.20 – 0.70	Very dark greyish brown (10YR 3/2) light-medium clay, strong structure of 140mm subangular blocky peds with a rough fabric and strong consistence. 20% pale faint mottling; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
	B22 +0.70	Very dark greyish brown (10YR 3/2) light clay, strong structure of 110mm subangular blocky, lenticular peds with a rough fabric and firm consistence. 20% pale faint mottling; 20% highly calcareous soft segregations <5mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Microrelief

Vegetation

Slope (%)

Aspect

Soil Unit 1: Self-Mulching Black-Brown Vertosol Sub-Dominant Soil Type: Epipedal Black Vertosol

Table 19 Summary: Epipedal Black Vertosol (Site B14)

Overview Landscape Site B14 Epipedal Black Vertosol **ASC Name** B14 **Representative Site Other Mapped Sites** B02-B11, B13-B19, B21-B27, B29-B43 **Survey Type** Detailed **Dominant Topography** Plain **Dominant Land Use** Pasture

Incipient Gilgai

1%

Nil

Brigalow, Carissa

Table 20 Profile: Epipedal Black Vertosol (Site B14)

•	
A1 0.00 – 0.10	Very dark brown (10YR 2/2) clay loam, sandy, moderate structure of 120mm subangular blocky peds with a rough fabric and very firm consistence. Abundant fine roots; imperfectly drained; clear and wavy boundary.
	Sampled 0.00 – 0.10m.
	Very dark brown (7.5YR 2.5/2) light clay, strong structure of 200+mm subangular blocky peds with a rough fabric and very firm consistence. <5% pale faint mottling; many fine roots; gradual and wavy boundary.
B21 0.10 – 0.50	Sampled 0.20 – 0.30m.
	Dark brown (7.5YR 3/4) light clay, strong structure of 140mm subangular blocky peds with a rough fabric and firm consistence. 20% pale faint mottling; 2%, 20mm metamorphic stone content; 30% very highly calcareous soft segregations 10mm; coarse roots common.
	Sampled 0.50 - 0.60m & 0.90 - 1.00m.
B22 +0.50	Layer continues beyond sample depth.
	B21 0.10 - 0.50

Table 21 Summary: Self-Mulching Black Vertosol (Site B15)

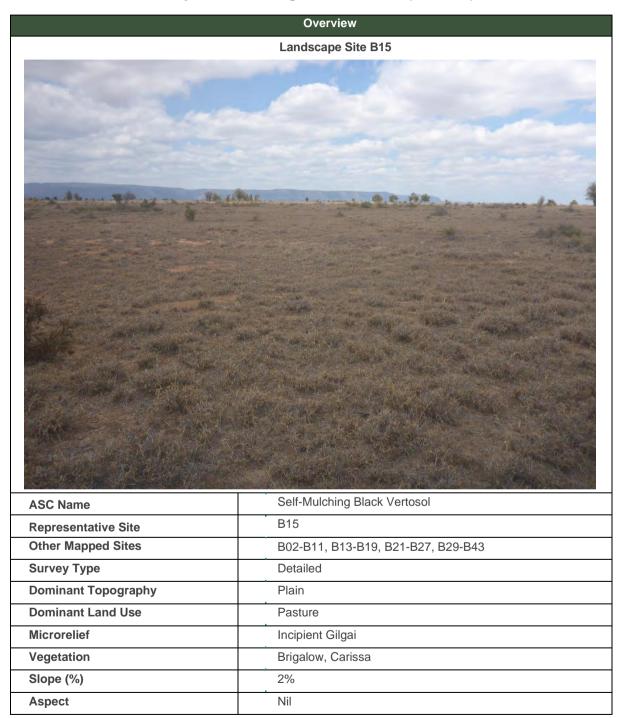


Table 22 Profile: Self-Mulching Black Vertosol (Site B15)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Black (10YR 2/1) clay loam, moderate structure of 60mm subangular blocky peds with a rough fabric and very firm consistence. 20%, 10mm gravel content; 10% ferromanganiferous concretions <5mm; abundant fine roots; imperfectly drained; gradual and wavy boundary.
		Sampled 0.00 – 0.10m.
	B21 0.20 – 0.60	Very dark greyish brown (2.5Y 3/2) light clay, strong structure of 200+mm subangular blocky peds with a rough fabric and very firm consistence. 20%, 10mm gravel content; 5% ferromanganiferous concretions <5mm and 20% very highly calcareous <5mm; many fine roots; gradual and wavy boundary.
The state of the s		Sampled 0.20 – 0.30m & 0.50 – 0.60m.
	B22 . 0.60 – 0.90	Olive brown (2.5Y 4/3) light-medium clay, moderate structure of 200+mm subangular blocky peds with a rough fabric and very firm consistence. 10% dark faint mottling; 20%, 10mm gravel content; 5% ferromanganiferous concretions < 5mm and 20% very highly calcareous soft segregations <5mm; coarse roots common; gradual and wavy boundary.
ص] ا		Sampled 0.90 – 1.00m.
	BC +0.90	Weathered parent material. Not sampled.

Table 23 Summary: Self-Mulching Black Vertosol (Site B16)

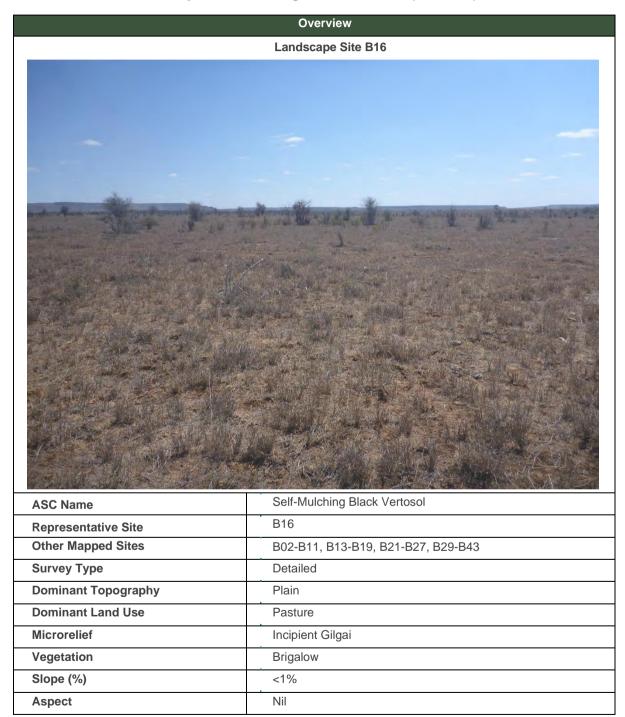


Table 24 Profile: Self-Mulching Black Vertosol (Site B16)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.10	Very dark greyish brown (10YR 3/2) light clay, strong structure of 80mm subangular blocky peds with a rough fabric and very firm consistence. <5%, <5mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.10 – 0.40	Black (10YR 2/1) light clay, strong structure of 170mm subangular blocky peds with a rough fabric and very firm consistence. 10% pale faint mottling; 10% slightly calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
	B22 +0.40	Yellowish-red (5YR 5/8) light-medium clay, strong structure of 200+mm subangular blocky peds with a rough fabric and very firm consistence. 30% dark faint mottling; 10%, 200mm metamorphic stone content; 10% highly calcareous soft segregation <5mm; coarse roots common. Sampled 0.50 – 0.60m & 0.90 – 1.00m. Layer continues beyond sample depth.

Table 25 Summary: Self-Mulching Black Vertosol (Site B17)

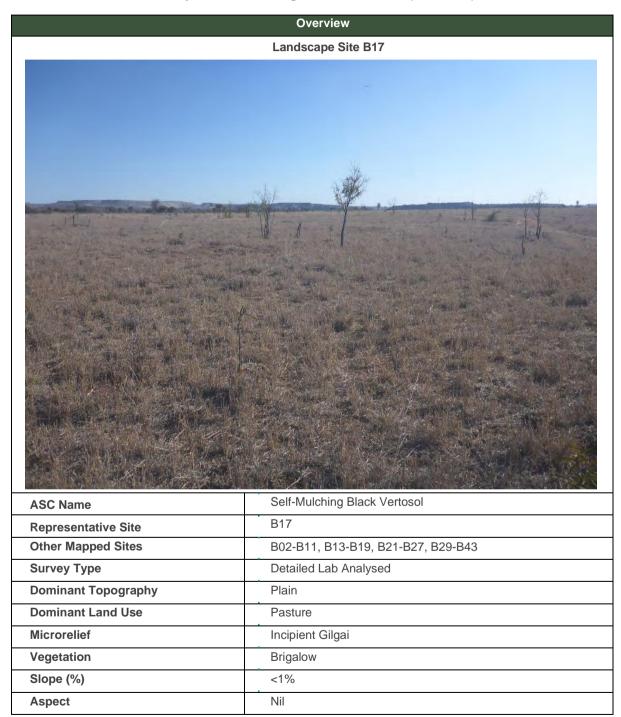


Table 26 Profile: Self-Mulching Black Vertosol (Site B17)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.10	Dark brown (10YR 3/3) heavy clay, strong structure of 100mm subangular blocky peds with a rough fabric and very firm consistence. 2%, <5mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.10 – 0.40	Black (5YR 2.5/1) heavy clay, strong structure of 110mm subangular blocky peds with a rough fabric and very firm consistence. 25% pale distinct mottling; 2%; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
		Very dark brown (7.5YR 2.5/2) heavy clay, strong structure of 120mm subangular blocky peds with a rough fabric and firm consistence. 30% dark distinct and 15% orange distinct mottling; <2%, <2mm
		metamorphic stone content; 2% moderately calcareous soft segregations 5mm; coarse roots common.
	B22	Sampled 0.50 – 0.60m & 0.90– 1.00m.
	+0.40	Layer continues beyond sample depth.

Table 27 Summary: Self-Mulching Brown Vertosol (Site B18)

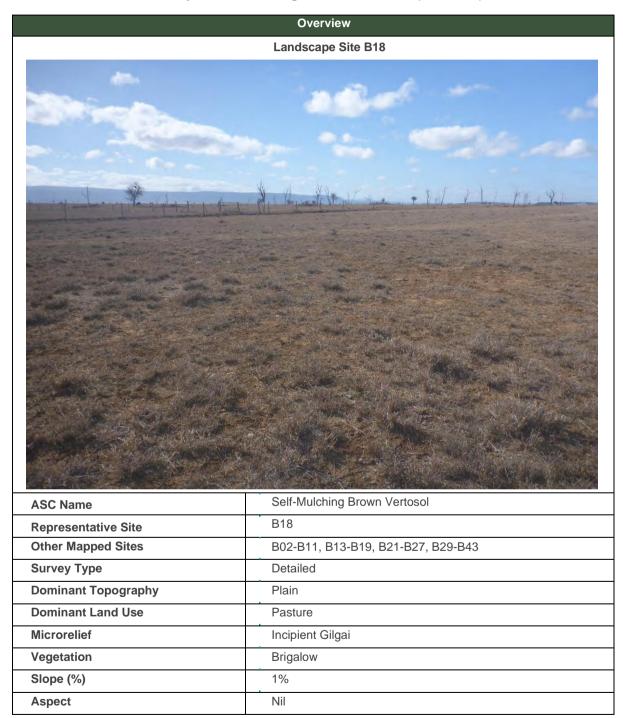


Table 28 Profile: Self-Mulching Brown Vertosol (Site B18)

Profile	Horizon / Depth (m)	Description
	Transfer of the	Very dark greyish brown (10YR 3/2) light clay, strong structure of 90mm subangular blocky peds with a rough fabric and very firm consistence. Abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	and the second	Brown (10YR 4/3) light clay, strong structure of 100mm subangular blocky peds with a rough fabric and very firm consistence. <2%, <2mm metamorphic stone content; many fine roots; gradual and wavy boundary.
	0.40	Sampled 0.20 – 0.30m.
	2 0.70	Dark brown (10YR 3/3) light clay, strong structure of 100mm subangular blocky peds with a rough fabric and firm consistence. 40% pale faint mottling; <8%, <2mm metamorphic stone content; 30% slightly calcareous soft segregations 5mm; coarse roots common; gradual and wavy boundary.
	E.U	Sampled 0.50 – 0.60m.
		Reddish-brown (5YR 4/4) light clay, strong structure of 120mm subangular blocky peds with a rough fabric and firm consistence. 40% dark faint mottling; <2%, <2mm metamorphic stone content; 5% ferromanganiferous concretions <2mm and 10% highly calcareous soft segregations 5mm; coarse roots common.
		Sampled 0.90 – 1.00m.
	N.	Layer continues beyond sample depth.

Table 29 Summary: Self-Mulching Black Vertosol (Site B19)

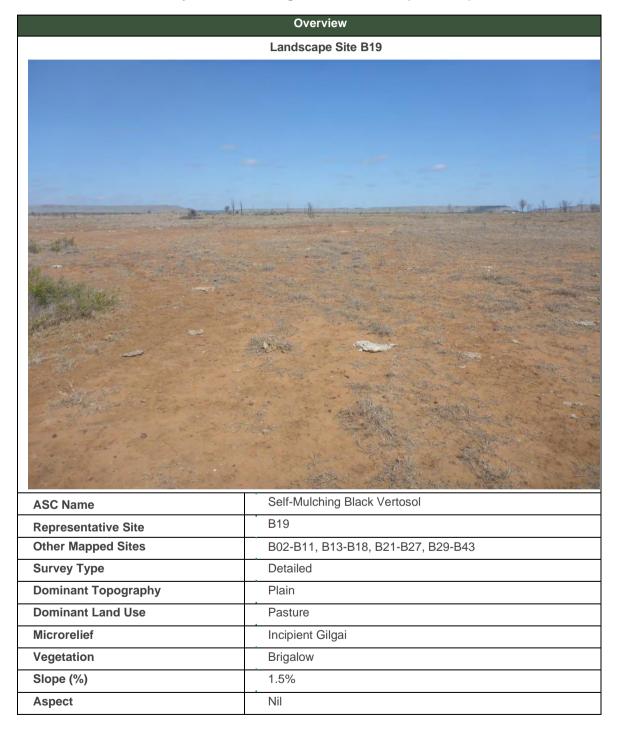


Table 30 Profile: Self-Mulching Black Vertosol (Site B19)

Profile	Horizon / Depth (m)	Description
The state of the s	A1 0.00 – 0.20	Very dark greyish brown (10YR 3/2) silty clay, strong structure of 70mm subangular blocky peds with a rough fabric and very firm consistence. 5%, 30mm metamorphic stone content; 30% ferromanganiferous concretions 5mm; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.20 – 0.60	Very dark greyish brown (10YR 3/2) light clay, strong structure of 150mm subangular blocky peds with a rough fabric and very firm consistence. 15% pale faint mottling; 10%, 40mm metamorphic stone content; 2% ferromanganiferous concretions <2mm and 20% highly calcareous soft segregations <2mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
	B22 +0.60	Very dark greyish brown (10YR 3/2) light medium clay, strong structure of 200+mm subangular blocky peds with a rough fabric and firm consistence. 50% brown distinct mottling; 10% slightly calcareous soft segregations 10mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Soil Unit 3: Eutrophic Black-Brown Dermosol Sub-Dominant Soil Type: Eutrophic Red Chromosol

Table 31 Summary: Eutrophic Red Chromosol (Site B20)

	Overview	
	Landscape Site B20	
ASC Name	Eutrophic Red Chromosol	
Representative Site	B20	
Other Mapped Sites	B12	
Survey Type	Detailed Lab Analysed	
Dominant Topography	Plain/Residual Rise	
Dominant Land Use	Pasture	
Microrelief	Nil	
Vegetation	Brigalow, Carissa, Bauhinia	
Slope (%)	3%	
Aspect	South	

Table 32 Profile: Eutrophic Red Chromosol (Site B20)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Very dark brown (7.5YR 2.5/2) sandy loam, strong structure of 130mm subangular blocky peds with a rough fabric and weak consistence. Abundant fine roots; imperfectly drained; clear and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.20 – 0.60	Dark reddish-brown (5YR 3/4) light clay, strong structure of 130mm subangular blocky peds with a rough fabric and strong consistence. 50% orange faint mottling; <5%, <2mm metamorphic stone content; <1% ferromanganiferous concretions <2mm, <5% slightly calcareous soft segregations <2mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30 & 0.50 – 0.60m.
A Summingming of the Same	B22 +0.60	Strong brown (7.5YR 4/6) clay loam, strong structure of 130m subangular blocky peds with a rough fabric and strong consistence. 20% dark and 20% pale distinct mottling; 10%, 30mm metamorphic stone content; 2% ferromanganiferous concretions <5mm and 50% calcareous soft segregations <20mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Soil Unit 1: Self-Mulching Black-Brown Vertosol Sub-Dominant Soil Type: Subnatric Brown Sodosol

Table 33 Summary: Subnatric Brown Sodosol (Site B21)

Overview					
Landscape Site B21					
- W ()					
	The state of the s				
AND THE RESERVE OF THE PARTY OF					
"我们是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们就是我们的,我们	The Property of the Control of the C				
The state of the s					
	在中华上,1000年的中央上上了				
学为有关的证明的					
加 拉克 美国 经					
	的情况,这个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一				
	/				
七州 经基本金额 医	NOTE TO A CONTRACT OF THE SECOND SECO				
	THE STATE OF THE S				
ASC Name	Subnatric Brown Sodosol				
Representative Site	B21				
Other Mapped Sites	B02-B11, B13-B19, B22-B27, B29-B43				
Survey Type	Detailed				
Dominant Topography	Plain				
Dominant Land Use	Pasture				
Microrelief	Nil				
Vegetation	Bauhinia, Carissa, Brigalow				
Slope (%)	<1%				
Aspect	Nil				

Table 34 Profile: Subnatric Brown Sodosol (Site B21)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.10	Dark brown (7.5YR 3/4) sandy loam, weak structure of 50mm subangular blocky peds with a rough fabric and weak consistence. Abundant fine roots; imperfectly drained; clear and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.10 – 0.30	Brown (7.5YR 4/4) sandy clay, weak structure of 110mm subangular blocky peds with a rough fabric and weak consistence. Many fine roots; gradual and wavy boundary.
	B22 · 0.30 – 0.70	Dark brown (7.5YR 3/3) sandy clay, strong structure of 70mm subangular blocky peds with a rough fabric and firm consistence. 20% orange and 20% yellow distinct mottling; 2%, <2mm quartz stone content; <2% ferromanganiferous concretions <2mm and <2% calcareous soft segregations <2mm; coarse roots common; gradual and wavy boundary.
	B23 +0.70	Sampled 0.50 – 0.60m. Brown (7.5YR 4/4) light clay, strong structure of 130mm subangular blocky peds with a rough fabric and very firm consistence. 25% orange prominent and 25% yellow distinct mottling; 2%, 2mm metamorphic stone content; <2% ferromanganiferous concretions <2mm and 40% calcareous soft segregations 20mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Soil Unit 1: Self-Mulching Black-Brown Vertosol Sub-Dominant Soil Type: Epipedal Black Vertosol

Table 35 Summary: Epipedal Black Vertosol (Site B22)

Overview Landscape Site B22 Epipedal Black Vertosol **ASC Name** B22 **Representative Site Other Mapped Sites** B02-B11, B13-B19, B21-B27, B29-B43 Detailed **Survey Type Dominant Topography** Plain **Dominant Land Use** Pasture Microrelief Incipient Gilgai Vegetation Bauhinia, Carissa Slope (%) 2% **Aspect** Nil

Table 36 Profile: Epipedal Black Vertosol (Site B22)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.40	Very dark brown (7.5YR 2.5/2) clay loam, sandy, weak structure of 130mm polyhedral peds with a rough fabric and very weak consistence. 2%, 2mm quartz stone content; abundant fine roots; imperfectly; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.40 – 0.55	Dark reddish-brown (5YR 2.5/2) clay loam, sandy weak structure of 150mm polyhedral peds with a rough fabric and weak consistence. 10%, <2mm quartz stone content; abundant fine roots; gradual and wavy boundary. Sampled 0.40 – 0.50m.
	B22 0.55 – 0.90	Yellowish-red (5YR 4/6) light clay, strong structure of 160mm subangular blocky peds with a rough fabric and firm consistence. 20% black prominent and 20% orange distinct mottling; <2%, <5mm quartz stone content; many fine roots; gradual and wavy boundary. Sampled 0.60 – 0.70m.
	B23 +0.90	Strong brown (7.5YR 4/6) light-medium clay, strong structure of 90mm subangular blocky peds with a rough fabric and firm consistence. 25% black distinct and 25% orange distinct mottling; <2% ferromanganiferous concretions <2mm and40% very highly calcareous soft segregations 20mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 37 Summary: Self-Mulching Black Vertosol (Site B23)

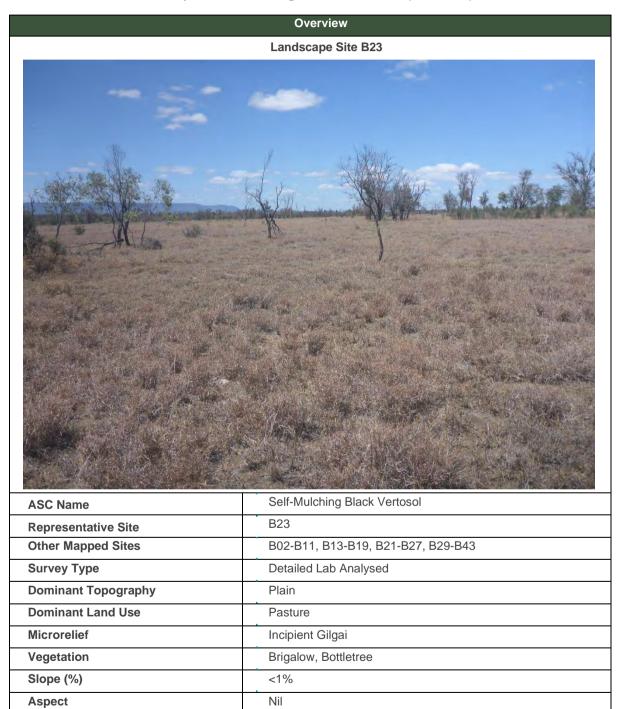


Table 38 Profile: Self-Mulching Black Vertosol (Site B23)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Dark brown (7.5YR 3/2) heavy clay, strong structure of 120mm subangular blocky peds with a rough fabric and very firm consistence. 20%, 20mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.20 – 0.60	Very dark grey (7.5YR 3/1) heavy clay, strong structure of 150mm subangular blocky peds with a rough fabric and very firm consistence. 20%, 5mm metamorphic stone content; 10% slightly calcareous soft segregations <2mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
Sumburing Parties of the Control of	B22	Dark brown (10YR 3/3) heavy clay, strong structure of 130mm subangular blocky peds with a rough fabric and firm consistence. 10% dark distinct and 5% pale faint mottling; 20%, 5mm metamorphic stone content; 30% highly calcareous soft segregations 5mm; coarse roots common.
	+0.60	Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 39 Summary: Self-Mulching Black Vertosol (Site B24)

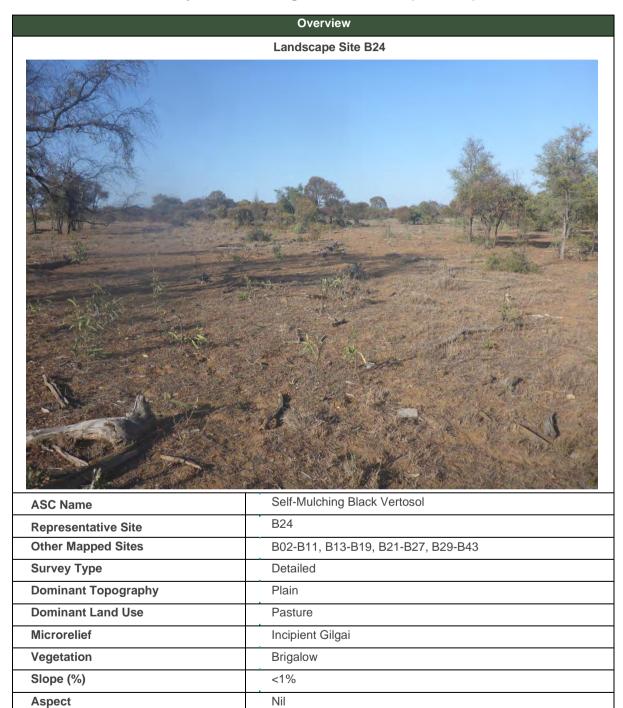


Table 40 Profile: Self-Mulching Black Vertosol (Site B24)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.10	Very dark brown (10YR 2/2) silty clay, strong structure of 100mm subangular blocky peds with a rough fabric and firm consistence. Abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	. B21 0.10 – 0.30	Very dark greyish brown (10YR 3/2) silty clay, strong structure of 90mm subangular blocky peds with a rough fabric and very firm consistence. Many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
- Samundanimindumindumindumindumindumindumindumin	· B22 0.30 – 0.60	Dark brown (10YR 3/3) silty clay, strong structure of 90mm subangular blocky peds with a rough fabric and firm consistence. 30% pale faint mottling; 10% highly calcareous soft segregations <5mm; coarse roots common; gradual and wavy boundary. Sampled 0.50 – 0.60m.
	B22 +0.60	Dark yellowish-brown (10YR 3/4) light clay, strong structure of 100mm subangular blocky peds with a rough fabric and firm consistence. 30% orange faint mottling; 5% highly calcareous soft segregations <5mm; coarse roots common. Sampled 0.90 – 1.00m.
Q.		Layer continues beyond sample depth.

Table 41 Summary: Self-Mulching Brown Vertosol (Site B25)

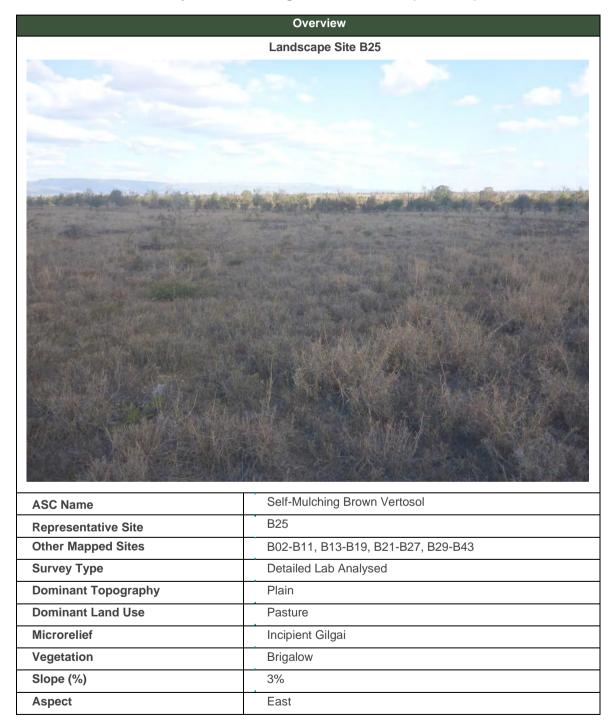


Table 42 Profile: Self-Mulching Brown Vertosol (Site B25)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Dark brown (7.5YR 3/3) heavy clay, strong structure of 80mm subangular blocky peds with a rough fabric and firm consistence. 20%, 40mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary.
	B21 0.20 – 0.70	Dark brown (7.5YR 3/3) heavy clay, strong structure of 200mm subangular blocky peds with a rough fabric and firm consistence. 30%, 50-100mm metamorphic stone content; 40% highly calcareous soft segregation 5mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
	B22 +0.70	Dark reddish-brown (5YR 3/3) clay loam, strong structure of 50mm subangular blocky peds with a rough fabric and firm consistence. 10% pale faint mottling; 80%, 200mm metamorphic stone content; 60% highly calcareous soft segregations 30mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 43 Summary: Self-Mulching Brown Vertosol (Site B26)

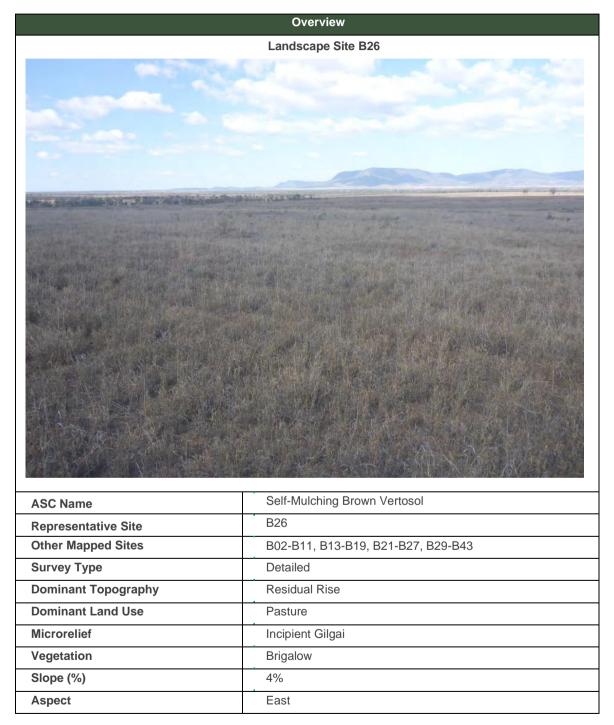


Table 44 Profile: Self-Mulching Brown Vertosol (Site B26)

Profile	Horizon / Depth (m)	Description
mpinitumpini	A1 0.00 – 0.30	Brown (10YR 4/3) light clay, strong structure of 90mm subangular blocky peds with a rough fabric and firm consistence. <5%, 10mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m & 0.20 – 0.30m.
	B21 0.30 – 0.60	Dark brown (7.5YR 3/2) light clay, strong structure of 130mm subangular blocky peds with a rough fabric and firm consistence. 10% orange faint and 10% pale faint mottling; 10%, 20mm metamorphic stone content; 20% ferromanganiferous concretions <2mm and 30% moderately calcareous soft segregations 5mm; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
duninduninduni		Yellowish-red (5YR 4/6) light clay, strong structure of 200+mm subangular blocky peds with a rough fabric and firm consistence. 30% brown faint mottling; <5%, <10mm metamorphic stone content; 40% ferromanganiferous concretions 5mm and 10% slightly calcareous soft segregations 5mm; coarse roots common.
	B22 +0.60	Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 45 Summary: Self-Mulching Black Vertosol (Site B27)

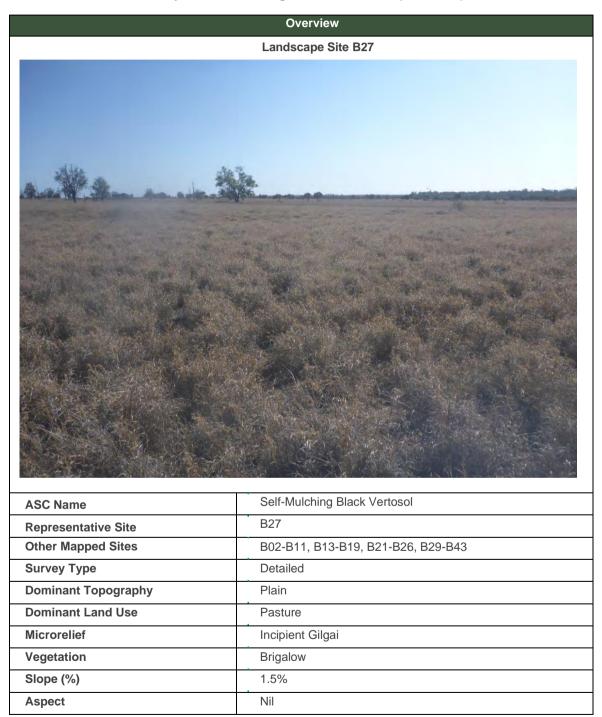


Table 46 Profile: Self-Mulching Black Vertosol (Site B27)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.70	Black (10YR 2/1) light clay, strong structure of 150mm subangular blocky peds with a rough fabric and very firm consistence. 5% pale faint mottling; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m, 0.20 – 0.30m & 0.50 – 0.60m.
indusindusindusindusindusindusindusindus	B21 0.70 – 1.00	Black (10YR 2/1) light clay, strong structure of 140mm subangular blocky peds with a rough fabric and weak consistence. 5% brown distinct mottling; 20% very highly calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary. Sampled 0.90 – 1.00m.
initial minimum many	B22 +1.00	Weathered parent material. Not sampled.

Table 47 Summary: Self-Mulching Black Vertosol (Site B29)

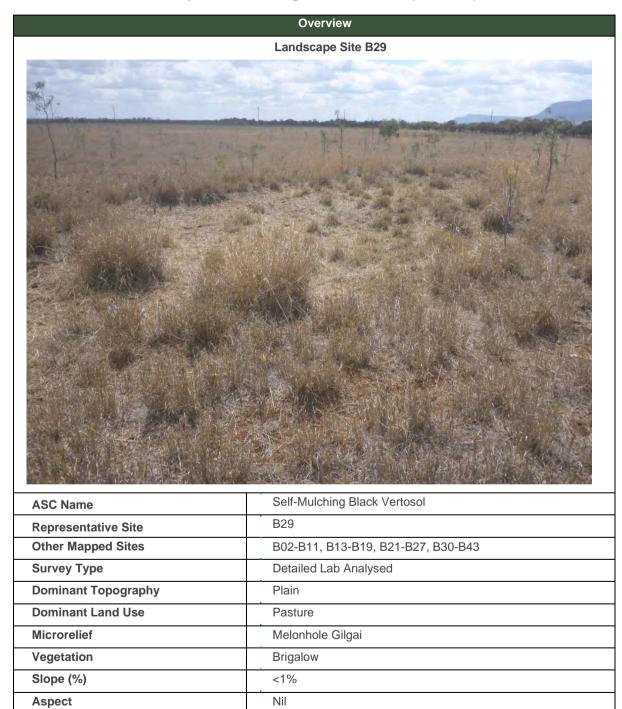


Table 48 Profile: Self-Mulching Black Vertosol (Site B29)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Very dark brown (7.5YR 2.5/2) heavy clay, strong structure of 130mm subangular blocky peds with a rough fabric and weak consistence. 10%, 20mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 · 0.20 – 0.50	Very dark greyish brown (10YR 3/2) heavy clay, strong structure of 170mm subangular blocky peds with a rough fabric and firm consistence. 50% red distinct and 50% brown distinct mottling; 5%, 20mm metamorphic stone content; 20% moderately calcareous soft segregations <2mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
	B22 +0.50	Dark reddish-brown (5YR 3/2) heavy clay, strong structure of 120mm subangular blocky peds with a rough fabric and firm consistence. 10% dark distinct mottling; 20% moderately calcareous soft segregations <2mm; coarse roots common. Sampled 0.50 – 0.60m & 0.90 – 1.00m. Layer continues beyond sample depth.

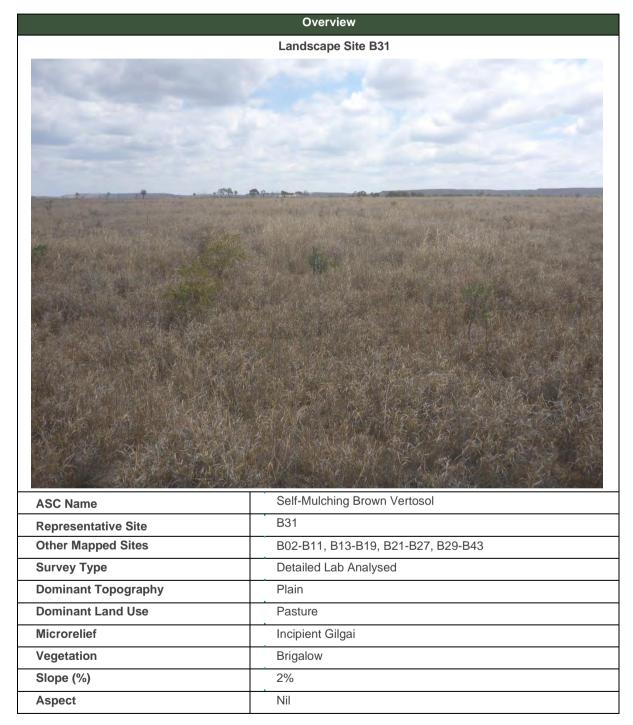
Table 49 Summary: Self-Mulching Black Vertosol (Site B30)

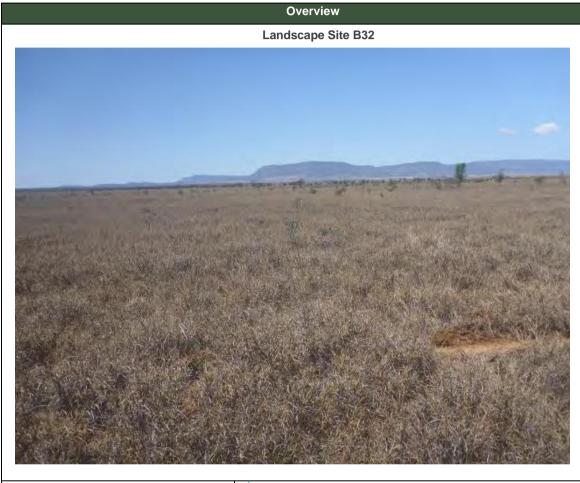
ASC Name	Self-Mulching Black Vertosol
Representative Site	B30
Other Mapped Sites	B02-B11, B13-B19, B21-B27, B29-B43
Survey Type	Detailed
Dominant Topography	Plain
Dominant Land Use	Pasture
Microrelief	Incipient Gilgai
Vegetation	Brigalow
Slope (%)	3%
Aspect	South

Table 50 Profile: Self-Mulching Black Vertosol (Site B30)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Dark brown (10YR 3/3) light clay, strong structure of 60mm subangular blocky peds with a rough fabric and firm consistence. 10%, 60mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.20 – 0.60	Very dark greyish brown (10YR 3/2) light clay, strong structure of 200mm subangular blocky peds with a rough fabric and firm consistence. 5%, 2-10mm metamorphic stone content; 5% ferromanganiferous concretions 2-10mm and 10% calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
	B22 +0.60	Dark brown (10YR 3/3) light clay, strong structure of 130mm subangular blocky peds with a rough fabric and firm consistence. <10% pale faint mottling; 10% ferromanganiferous concretions <2mm and 10% calcareous soft segregations <5mm; coarse roots common. Sampled 0.90 – 1.00m.
	+0.00	Layer continues beyond sample depth.

Table 51 Summary: Self-Mulching Brown Vertosol (Site B31)




Table 52 Profile: Self-Mulching Brown Vertosol (Site B31)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Dark brown (7.5YR 3/3) medium clay, strong structure of 110mm subangular blocky peds with a rough fabric and firm consistence. abundant fine roots; well drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.20 – 0.50	Brown (7.5YR 4/3) heavy clay, strong structure of 200+mm subangular blocky peds with a rough fabric and firm consistence. <2%, 5mm metamorphic stone content; <5% moderately calcareous soft segregations <2mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m.
7 B 9 1	B22 +0.50	Dark reddish-brown (5YR 3/3) heavy clay, strong structure of 200+mm subangular blocky peds with a rough fabric and firm consistence. 25% yellow faint and 25% orange faint mottling; <20%, 10mm metamorphic stone content; <5% ferromanganiferous concretions <2mm; coarse roots common. Sampled 0.50 – 0.60m & 0.90 – 1.00m. Layer continues beyond sample depth.

Soil Unit 1: Self-Mulching Black-Brown Vertosol Sub-Dominant Soil Type: Self-Mulching Red Vertosol

Table 53 Summary: Self-Mulching Red Vertosol (Site B32)

ASC Name	Self-Mulching Red Vertosol	
Representative Site	B32	
Other Mapped Sites	B02-B11, B13-B19, B21-B27, B29-B43	
Survey Type	Detailed Lab Analysed	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Microrelief	Incipient Gilgai	
Vegetation	Brigalow	
Slope (%)	1%	
Aspect	Nil	

Table 54 Profile: Self-Mulching Red Vertosol (Site B32)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.30	Dark reddish-brown (5YR 3/3) light-medium clay, strong structure of 160mm subangular blocky peds with a rough fabric and firm consistence. Abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10 & 0.20 – 0.30m.
	B21 0.30 – 0.70	Strong brown (7.5YR 4/6) heavy clay, strong structure of 200mm subangular blocky peds with a rough fabric and firm consistence. 30% pale faint mottling; 10% highly calcareous soft segregations 10mm; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
1 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B22 +0.70	Reddish-brown (5YR 5/4) light-medium clay, strong structure of 100mm subangular blocky peds with a rough fabric and firm consistence. 10% red faint and 10% yellow faint mottling; 40%, 10mm metamorphic stone content; 40% highly calcareous soft segregations 20mm; coarse roots common.
		Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 55 Summary: Self-Mulching Black Vertosol (Site B33)

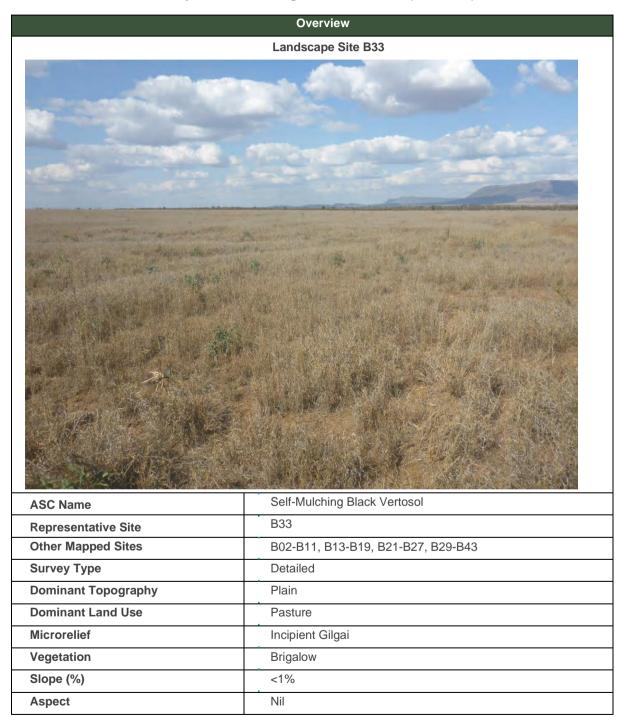


Table 56 Profile: Self-Mulching Black Vertosol (Site B33)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.30	Very dark brown (10YR 2/2) light clay, strong structure of 80mm subangular blocky peds with a rough fabric and weak consistence. <2%, 30mm metamorphic stone content; abundant fine roots; well drained; gradual and wavy boundary. Sampled 0.00 – 0.10m & 0.20 – 0.30m.
	B21 0.30 – 0.70	Very dark greyish brown (10YR 3/2) light clay, strong structure of 170mm subangular blocky peds with a rough fabric and firm consistence. 20% pale faint mottling; 10% ferromanganiferous concretions <5mm and 20% calcareous soft segregations 2-10mm; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
	B22 +0.70	Dark yellowish-brown (10YR 4/4) light clay, strong structure of 170mm subangular blocky peds with a rough fabric and firm consistence. 20- 50% orange distinct mottling; 10%, <5mm metamorphic stone content; 5% ferromanganiferous concretions <5mm and 10% calcareous soft segregations 2-10mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 57 Summary: Self-Mulching Black Vertosol (Site B34)

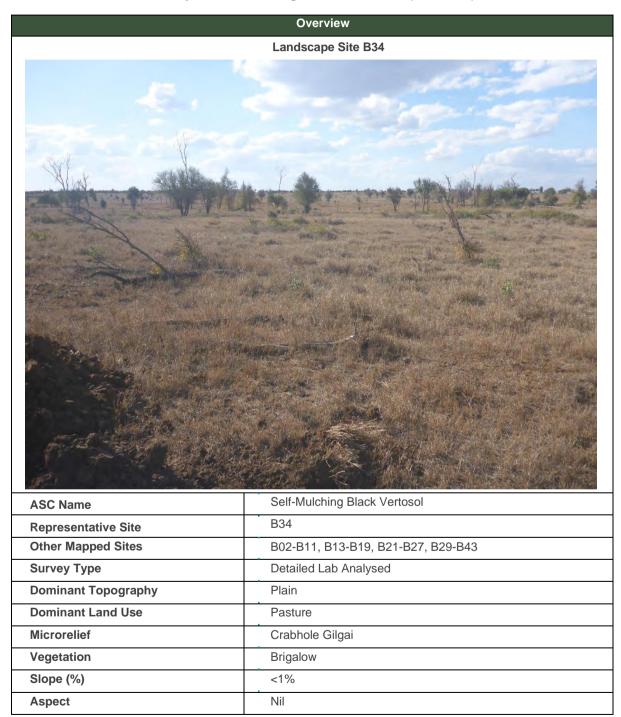


Table 58 Profile: Self-Mulching Black Vertosol (Site B34)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Very dark greyish brown (10YR 3/2) heavy clay, strong structure of 130mm subangular blocky peds with a rough fabric and very firm consistence. 10%, 90mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.20 – 0.60	Very dark grey (7.5YR 3/1) heavy clay, strong structure of 200mm subangular blocky peds with a rough fabric and very firm consistence. <5%, 15mm metamorphic stone content; <5% very highly calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
indunindunindunindunindunindunindunindu	B22	Dark reddish-brown (5YR 3/2) heavy clay, strong structure of 180mm subangular blocky peds with a rough fabric and very firm consistence. 25% red distinct and 10% yellow distinct mottling; <2%, 15mm metamorphic stone content; <5% moderately calcareous soft segregations <5mm; coarse roots common.
minnon	+0.60	Sampled 0.90 – 1.00m.
		Laver continues beyond sample depth.

Table 59 Summary: Self-Mulching Brown Vertosol (Site B35)

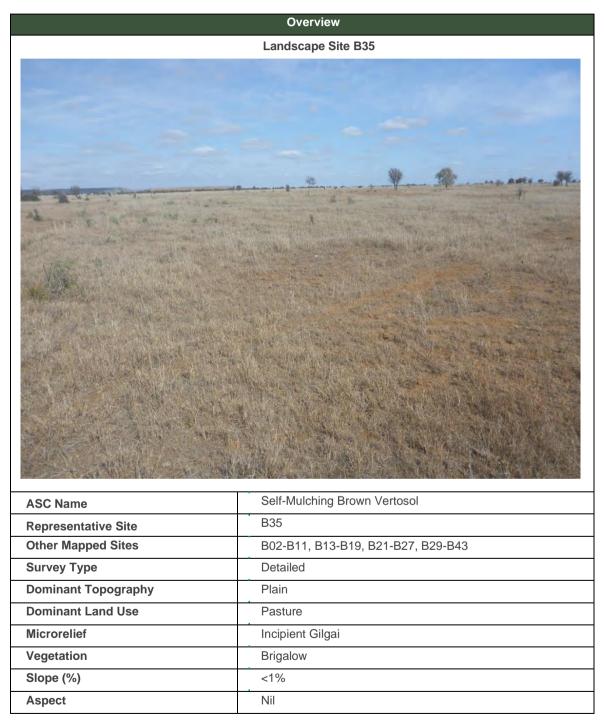


Table 60 Profile: Self-Mulching Brown Vertosol (Site B35)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Very dark brown (10YR 2/2) silty clay, strong structure of 130mm subangular blocky peds with a rough fabric and firm consistence. <2%, 20mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
	B21 0.20 – 0.50	Brown (10YR 4/3) light clay, strong structure of 120mm subangular blocky peds with a rough fabric and firm consistence. <2%, <10mm metamorphic stone content; 10% highly calcareous soft segregations <10mm; <2%; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
B 9 1	B22 +0.50	Brown (7.5YR 4/4) light-medium clay, strong structure of 180mm subangular blocky peds with a rough fabric and firm consistence. 40% orange faint mottling; 5% ferromanganiferous concretions <5mm and 10% calcareous soft segregation <10mm; coarse roots common; poorly drained Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 61 Summary: Self-Mulching Brown Vertosol (Site B36)

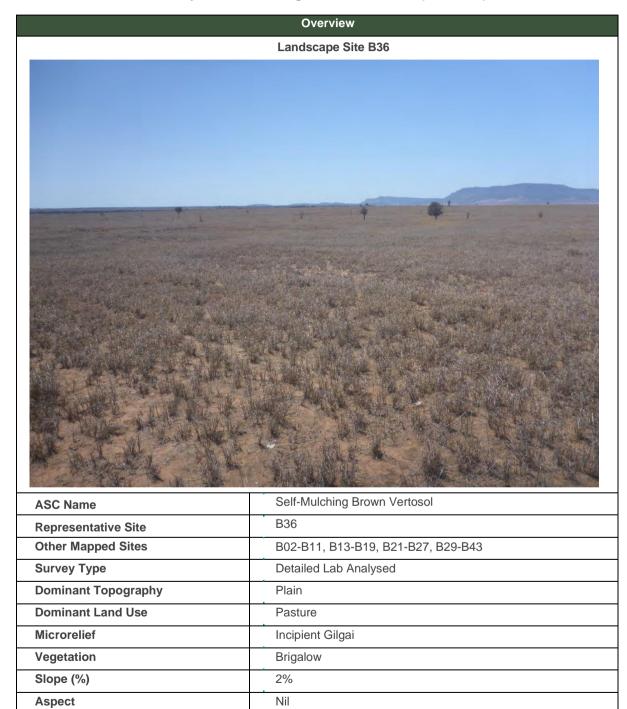


Table 62 Profile: Self-Mulching Brown Vertosol (Site B36)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.30	Dark brown (7.5YR 3/4) silty clay, strong structure of 100mm subangular blocky peds with a rough fabric and firm consistence. <5%, 10mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary.
	B21 0.30 – 0.70	Sampled 0.0 – 0.10m & 0.20 – 0.30m. Dark brown (10YR 3/3) heavy clay, strong structure of 140mm subangular blocky peds with a rough fabric and firm consistence. 10% pale faint mottling; 10%, 10mm metamorphic stone content; 10% ferromanganiferous concretions <5mm, 10% very highly calcareous soft segregations <2mm; many fine roots; gradual and wavy boundary.
	B22 +0.70	Sampled 0.50 – 0.60m. Yellowish-brown (10YR 5/4) light-medium clay, strong structure of 160mm subangular blocky peds with a rough fabric and firm consistence. 50% pale faint mottling; 10% ferromanganiferous concretions <5mm, 10% very highly calcareous soft segregations <2mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 63 Summary: Self-Mulching Black Vertosol (Site B37)

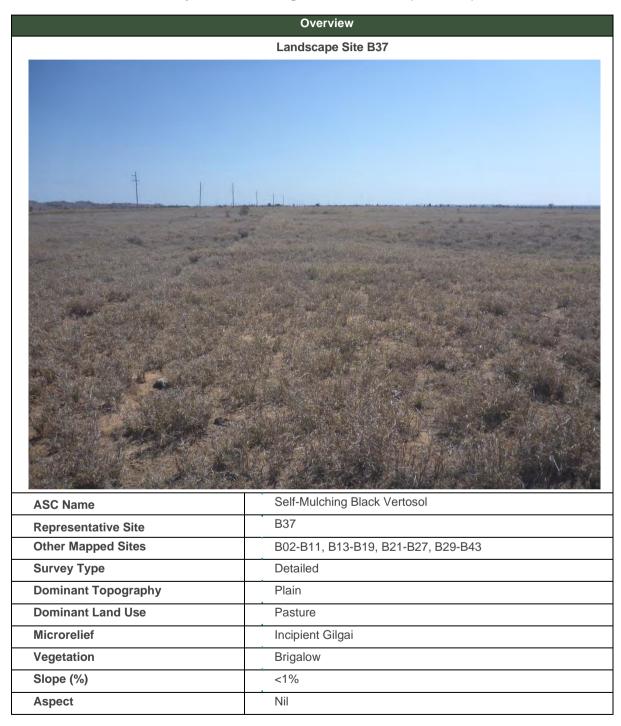


Table 64 Profile: Self-Mulching Black Vertosol (Site B37)

Profile	Horizon / Depth (m)	Description
minimum	A1 0.00 – 0.10	Dark greyish-brown (10YR 4/2) light clay, strong structure of 50mm subangular blocky peds with a rough fabric and firm consistence. abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m.
migration	B21 0.10 – 0.50	Very dark greyish brown (10YR 3/2) light clay, strong structure of 200mm subangular blocky peds with a rough fabric and firm consistence. 30% pale faint mottling; <5%, <10mm metamorphic stone content; 10% highly calcareous soft segregation <2mm; many fine roots; gradual and wavy boundary. Sampled 0.20 – 0.30m & 0.50 – 0.60m.
administration of the state of		Yellowish-brown (10YR 5/8) light clay, strong structure of 180mm subangular blocky peds with a rough fabric and firm consistence. 10% grey faint mottling; <5%, <10mm metamorphic stone content; 10% moderately calcareous soft segregations <2mm; coarse roots common.
	B22 +0.50	Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 65 Summary: Self-Mulching Brown Vertosol (Site B38)

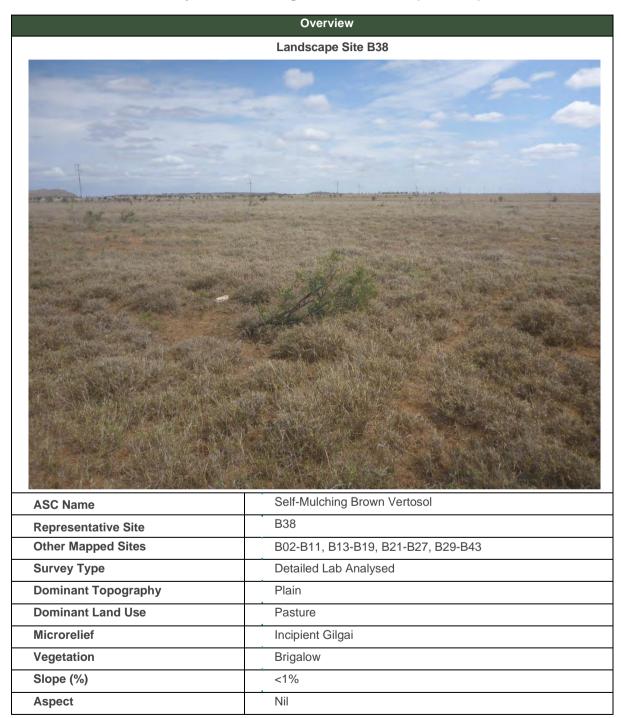


Table 66 Profile: Self-Mulching Brown Vertosol (Site B38)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.30	Dark brown (7.5YR 3/4) medium clay, strong structure of 150mm subangular blocky peds with a rough fabric and firm consistence. <2%, <5mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.0 – 0.10 & 0.20 – 0.30m.
	B21 0.30 – 0.80	Dark yellowish-brown (10YR 4/4) heavy clay, strong structure of 200mm subangular blocky peds with a rough fabric and firm consistence. 20% pale faint mottling; <2%, 150mm sandstone stone content; 20% ferromanganiferous concretions 30mm, 10% highly calcareous soft segregations 10mm; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
B22 +0.80	Dark brown (7.5YR 3/4) light clay, strong structure of 150mm subangular blocky peds with a rough fabric and firm consistence. 40% orange faint and 40% pale faint mottling; 20%, <10mm metamorphic stone content; 20% ferromanganiferous concretions <10mm, 10% highly calcareous soft segregations 10mm; coarse roots common. Sampled 0.90 – 1.0m. Layer continues beyond sample depth.	

Table 67 Summary: Self-Mulching Black Vertosol (Site B39)

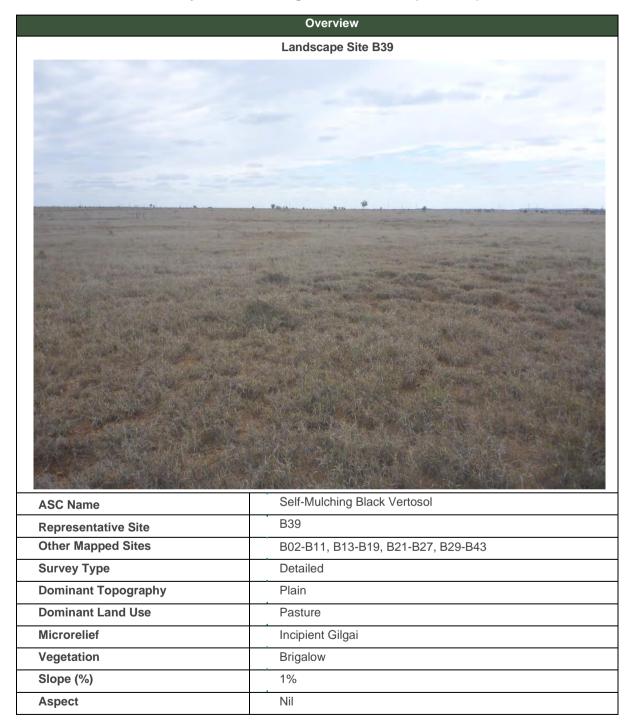


Table 68 Profile: Self-Mulching Black Vertosol (Site B39)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.30	Very dark brown (10YR 2/2) light clay, strong structure of 90mm subangular blocky peds with a rough fabric and firm consistence. <2%, 30mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m & 0.20 – 0.30m.
	B21 0.30 – 0.60	Dark brown (10YR 3/3) light clay, strong structure of 180mm subangular blocky peds with a rough fabric and firm consistence. 5- 10% pale faint mottling; 2% ferromanganiferous concretions 2-10mm and 2-10% calcareous soft segregations <2mm; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
	B22 +0.60	Dark reddish-brown (5YR 3/3) light clay, strong structure of 160 mm subangular blocky peds with a rough fabric and firm consistence. 20% orange faint mottling; <2-10% calcareous soft segregations <2mm; coarse roots common; poorly drained Sampled 0.50 – 0.60m & 0.90 – 1.0m. Laver continues beyond sample depth.

Soil Unit 1: Self-Mulching Black-Brown Vertosol Sub-Dominant Soil Type: Self-Mulching Grey Vertosol

Table 69 Summary: Self-Mulching Grey Vertosol (Site B40)

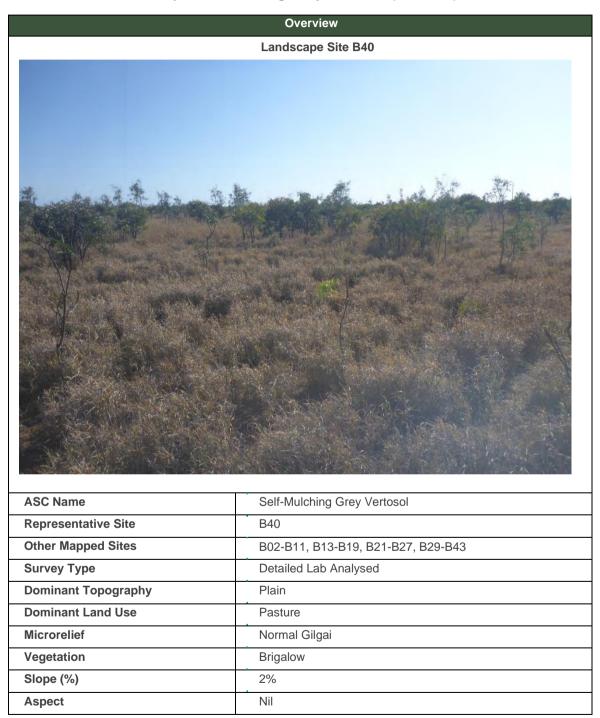


Table 70 Profile: Self-Mulching Grey Vertosol (Site B40)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.20	Dark brown (7.5YR 3/2) heavy clay, strong structure of 180mm subangular blocky peds with a rough fabric and firm consistence. 20%, 20mm metamorphic stone content; abundant fine roots; poorly drained; gradual and wavy boundary.
		Sampled 0.00 – 0.10m.
	B21 0.20 – 0.70	Dark greyish-brown (10YR 4/2) silty loam, strong structure of 170mm subangular blocky peds with a rough fabric and firm consistence. 20% brown faint mottling; 20%, 20mm metamorphic stone content; 20% calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary.
		Sampled 0.20 - 0.30 & 0.50 - 0.60m.
Thuritudunium and the state of	B22 +0.70	Strong brown (7.5YR 5/6) heavy clay, strong structure of 200+mm subangular blocky peds with a rough fabric and firm consistence. 10% gley distinct and 40% orange distinct mottling; 10%, 10mm metamorphic stone content; <5% calcareous soft segregations <5mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 71 Summary: Self-Mulching Black Vertosol (Site B41)

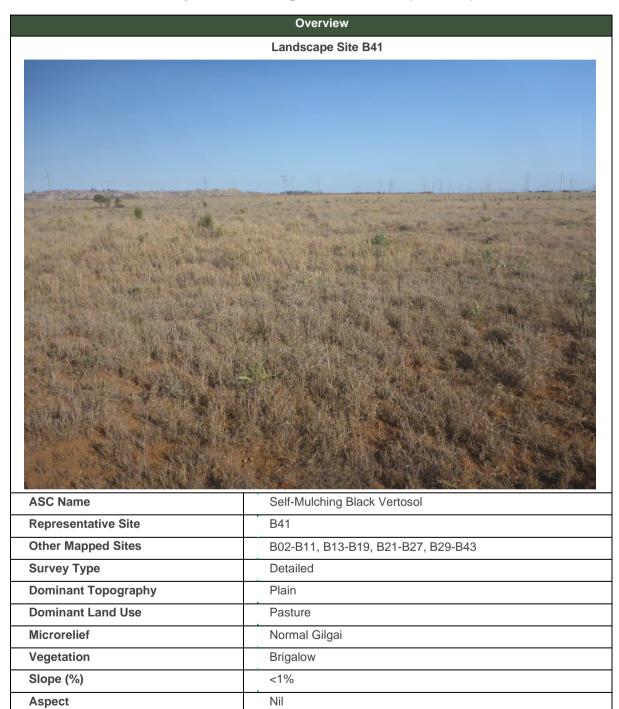


Table 72 Profile: Self-Mulching Black Vertosol (Site B41)

Profile	Horizon / Depth (m)	Description
dunimidualin	A1 0.00 – 0.30	Black (10YR 2/1) light clay, strong structure of 110mm subangular blocky peds with a rough fabric and firm consistence. Abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m & 0.20 – 0.30m.
	B21 0.30 - 0.70	Very dark brown (7.5YR 2.5/2) light clay, strong structure of 150mm subangular blocky peds with a rough fabric and firm consistence. 25% brown faint mottling; <2%, <5mm metamorphic stone content; <2% very highly calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
uindundundundundundundundundundundundundun	B22 +0.70	Very dark brown (7.5YR 2.5/3) light clay, strong structure of 170mm subangular blocky peds with a rough fabric and firm consistence. 20% red distinct mottling; 20%, <10mm metamorphic stone content; 5% ferromanganiferous concretions <5mm and 2% highly calcareous soft segregations <5mm; coarse roots common. Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Table 73 Summary: Self-Mulching Black Vertosol (Site B42)

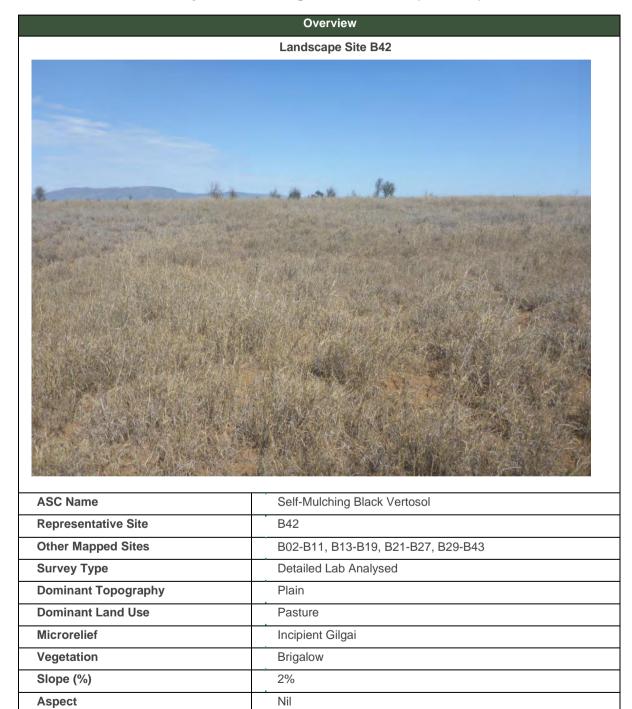


Table 74 Profile: Self-Mulching Black Vertosol (Site B42)

Profile	Horizon / Depth (m)	Description
	A1 0.00 – 0.30	Dark brown (7.5YR 3/2) medium clay, strong structure of 150mm subangular blocky peds with a rough fabric and firm consistence. 20%, 120mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m & 0.20 – 0.30m.
	B21 0.30 – 0.80	Dark brown (10YR 3/3) medium clay, strong structure of 180mm subangular blocky peds with a rough fabric and firm consistence. 10%, 20mm metamorphic stone content; 10% ferromanganiferous concretions <5mm and <5% calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
and and an industry to the state of the stat	B22 +0.80	Dark brown (10YR 3/3) silty clay, strong structure of 200mm subangular blocky peds with a rough fabric and firm consistence. 10% pale faint mottling; 10% ferromanganiferous concretions <5mm and <5% calcareous soft segregations <5mm; coarse roots common. Sampled 0.90 – 1.00 m Layer continues beyond sample depth.

Table 75 Summary: Self-Mulching Black Vertosol (Site B43)

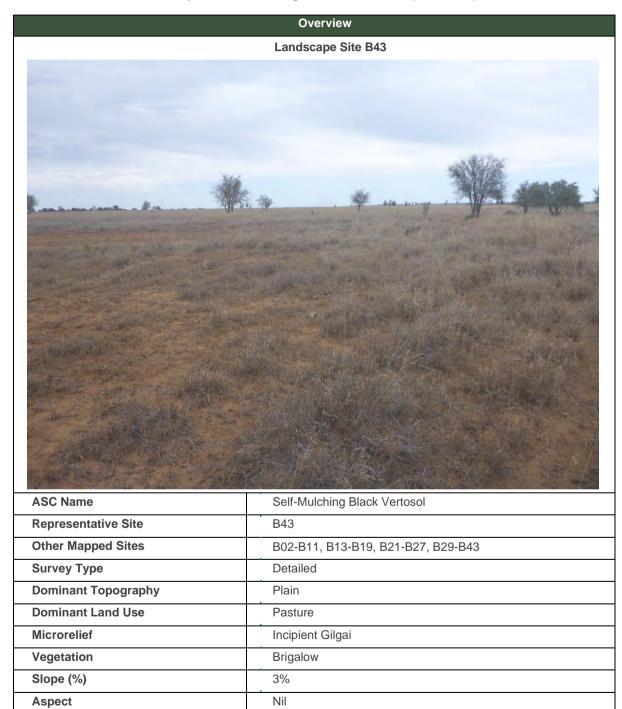


Table 76 Profile: Self-Mulching Black Vertosol (Site B43)

Profile	Horizon / Depth(m)	Description
	A1 0.00 – 0.30	Very dark greyish brown (10YR 3/2) light clay, strong structure of 80mm subangular blocky peds with a rough fabric and firm consistence. 20%, 10mm metamorphic stone content; abundant fine roots; imperfectly drained; gradual and wavy boundary. Sampled 0.00 – 0.10m & 0.20 – 0.30m.
	B21 0.30 – 0.70	Very dark greyish brown (10YR 3/2) light clay, strong structure of 140mm subangular blocky peds with a rough fabric and firm consistence. 20% pale faint mottling; <5%, 10mm metamorphic stone content; <10% ferromanganiferous concretions 2-10mm and 10% moderately calcareous soft segregations <5mm; many fine roots; gradual and wavy boundary. Sampled 0.50 – 0.60m.
7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B22 +0.70	Dark brown (10YR 3/3) light clay, strong structure of 180mm subangular blocky peds with a rough fabric and firm consistence. 20% red faint mottling; <10% ferromanganiferous concretions <2mm and 10% moderately calcareous soft segregations <5mm; coarse roots common; poorly drained Sampled 0.90 – 1.00m. Layer continues beyond sample depth.

Appendix C Check Site Descriptions

Land Resources Assessment Report

BM Alliance Coal Operations

SLR Project No.: 620.014601.00001

7 December 2023

Table 1 Summary: Self-Mulching Brown Vertosol (Check Site 1)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C01	Total Control
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description

A1 (0.00 – 0.10m): Yellowish brown (10YR 5/4) light-medium clay, moderate structure, subangular blocky peds.

Table 2 Summary: Self-Mulching Brown Vertosol (Check Site 2)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C02	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 5/4) medium clay, strong structure, subangular blocky peds.

Table 3 Summary: Self-Mulching Brown Vertosol (Check Site 3)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C03	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description A1 (0.00 – 0.10m): Brown (7.5YR 5/3) light-medium clay, strong structure, subangular blocky peds.

Self-Mulching Black Vertosol

Table 4 Profile: Self-Mulching Black Vertosol (Check Site 4)

Overview	,	
ASC Name	Self-Mulching Black	
	Vertosol	
Representative Site	C04	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.20m):Dark brown (7.5YR 3/2) light medium clay, moderate structure, subangular blocky peds.

Table 5 Profile: Self-Mulching Brown Vertosol (Check Site 5)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C05	· marks as a recent property of the
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 5/2) light medium clay, moderate structure, subangular blocky peds.

Table 6 Profile: Self-Mulching Brown Vertosol (Check Site 6)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C06	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description A1 (0.00 – 0.10m): Dark yellowish brown (10YR 4/4) silty clay, moderate structure, subangular blocky peds.

Self-Mulching Black Vertosol

Table 7 Profile: Self-Mulching Black Vertosol (Check Site 7)

Overview	,	
ASC Name	Self-Mulching Black Vertosol	
Representative Site	C07	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 - 0.10m): Very dark grey (7.5YR 3/1) medium clay, strong structure subangular blocky peds.

Table 8 Profile: Self-Mulching Brown Vertosol (Check Site 8)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C08	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description A1 (0.00 – 0.10m): Strong brown (7.5YR 5/6) silty clay, moderate structure subangular blocky peds.

Table 9 Profile: Self-Mulching Brown Vertosol (Check Site 9)

Overview		
ASC Name	Self-Mulching Brown	
	Vertosol	
Representative Site	C09	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m) Brown (7.5YR 5/3) light-medium clay, strong structure, subangular blocky peds.

Table 10 Profile: Self-Mulching Brown Vertosol (Check Site 10)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C10	The same of the sa
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	2-3	文章 (水)
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 - 0.10m): Yellowish brown (10YR 5/6) medium clay, moderate structure subangular blocky peds.

Table 11 Profile: Self-Mulching Brown Vertosol (Check Site 11)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C11	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	では、大人では、
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Yellowish brown (101YR 5/8) light-medium clay, moderate structure, subangular blocky peds.

Table 12 Profile: Self-Mulching Brown Vertosol (Check Site 12)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C12	- AMARIA COLOR
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 5/3) light-medium clay, moderate structure, subangular blocky peds.

Table 13 Profile: Self-Mulching Brown Vertosol (Check Site 13)

Overview	·	
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C13	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	TEST THE STATE OF
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 4/4) medium clay, strong structure, subangular blocky peds.

Table 14 Profile: Self-Mulching Brown Vertosol (Check Site 14)

Overview		
ASC Name	Self-Mulching Brown	
	Vertosol	
Representative Site	C14	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 4/4) medium clay, moderate structure, subangular blocky peds.

Table 15 Profile: Self-Mulching Brown Vertosol (Check Site 15)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C15	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.20m): Yellowish brown (10YR 5/4) light clay, moderate structure, subangular blocky peds. B2: Strong brown (7.5YR 5/6) medium clay, strong structure, subangular blocky peds.

Table 16 Profile: Self-Mulching Brown Vertosol (Check Site 16)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C16	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 5/3) light clay, moderate structure, subangular blocky peds.

Table 17 Profile: Brown Dermosol (Check Site 17)

Overview		
ASC Name	Brown Dermosol	
Representative Site	C17	
Soil Map Unit	1 (Sub-Dominant Soil Type)	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Bottle Tree	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Light brown (7.5YR 6/4) sandy loam, weak crumb structure. B2 (+0.10m) Strong brown (7.5YR 5/8) clay loam, moderate structure, blocky peds.

Table 18 Profile: Self-Mulching Brown Vertosol (Check Site 18)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C18	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Bottle Tree	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	The second second
Profile		Description
		A1 (0.00 – 0.10m): Dark brown (10YR 3/3) light clay, moderate structure, subangular blocky peds.

Table 19 Profile: Self-Mulching Brown Vertosol (Check Site 19)

Overview	ľ	
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C19	- Committee of the Comm
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	CONTRACTOR AND SULFAMORIZATION OF THE STATE
Dominant Land Use	Pasture	
Vegetation	Brigalow, Bottle Tree	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.0 – 0.10m): Brown (7.5YR 5/4) light-medium clay, moderate structure, subangular blocky peds.

Table 20 Profile: Brown Dermosol (Check Site 20)

Overview		
ASC Name	Brown Dermosol	
Representative Site	C20	
Soil Map Unit	1 (Sub-Dominant Soil Type)	
Survey Type	Check Site	
Dominant Topography	Drainage Line	
Dominant Land Use	Pasture	
Vegetation	Bauhinia, Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	发力,
Aspect	Nil	
Profile		Description
Tronie		A1 (0.00 – 0.20m): Brown (10YR 5/4) sandy loam, weak crumb structure. B21 (+0.20m): Brown (10YR 4/4) sandy clay loam, weak structure, blocky peds.

Table 21 Profile: Self-Mulching Brown Vertosol (Check Site 21)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C21	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Dark brown (7.5YR 3/4) light clay, strong structure, subangular blocky peds.

Table 22 Profile: Brown Dermosol (Check Site 22)

Overview		
ASC Name	Brown Dermosol	
		The same of the sa
Representative Site	C22	
Soil Map Unit	3	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	(1) 人名英格兰
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Light brown (7.5YR 6/4) clay loam, moderate structure, blocky peds.

Table 23 Profile: Self-Mulching Brown Vertosol (Check Site 23)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C23	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Carissa	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
THE RESIDENCE OF A SECOND PARTY OF THE PARTY		Description A1 (0.00 – 0.10m): Brown (7.5YR 4/3) medium clay, strong structure, subangular blocky peds.

Table 24 Profile: Self-Mulching Brown Vertosol (Check Site 24)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C24	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Carissa	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description A1 (0.0 – 0.10): Brown (7.5YR 5/3) light clay, moderate structure; blocky peds.

Table 25 Profile: Brown Dermosol (Check Site 25)

Overview		
ASC Name	Brown Dermosol	
Representative Site	C25	
Soil Map Unit	1 (Sub-dominant Soil Type)	
Survey Type	Check Site	
Dominant Topography	Drainage Line	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Carissa	
Slope (%)	0-2	100 100 100 100 100 100 100 100 100 100
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.20m): Light brown (7.5YR 6/4) sandy loam, weak crumb structure; gradual boundary.
		B2 (+0.20m): Brown (10YR 5/3) sandy clay loam, weak structure, blocky peds.

Table 26 Profile: Self-Mulching Brown Vertosol (Check Site 26)

Overview	ľ	
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C26	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Carissa	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (10YR 5/3) light-medium clay, moderate structure, blocky peds.

Table 27 Profile: Self-Mulching Brown Vertosol (Check Site 27)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C27	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Drainage Line	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Carissa	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.20m): Brown (7.5YR 5/2) light-medium clay, strong structure, subangular blocky peds. B2 (+0.20m): Light brown (7.5YR 6/4) medium clay, strong structure, subangular blocky peds.

Table 28 Profile: Self-Mulching Brown Vertosol (Check Site 28)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C28	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Bauhinia, Carissa	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Yellowish brown (10YR 5/6) silty clay, moderate structure, blocky peds.

Table 29 Profile: Self-Mulching Brown Vertosol (Check Site 29)

Overview	,	
ASC Name	Self-Mulching Brown	
	Vertosol	
Representative Site	C29	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 5/3) light clay, moderate structure, subangular blocky peds.

Red Dermosol

Table 30 Profile: Red Dermosol (Check Site 30)

Overview		
ASC Name	Red Dermosol	
Representative Site	C30	
Soil Map Unit	2B	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Yellowish red (5YR 4/6) sandy clay loam, weak blocky structure.

Table 31 Profile: Self-Mulching Brown Vertosol (Check Site 31)

Overview		
ASC Name	Self-Mulching Brown	
	Vertosol	
Representative Site	C31	
Soil Map Unit	1	
Survey Type	Check Site	And the second s
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Carissa	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Light brown (7.5YR 6/3) light-medium strong structure, subangular blocky peds.

Table 32 Profile: Self-Mulching Brown Vertosol (Check Site 32)

Overview	,	
ASC Name	Self-Mulching Brown	
	Vertosol	
Representative Site	C32	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Carissa	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Light brown (7.5YR 6/4) medium clay, strong structure, subangular blocky peds.

Epipedal Brown Vertosol

Table 33 Profile: Epipedal Brown Vertosol (Check Site 33)

Overview		
ASC Name	Epipedal Brown Vertosol	
Representative Site	C33	
Soil Map Unit	1 (Sub-Dominant Soil Type)	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Strong brown (7.5YR 4/6) light clay, moderate structure; blocky peds.

Table 34 Profile: Self-Mulching Brown Vertosol (Check Site 34)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C34	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Wilga, Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.20m): Brown (7.5YR 4/3) medium clay, strong structure, subangular blocky peds.

Table 35 Profile: Brown Dermosol (Check Site 35)

Overview		
ASC Name	Brown Dermosol	· sat
Representative Site	C35	
Soil Map Unit	3	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow, Carissa, Wilga	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Strong brown (7.5YR 5/8) clay loam, moderate structure, blocky peds.

Table 36 Profile: Self-Mulching Brown Vertosol (Check Site 36)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C36	· Valy
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 5/3) medium clay, strong structure, subangular blocky peds.

Table 37 Profile: Self-Mulching Brown Vertosol (Check Site 37)

Overview		
ASC Name	Self-Mulching Brown Vertosol	
Representative Site	C37	
Soil Map Unit	1	
Survey Type	Check Site	
Dominant Topography	Plain	
Dominant Land Use	Pasture	
Vegetation	Brigalow	
Slope (%)	0-2	
Slope Type	Minimal	
Aspect	Nil	
Profile		Description
		A1 (0.00 – 0.10m): Brown (7.5YR 4/4) medium clay, strong structure subangular blocky peds.

Appendix D Emerson Aggregate Test Results

Land Resources Assessment Report

BM Alliance Coal Operations

SLR Project No.: 620.014601.00001

7 December 2023

Table 1 Summary of Emersion Aggregate Testing (EAT) Results

Sample	Layer	Depth (cm)	EAT Score	Rating
	A1	0– 10	3	Madarataly High
Do.	B21	20 – 30	3	Moderately High
B01	B22	50 – 60	2	Lliab
	B23	90 – 100	2	High
	A1	0–10	4	
Doc	B21	20 – 30	4	NI a all all la
B05	B22	50 – 60	4	Negligible
	B23	90 – 100	4	
	A1	0 – 10	4	Negligible
D 07	D04	20 – 30		
B07	B21	50 – 60	3	Moderately High
	B22	90 – 100	2	High
	0.4	0 – 10	4	Negligible
D 00	A1	20 – 30	3	Moderately High
B09	B21	50 – 60	2	High
	B22	90 – 100	3	Moderately High
	A1	0 – 10	3	
	B21	20 – 30	3	Moderately High
B10		50 – 60	3	
	B22	90 – 100	2	High
	A1	0 – 10	3	
	B21	20 – 30	3	Moderately High
B12		50 – 60	3	
	B22	90 – 100	2	High
	A1	0 – 10	2	
5	B21	20 – 30	2	
B17	500	50 – 60	2	High
	B22	90 – 100	2	
	A1	0 – 10	3	Moderately High
500	B21	20 – 30	2	High
B20	500	50 – 60	4	Negligible
	B22	90 – 100	2	High
5	A1	0– 10	3	Moderately High
B21	B21	20 – 30	2	High

Sample	Layer	Depth (cm)	EAT Score	Rating
	B22	50 – 60	2	
	B23	90 – 100	2	
	A1	0– 10	4	Negligible
DOO	B21	20 – 30	3	
B23	Doo	50 – 60	3	Moderately High
	B22	90 – 100	3	
B25	A1	0– 10	3	Moderately High
	B21	20 – 30	4	
		50 - 60	4	Negligible
	B22	90 – 100	4	
	A1	0– 10	3	Moderately High
Doo	D04	20 – 30	2	
B28	B21	50 - 60	2	High
	B22	90 – 100	2	
	A1	0– 10	4	Negligible
DOO	B21	20 – 30	3	Moderately High
B29	Doo	50 – 60	2	11:
	B22	90 – 100	2	High
	A1	0– 10	4	Negligible
D04	B21	20 – 30	3	Moderately High
B31	Doo	50 – 60	2	I II ala
	B22	90 – 100	2	High
	A1	0– 10	2	High
Doo	D04	20 – 30	3	
B32	B21	50 - 60	3	Moderately High
	B22	90 – 100	3	
	A1	0– 10	3	
D0.4	D04	20 – 30	3	Madagatah dibah
B34	B21	50 - 60	3	Moderately High
	B22	90 – 100	3	
	A1	0– 10	3	Madaust IP-1
Doo.	D04	20 – 30	3	Moderately High
B36	B21	50 - 60	2	
	B22	90 – 100	2	High
B38 A1 0-10 2 B21 20-30 2	112.1			
	B21	20 – 30	2	High

Sample	Layer	Depth (cm)	EAT Score	Rating
		50 – 60	3	Moderately High
	B22	90 – 100	2	High
	A1	0– 10	3	Moderately Ligh
D40	B40 B21	20 – 30	3	Moderately High
В40		50 – 60	2	Lliab
	B22	90 – 100	2	High
	A1	0– 10	2	
B42 B21	DOA	20 – 30	2	Lliab
	DZ1	50 – 60	2	High
	B22	90 – 100	2	

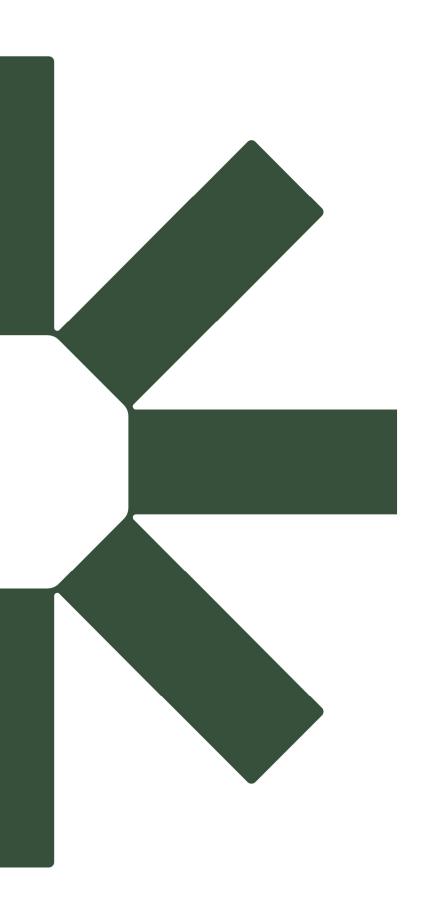
Appendix E Land Suitability Assessment

Land Resources Assessment Report

BM Alliance Coal Operations

SLR Project No.: 620.014601.00001

7 December 2023


Table 1 Land Suitability Class

Site	SMU	Representative Site	Е	Es	М	М	М	R	R	W	W	W	Tm	Pm	Ps	Land Suitability
			Water Erosion	Erosion Hazard, subsoil erodibility	availability	Soil water availability	Soil water availability	Rockiness	Rockiness	Wetness	Wetness	Wetness	Microrelief	Narrow Moisture Range	Surface Condition	Class
Black-Brown Self- Mulching Vertosol	1	B02 – B11, B13 – B19, B21 – B27, B29 – B43	2	1	2	2	3	2	4	4	4	2	2	4	3	4
Eutrophic Red Dermosol	2A	B28	4	2	3	4	5	1	1	4	4	4	1	2	3	5
Eutrophic Red Dermosol	2B	B01	4	2	3	4	5	2	3	4	4	4	1	2	2	5
Eutrophic Black- Brown Dermosol	3	B12, B20	4	2	4	5	5	1	1	3	3	3	2	2	3	5

Table 2 Land Capability Class

Site	SMU	Representative Site	С	М	Р	N	Sa	Х	R	Tm	W	Е	F	А	Wind Class
			Climatic Limitation	Soil water availability	Soil Physical Factor	Nutrients	Soil salinity or sodicity	Landscape complexity	Rockiness	Microrelief	Wetness	Water Erosion	Flooding	Wind Erosion	
Black-Brown Self- Mulching Vertosol	1	B02 – B11, B13 – B19, B21 – B27, B29 – B43	2	2	2	1	3	3	0	2	3	0	1	0	3
Eutrophic Red Dermosol	2A	B28	2	4	2	2	4	4	0	0	3	3	2	1	4
Eutrophic Red Dermosol	2B	B01	2	3	2	1	4	4	1	0	3	3	3	1	4
Eutrophic Black- Brown Dermosol	3	B12, B20	2	4	2	2	3	3	1	2	2	3	1	2	4

