## Context

An Underground Water Impact Report (UWIR), and associated groundwater monitoring strategy for Santos' Cooper Basin oil and gas operations was approved by the then Department of Environmental and Heritage Protection on the 8 July 2013. As required by section 370 of the Water Act 2000, updates to the UWIR are required every three years.

The latest revision of the UWIR was submitted for approval in December 2019 following an extension to the submission date as granted by the Queensland Department of Environment and Science (DES). As at the time of this assessment in February 2020, the next revision to the UWIR had not yet been approved by DES.

## Purpose

A recent change in the long-term development plan has resulted in the need to revise the December 2019 UWIR. This memo has been prepared to outline the changes in the model and the Long-term Affected Area (LAA). This is reported in the attached report "Revised Scenario for the UWIR" (Appendix B).

The change is induced by a modelled increase in the number of operational oil and gas wells by Santos within the Cooper and Eromanga Basins. There are no changes to the number of wells currently being operated, and hence no change to the Immediately Affected Area (IAA) as submitted for approval in 2019.

## Changes to development

Table A-1 summarises the additional number of wells proposed to be developed within each Environmental Authority. The number of modelled wells (existing and proposed) has increased from 469 to 655 oil wells in the Eromanga Basin and 617 to 823 gas wells in the Cooper Basin.

## Changes to underground water impact

Due to the greater number of modelled oil and gas wells, the LAA areas have grown slightly. This is shown in Figures 38-41 for the Eromanga Basin and Figures 48-49 for the Cooper Basin in Appendix B.

This increase in impact area increases the number of potentially impacted groundwater bores. An additional bore, RN 23059, is predicted to see a drawdown impact of 6m in the long-term (ie > 3years into the future), 1m above the 5m trigger drawdown threshold. This bore lies outside the modelled IAA however.



This increase in impact area does not change the potential risk to Environmental Values such as springs or groundwater dependent ecosystems since the affected formations are not in hydraulic continuity with the surface water environment or sediments at ground surface level. This is consistent with the assessment of all previously approved UWIRs for the project area and the UWIR submitted in 2019.

## Groundwater Monitoring Strategy

The groundwater monitoring strategy proposed in the UWIR submitted in 2019 does not need to be amended based on the new predicted impact because the scale of the impact has not significantly changed.

### Bore Assessment and Make Good

There are no new requirements to undertake Bore Assessments or Make Good because there are no changes to the Immediately Affected Area (IAA).

## **Produced Formation Water Volumes**

The predictions and assumptions used within the model to determine water production rates for the IAA have not changed. Validation for the LAA model scenario will only be possible in future years (i.e. beyond the next three-years).

There has been no material change in the information or predictions used to prepare maps detailed in the UWIR, insofar as the predictions are considered more conservative when compared to expected actual impacts.

## Annual report

Santos expects the UWIR dated December 2019 to be approved with conditions.

In accordance with s376 (e) of the *Water Act 2000*, an annual review must be submitted within 20 business days after the anniversary day of the approval. The annual report due in August 2020 will include the assessment of potential impacts of changes to long-term development plans, as reported here.



| Principal Environmental Advisor |  |  |  |  |  |  |  |  |  |
|---------------------------------|--|--|--|--|--|--|--|--|--|
| Hydrogeologist                  |  |  |  |  |  |  |  |  |  |
| Environment and Access          |  |  |  |  |  |  |  |  |  |
| Santos Limited,                 |  |  |  |  |  |  |  |  |  |
| t: m: +                         |  |  |  |  |  |  |  |  |  |
| 👔 in У <u>santos.com</u>        |  |  |  |  |  |  |  |  |  |



## Appendix A

| EA Reference                 | Tenure                                                                                      | No.<br>modelled<br>wells (LAA) |
|------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|
| EPPG03517715                 | PL59, PL60/1072, PL61, PL81, PL83, PL85, PL86,                                              | 121                            |
|                              | PL97/508, PL106/288, PL108, PL111, PL112, PL131, PL132, PL135, PL139/1035, PL146, PL147,    |                                |
|                              | PL205, PL207/1014, PL208/1051                                                               |                                |
| EPPG00303413                 | PL177                                                                                       | 9                              |
| EPPG00303013                 | PL152                                                                                       | 9                              |
| EPPG00303213                 | PL155                                                                                       | 21                             |
| EPPG00309213                 | PL151                                                                                       | 22                             |
| EPPG02656814                 | PL509, PL1013                                                                               | 27                             |
| EPPG03516015                 | PL58, PL136, PL137, PL159                                                                   | 33                             |
| EPPG00303313                 | PL156                                                                                       | 9                              |
| EPPG00383613                 | PL249                                                                                       | 3                              |
| EPPG00407213                 | PL80, PL1087                                                                                | 22                             |
| EPPG03518115                 | PL23, PL24, PL25, PL26, PL35, PL36, PL62, PL76, PL77, PL78, PL82, PL87, PL105/287, PL133,   |                                |
|                              | PL149, PL175, PL495, PL496, PL1047                                                          | 100                            |
| EPPG00303613                 | PL181                                                                                       | 3                              |
| EPPG00303713                 | PL182                                                                                       | 3                              |
| EPPG00307213                 | PL79                                                                                        | 3                              |
| EPPG00322013                 | PL189/1026                                                                                  | 2                              |
| EPPG03517915                 | PL29, PL38, PL39, PL52, PL57, PL95,<br>PL169/1027, PL170/1029                               | 47                             |
| EPPG00382813                 | PL295                                                                                       | 41                             |
| EPPG03517415                 | PL34, PL37, PL63, PL68, PL75, PL84, PL88,<br>PL129, PL130, PL134, PL140, PL142, PL143/1057, |                                |
|                              | PL144, PL150, PL186, PL110/497, PL502, PL1046                                               | 134                            |
| EPPG00300513                 | PL241                                                                                       | 3                              |
| EPPG00304113                 | PL193/513<br>PL255                                                                          | 21                             |
| EPPG00307813                 |                                                                                             | 6                              |
| EPPG00383513<br>EPPG03517215 | PL301, PL1077<br>PL113/1054, PL114, PL141, PL145, PL148, PL153,                             | 19                             |
| EFF 603517215                | PL157, PL158, PL1016                                                                        | 65                             |
| EPPG00303913                 | PL187                                                                                       | 3                              |
| EPPG00715013                 | PL303, PL1028                                                                               | 39                             |
| EPPG00747513                 | ATP752                                                                                      | 3                              |
| EPPG03518715                 | PL138, PL154                                                                                | 6                              |
| EPPG03517315                 | PL55                                                                                        | 3                              |
| EPPG03518215                 | ATP1189                                                                                     | 35                             |
| EPPG00146313                 | ATP636                                                                                      | 3                              |
| EPPG00307913                 | PL117                                                                                       | 1                              |
| EPPG00304013                 | PL188                                                                                       | 1                              |
| EPPG00307713                 | PL254                                                                                       | 6                              |
| EPPG00892413                 | ATP1063, ATP1174, PL33, PL50, PL51, PL244                                                   | 35                             |

#### **Table A-1** LTAA Modelled Wells (in addition to existing operational wells)



| EA Reference | Tenure                                  | No.<br>modelled<br>wells (LAA) |
|--------------|-----------------------------------------|--------------------------------|
| EPPG00641613 | PL302, PL1060                           | 10                             |
| EPPG00757313 | PL411                                   | 1                              |
| None         | PL1055                                  | 10                             |
| None         | PL1058                                  | 10                             |
| None         | PCAs associated with ATP1189 and ATP752 | 129                            |



Appendix B – Underground Water Impact Report for Santos Cooper Basin Oil and Gas Fields, South-West Queensland (February 2020)

# Santos

## Revised Scenario for the UWIR Santos Cooper Basin Oil and Gas Fields, South-West Queensland February 2020

| Date     | Rev | Reason For Issue      | Author  | Checked | Approved |
|----------|-----|-----------------------|---------|---------|----------|
| 12/02/20 | 0   | Regulatory submission | KB / HG |         |          |
|          |     |                       |         |         |          |

<Page intentionally left blank>

## **Table of Contents:**

| 1.0 | Intro | oduction                                                   | 1  |
|-----|-------|------------------------------------------------------------|----|
| 2.0 | Bac   | kground                                                    | 2  |
|     | 1.1.  | Previous Groundwater Studies                               | 2  |
| 3.0 | Legi  | slative Framework                                          | 5  |
|     | 3.1   | Petroleum and Gas (Production and Safety) Act 2004         | 5  |
|     | 3.2   | Water Act 2000                                             | 5  |
|     | 3.3   | Other Applicable Water Regulations                         | 7  |
| 4.0 | Exis  | ting Environment                                           | 9  |
|     | 4.1   | Climate                                                    | 9  |
|     | 4.2   | Topography and Drainage                                    | 11 |
|     | 4.3   | Geology                                                    | 14 |
| 5.0 | Hyd   | rogeological Conceptual Model                              | 35 |
|     | 5.1   | Hydrogeological Setting                                    | 35 |
|     | 5.2   | Hydrostratigraphy                                          | 35 |
|     | 5.3   | Structural Influence on Groundwater Flow                   | 45 |
|     | 5.4   | Hydraulic Parameters                                       | 45 |
|     | 5.5   | Groundwater Level Variations                               | 46 |
|     | 5.6   | Aquifer Recharge and Discharge                             | 47 |
|     | 5.7   | Groundwater Quality                                        | 52 |
|     | 5.8   | Observed Reservoir Pressure Data                           | 53 |
|     | 5.9   | Groundwater Use (other than Produced Water)                | 58 |
| 6.0 | Sant  | tos SWQ Operations                                         | 61 |
|     | 6.1   | Gas Extraction                                             | 61 |
|     | 6.2   | Oil Production                                             | 61 |
|     | 6.3   | Produced Water Production                                  | 64 |
|     | 6.4   | Produced Water Monitoring Methodology                      | 64 |
| 7.0 | Gro   | undwater Impact Estimation                                 | 68 |
|     | 7.1   | Analytical Approach                                        | 68 |
|     | 7.2   | Groundwater Impact Calculation Input Parameters            | 70 |
|     | 7.3   | Sensitivity Analysis                                       | 71 |
|     | 7.4   | Water Production Volumes Used for the Analytical Modelling | 71 |
|     | 7.5   | Calculated Impact in the Eromanga Basin                    | 72 |
|     | 7.6   | Calculated Impact in the Cooper Basin                      | 87 |
|     | 7.7   | Summary of Key Points from the Analytical Modelling        | 87 |
| 8.0 | Vuln  | erability Assessment                                       | 94 |
|     | 8.1   | Vulnerability of GDEs                                      | 94 |
|     | 8.2   | Vulnerability of Groundwater Users                         | 94 |
| 9.0 | Und   | erground Water Monitoring                                  | 97 |
|     | 9.1   | Rational                                                   | 97 |

|      | 9.2  | Previous Water Studies / Monitoring      | 97  |
|------|------|------------------------------------------|-----|
|      | 9.3  | Monitoring Strategy                      | 99  |
|      | 9.4  | Annual Review and Reporting              | 101 |
| 10.0 | UWIF | R Review Schedule and Reporting Protocol | 102 |
| 11.0 | Cond | clusion                                  | 103 |
| 12.0 | Refe | rences                                   | 104 |

## Tables:

| Table 1. Additional Legislative Requirements Related to Groundwater                              | 8   |
|--------------------------------------------------------------------------------------------------|-----|
| Table 2. Climate Characteristics within the Cooper Basin Operations Area - Windorah Station      | 10  |
| Table 3. Geological Abbreviations for Stratigraphic markers of the Eromanga and Cooper Basin Fms | 25  |
| Table 4. Hydrostratigraphy of the Study Area                                                     | 36  |
| Table 5. Hydraulic Parameters                                                                    | 45  |
| Table 6. GAB Monitoring Network - Target Aquifers                                                | 46  |
| Table 7. Groundwater pH                                                                          | 52  |
| Table 8. Groundwater classification based on TDS (Salinity classes modified from Fetter, 1994)   | 52  |
| Table 9. Estimated Extraction from Bores in the Study Area                                       | 59  |
| Table 10. Water Extraction Rates - 2016 UWIR Model                                               | 72  |
| Table 11. Calculated maximum drawdown along lines of section – Eromanga Basin                    | 74  |
| Table 12. Calculated maximum drawdown along lines of section – Cooper Basin                      | 87  |
| Table 13. Registered Groundwater Bores Affected by Modelled Impacts.                             | 96  |
| Table 14. UWIR Monitoring Network – 2016 to 2019                                                 | 100 |
| Table 15. UWIR Monitoring and Sampling Schedule – 2016 to 2019                                   | 101 |

## Figures:

| Figure 1. Santos SWQ Oil and Gas Operations                                                      | 3  |
|--------------------------------------------------------------------------------------------------|----|
| Figure 2. Santos Cooper Basin Oil and Gas Fields                                                 | 4  |
| Figure 3. Rainfall and Temperature Data – 1931 to 2016 for Windorah Station (BOM, 2016)          | 11 |
| Figure 4. Study area during floods                                                               | 12 |
| Figure 5. Topography and drainage of the Study area                                              | 13 |
| Figure 6. Surface Geology                                                                        | 15 |
| Figure 7. GAB Structural geology of the study area                                               | 16 |
| Figure 8. Chronology and stratigraphy of the Cooper and Eromanga Basins                          | 17 |
| Figure 9. Stratigraphy Sequence in the Study Area                                                | 23 |
| Figure 10. Geological Schematic Cross Section across the GAB Eromanga Basin                      | 26 |
| Figure 11. Geological Conceptual Cross Section across the Study Area                             | 27 |
| Figure 12. Petroleum Reservoirs Trapping Mechanisms of the Cooper and Eromanga Basins (fro 1998) |    |
| Figure 13. Summary of Regional Major Faults (Santos 2004)                                        | 31 |

| Figure 14. Groundwater Dependant Ecosystems in the Study Area                                      | 33   |
|----------------------------------------------------------------------------------------------------|------|
| Figure 15. Groundwater Management Area for the Study Area                                          | 38   |
| Figure 16. Hydrogeological Map: Tertiary Formation                                                 | 42   |
| Figure 17. Hydrogeological Map – Winton Formation                                                  | 43   |
| Figure 18. Hydrogeological Map – Hooray Sandstone                                                  | 44   |
| Figure 19. Observed Tickalara Oil Field Pressure with Depth Plots                                  | 54   |
| Figure 20. Observed Iliad Field Pressure with Depth Plots                                          | 54   |
| Figure 21. GAB Groundwater Bores Network within the Study Area.                                    | 49   |
| Figure 22. GAB Monitoring Bore Hydrographs (bases on data available in the DERM groundwater databa |      |
| Figure 23. GAB Regional Groundwater Flow and Recharge Intake Beds (BRS, 2000)                      |      |
| Figure 24. Classification of Hydrochemical Facies using Piper Plot                                 |      |
| Figure 25. Piper Diagram – Groundwater samples collected within study area.                        |      |
| Figure 26. Piper Diagrams of Individual Formations within the Study Area (Golder 2013) Groundwater |      |
| (other than Produced Water)                                                                        |      |
| Figure 27. Groundwater Sources for Usage in the Study Area                                         | 58   |
| Figure 28. Geographical Distribution of Groundwater Use                                            | 60   |
| Figure 29. Gas Reservoirs Stratigraphical Distribution                                             | 62   |
| Figure 30. Oil Reservoirs Stratigraphic Distribution                                               | 63   |
| Figure 31. Variation over time of produced Water in Santos SWQ Oil and Gas Fields                  | 67   |
| Figure 32. Extent of the Eromanga Basin Model Domain                                               | 75   |
| Figure 33. Extent of the Cooper Basin Model Domain                                                 | 76   |
| Figure 34. Immediately Affected Area – Eromanga Basin Modelled Groundwater Drawdown in Layer 2     | 77   |
| Figure 35. Immediately Affected Area – Eromanga Basin Modelled Groundwater Drawdown in Layer 3     | 78   |
| Figure 36. Immediately Affected Area – Eromanga Basin Modelled Groundwater Drawdown in Layer 4     | 79   |
| Figure 37. Immediately Affected Area – Eromanga Basin Modelled Groundwater Drawdown in Layer 5     | 80   |
| Figure 38. Long Term Affected Area – Eromanga Basin Modelled Groundwater Drawdown in Layer 2       | 81   |
| Figure 39. Long Term Affected Area – Eromanga Basin Modelled Groundwater Drawdown in Layer 3       | 82   |
| Figure 40. Long Term Affected Area – Eromanga Basin Modelled Groundwater Drawdown in Layer 4       | 83   |
| Figure 41. Long Term Affected Area – Eromanga Basin Modelled Groundwater Drawdown in Layer 5       | 84   |
| Figure 42. Eromanga Basin: Modelled Immediately Affected Area Groundwater Levels in Cross Section  |      |
| Figure 43. Eromanga Basin: Modelled Immediately Affected Area Groundwater Levels in Cross Section  | B-B' |
| Figure 44. Eromanga Basin: Modelled Long Term Affected Area Groundwater Levels in Cross Section    | A-A' |
| Figure 45. Eromanga Basin: Modelled Long Term Affected Area Groundwater Levels in Cross Section    | B-B' |
| Figure 46. Immediately Affected Area – Cooper Basin Modelled Groundwater Drawdown in Layer 2       |      |

Figure 47. Immediately Affected Area – Cooper Basin Modelled Groundwater Drawdown in Layer 3 .......90 Figure 48. Long Term Affected Area – Cooper Basin Modelled Groundwater Drawdown in Layer 2.......91 Figure 49. Long Term Affected Area – Cooper Basin Modelled Groundwater Drawdown in Layer 3............92 Figure 50. Cooper Basin: Modelled Immediate Affected Area Groundwater Levels in Cross Section C-C'....93 Figure 51. Cooper Basin: Modelled Long Term Affected Area Groundwater Levels in Cross Section C-C'....93

### **Appendices:**

Appendix A: Underground Water Impact Reports for Santos' Cooper Basin Oil and Gas Fields, SW QLD (Golder, 2013)

Appendix B: South-West Queensland UWIR 2018 Annual Groundwater Monitoring Report, LBWCo (2019)

Appendix C: Underground Water Impact Reports for Santos' Cooper Basin Oil and Gas Fields, SW QLD (Santos, 2016)

## **Abbreviations and Units**

| Acronym        | Description                                                   |
|----------------|---------------------------------------------------------------|
| б <sub>h</sub> | minimum horizontal stress                                     |
| бн             | horizontal overburden stress                                  |
| би             | minimum vertical stress                                       |
| бч             | vertical overburden stress                                    |
| µS/cm          | microSiemens per centimetre                                   |
| AHD            | Australian Height Datum                                       |
| bgl            | below ground level                                            |
| BOM            | Bureau of Meteorology                                         |
| DEHP           | Department of Environment and Heritage Protection             |
| DERM           | (former) Department of Environment and Resource Management    |
| DNRM           | Department of Natural Resources and Mines                     |
| EA             | Environmental Authority                                       |
| EC             | electrical conductivity                                       |
| EHS            | Environment, Health and Safety                                |
| EHSMS          | Environment, Health and Safety Management System              |
| EP Act         | Environmental Protection Act 1994                             |
| EP Reg         | Environmental Protection Regulation 2008                      |
| EPBC Act       | Environment Protection and Biodiversity Conservation Act 1999 |
| EPP Water      | Environmental Protection (Water) Policy 2009                  |
| ERE            | endangered regional ecosystems                                |
| GAB            | Great Artesian Basin                                          |
| GAB ROP        | Great Artesian Basin Resource Operations Plan                 |
| GAB WRP        | Great Artesian Basin Water Management Plan                    |
| GDE            | groundwater dependent ecosystems                              |
| GL             | gigalitre per year                                            |
| GMA            | Groundwater Management Area                                   |
| GMU            | Groundwater Management Unit                                   |
| IAA            | Immediately Affected Area                                     |
| LTAA           | Long Term Affected Area                                       |
| mb             | body-wave magnitude                                           |
| meq/L          | milliequivalents per litre                                    |
| ML             | megalitre per year                                            |
| Mpa/km         | megapascal per kilometre                                      |
| P&G Act        | Petroleum and Gas (Production and Safety) Act 2004            |
| PFW            | produced formation water                                      |
| PL             | Petroleum Lease                                               |
| QLD            | Queensland                                                    |
| SA             | South Australia                                               |
| SWQ            | South West Queensland                                         |
| TDS            | total dissolved solids                                        |
| UWIR           | Underground Water Impact Report                               |
| Water Act      | Water Act 2000                                                |
| Water Act      | Water Act 2000                                                |

## **1.0 Introduction**

This report provides an updated assessment of underground water impacts for the Santos' Cooper Basin Oil and Gas Field South West Queensland (SWQ). It has been updated to reflect a change in the development scenario. This report has been prepared in accordance with the Queensland *Water Act 2000* (the Water Act) and the Guideline for Underground Water Impact Reports and Final Reports (the Guideline). The intent of this report is to describe, make predictions about and manage the impacts of extraction of underground water by petroleum tenure holders where production testing or production is taking place.

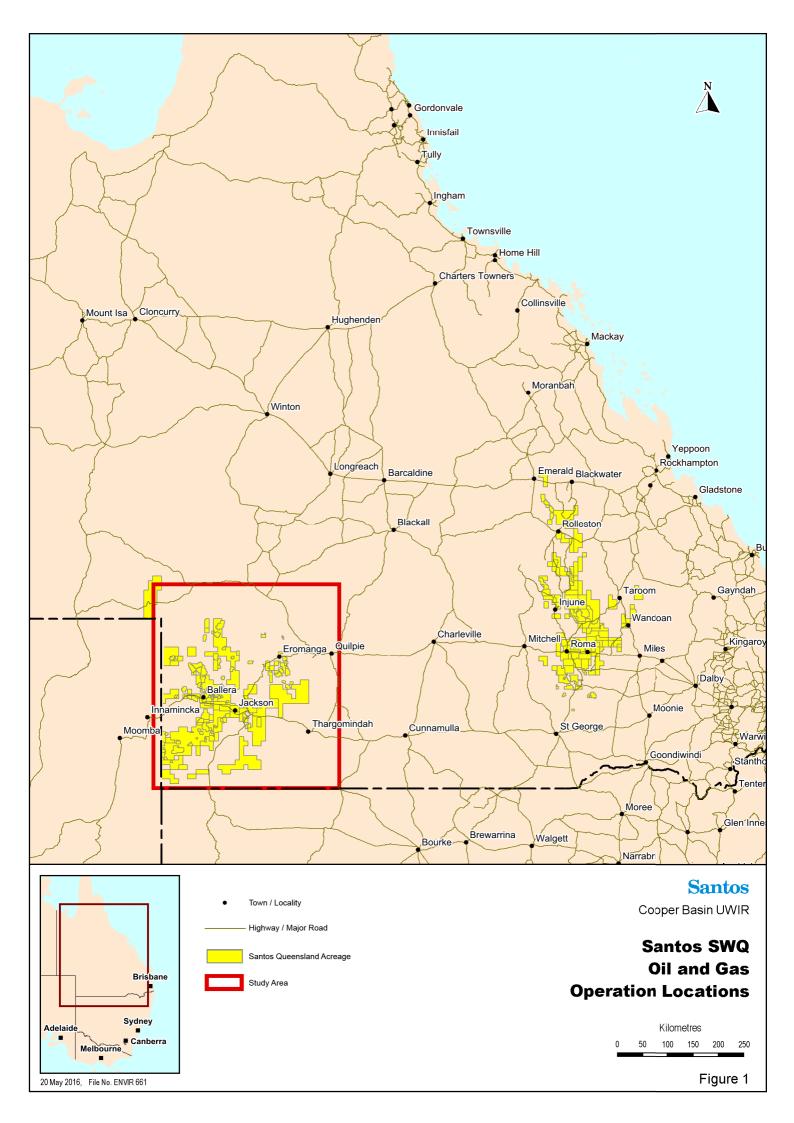
## 2.0 Background

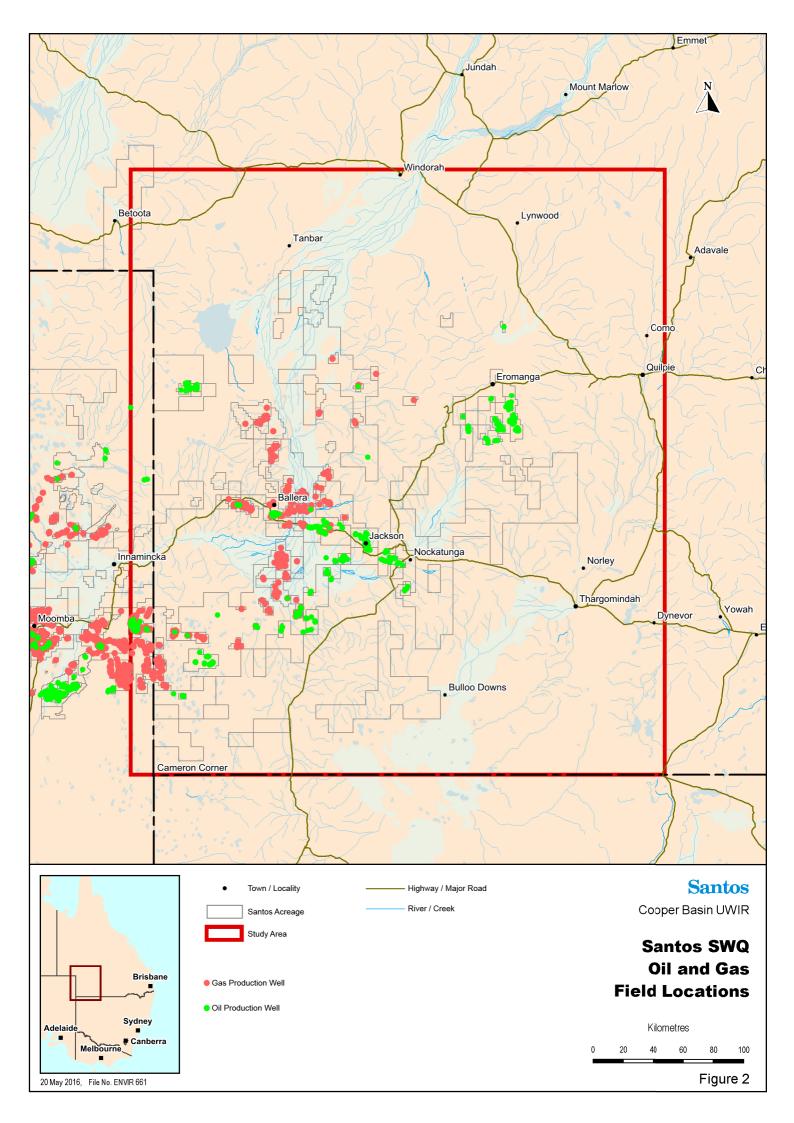
Santos currently operates conventional oil and gas fields within the Cooper Basin of South Western Queensland (SWQ) (Figure 1). The area occupied by these Petroleum Licences (PLs) within which the fields occur covers in excess of 8,160km<sup>2</sup> of largely semi-arid agricultural land and was developed for petroleum operations in the early 1970s. Santos petroleum tenements comprise approximately 212 producing gas wells and 250 producing oil wells (Figure 2) over SWQ. Santos' Cooper Basin petroleum fields produce both conventional gas and oil:

- *Conventional oil* is produced from the formations of the Eromanga Basin (a sub-basin within the Great Artesian Basin (GAB) formations) with some additional production from the Tirrawarra Formation and basal Patchawarra Formation (both of which lie within the deeper Cooper Basin). There are several types of oil reservoirs that are targeted for the economic production of hydrocarbons and these are discussed in more detail in Section 4.3.5.
- *Conventional gas* production is from porous sandstone formations which does not require the depressurisation of the target beds (with respect to groundwater, and the need to remove groundwater to release the gas) to produce at economic quantities. Some water is produced as a by-product, however, the volumes are relatively small (discussed in Section 4.3.4). Within the study area, conventional gas production is typically from the deep formations of the Cooper Basin (underlying the GAB system).

Note: "Santos" refers to Santos and its subsidiary companies that operate the oil and gas tenements on behalf of various joint venture parties.

#### 1.1. Previous Groundwater Studies


Groundwater investigations or reports that have been undertaken or prepared within the Santos SWQ operational areas include:


- Water Flooding Impact Assessment: Further Information to Support Assessment of Potential Impacts of Water Flooding in PL295, URS, 2010.
- Response to DERM (now DNRM) Re: Use of fracture fluids containing BTEX, Santos 2010.
- Underground Water impact Report for Santos' Cooper Basin Oil & Gas Fields, SW QLD, Golder, 2011.
- Underground Water impact Report for Santos' Cooper Basin Oil & Gas Fields, SW QLD, Golder, 2013 (Appendix A).
- Southwest Queensland 2014 Annual Groundwater Monitoring Report, Golder, July 2015 (Appendix B).

Underground Water impact Report for Santos` Cooper Basin Oil & Gas Fields, SW QLD, 2016

South-West Queensland UWIR 2018 Annual Groundwater Monitoring Report, LBWCo (2019)

References for regional groundwater studies and regional groundwater related literature are included in Section 12.0 at the end of this report.





## 3.0 Legislative Framework

Legislation and regulation requires petroleum tenure holders to manage the access, use and disposal of produced water generated through oil and gas development activities in an environmentally sustainable manner. This section provides a summary of the key Queensland (QLD) and Commonwealth legislative requirements related to the extraction of groundwater from deep aquifers and management of produced water.

Santos activities in the Cooper Basin are subject to general QLD and/or Commonwealth regulation, and to site and activities specific Environmental Authorities (EAs) determined by DEHP under the *Environmental Protection Act 1994*.

The legislative texts discussed below provide the general driver for the regulation and how it applies to Santos activities.

#### 3.1 Petroleum and Gas (Production and Safety) Act 2004

The Water and Other Legislation Amendment Act 2010 amends the Water Act 2000 (Water Act) and other relevant legislation with the aim of improving the management of impacts associated with groundwater extraction that form part of petroleum activities. These amendments transfer the regulatory framework for underground water from the *Petroleum and Gas (Production and Safety) Act 2004* (P&G Act) to the Water Act.

The P&G Act originally provided all rights of water extraction to a petroleum activity. However through recent updates of the P&G Act and the Water Act (see Section 3.2), a petroleum tenure holder has an obligation to identify impact, establish baseline conditions and maintain groundwater supplies in private bores in the vicinity of petroleum operations. Where a bore owner can demonstrate reduced access to groundwater supplies, or a reduction in beneficial use class due to water quality changes, as a result of petroleum operations, "make good" provisions are available to address the loss incurred by an affected bore owner.

#### 3.2 Water Act 2000

The Water Act regulates access to water resources. Under the Water Act, a water licence is required to take water for any use other than domestic and stock watering. When a water licence is required, there may be a requirement under Section 214(e) to carry out and report on a monitoring program. If water is to be provided to others as part of the activities, the operator is required to be registered as a Water Service Provider.

In 2010, groundwater management requirements that were previously regulated under the P&G Act and the *Petroleum Act 1923* were removed and included in an amendment to the *Water Act*. Those requirements included the obligations to:

Prepare UWIRs.

Establish groundwater baseline conditions through baseline assessment of private bores.

Define make good provisions as a contingency to address losses incurred by private bore owners resulting from petroleum activities.

The Water Act also defines the drawdown thresholds which if reached will trigger investigations and make good actions.

#### 3.2.1 Underground Water Impact Report (UWIR)

The amendments to the Water Act support management and protection of water resources, by requiring operators to prepare periodic UWIR's. Subsequent UWIR's are to be prepared every three years. The approved reports must be publicly notified and published on the Queensland DEHP website.

The following details the requirements as per s376 of the Water Act that apply to the preparation of a UWIR, and reference to the section(s) in this report where the requirement is addressed:

- (a) for the area to which the report relates:
  - (i) the quantity of water produced or taken from the area because of the exercise of any previous relevant underground water rights (Section 5.0)
  - (ii) an estimate of the quantity of water to be produced or taken because of the exercise of the relevant underground water rights for a 3 year period starting on the consultation day for the report (Section 5.0).
- (b) for each aquifer affected, or likely to be affected, by the exercise of the relevant underground water right:
  - (i) a description of the aquifer (Section 5.2)
  - (ii) an analysis of the movement of underground water to and from the aquifer, including how the aquifer interacts with other aquifers (Sections 5.8)
  - (iii) an analysis of the trends in water level change for the aquifer because of the exercise of the [extraction] rights (Section 7.0).
  - (iv) a map showing the area of the aquifer where the water level is predicted to decline, because of the taking of the quantities of water forecasted, by more than the bore trigger threshold within 3 years after the consultation day for the report (Section 7.0).
  - (v) a map showing the area of the aquifer where the water level is predicted to decline, because of the exercise of relevant underground water rights, by more than the bore trigger threshold at any time (Section 7.0)
- (c) a description of the methods and techniques used to obtain the information and modelled predictions (Section 7.0)
- (d) a summary of information about all potentially impacted water bores in the area, including the number of bores, and the location and authorised use or purpose of each bore (Sections 7.5 and 7.6).
- (e) a program for:
  - (i) conducting an annual review of the accuracy of each map

- (ii) giving the chief executive a summary of the outcome of each review, including a statement of whether there has been a material change in the information or predictions used to prepare the maps
- (f) a water monitoring strategy (Section 9.3).
- (g) a spring impact management strategy (Section 9.0).

The water monitoring strategy must include a strategy for monitoring water levels and water quality in aquifers in the area, and a strategy for monitoring the quantity of water produced from oil and gas wells. A timetable for the implementation and reporting program must also be completed.

The spring impact management strategy must include details as to the potentially affected springs, an assessment of the connectivity between the springs and the aquifers and an assessment of the impact of the predicted water level decline on ecosystem health and cultural values. The strategy should provide options to prevent or mitigate impacts. An implementation timetable and a monitoring and reporting program should be included.

#### 3.2.2 Drawdown Trigger Thresholds

DEHP has defined a regime for drawdown trigger threshold values as follows:

5m decline for consolidated aquifers such as sandstone.

2m decline for shallow alluvial aquifers.

0.2m for active springs.

In accordance with The Water Act, Santos is expected to investigate complaints from landowners within an Immediately Affected Area (IAA) which is defined as an area where the water level is expected to exceed the trigger threshold within three years from the reporting day. If the investigation concludes that a material impact to water production will occur, then Santos and the affected groundwater user will need to negotiate on an appropriate make-good arrangement.

#### 3.3 Other Applicable Water Regulations

Table 1 summarises the additional legislative requirements applicable to the oil and gas production and the Study Area.

| Legislation/Section                                                                            | Driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Key Points as they Apply to the<br>Santos Operations                                                                                             |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Protection Act 1994                                                           | Section 309Z can be imposed on a petroleum activity and cause the activity to prepare an environmental report and/or implement water management plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conditions are issued through<br>Environmental Authorities.                                                                                      |
| Environmental<br>Protection (Water)<br>Policy, 2009                                            | An environmental plan must be<br>developed and implemented for water<br>management, including plans for<br>managing stormwater, sewage and<br>trade waste for protection of surface<br>and groundwater.<br>In the case of produced water<br>recycling, water releases on land,<br>water releases to surface water or<br>stormwater management, the<br>administrating authority must consider<br>the existing quality of waters that may<br>be affected, the cumulative effect of<br>the release in question, the water<br>quality objectives for waters affected<br>and the maintenance of acceptable<br>health risks. | Contamination must be minimised or<br>prevented and any release, or potential<br>release, must be monitored against<br>site baseline conditions. |
| Great Artesian Basin<br>Resource Operations<br>Plan February 2007,<br>Amended November<br>2012 | Defines the maximum amount of water<br>that can sustainably be extracted from<br>the recognised aquifers within each<br>groundwater management area.<br>Requires monitoring for all licensed<br>bores.                                                                                                                                                                                                                                                                                                                                                                                                                 | Santos production wells are not<br>licensed for water extraction with<br>DNRM as they are covered by the<br>Petroleum Legislation.               |
| Environmental<br>Protection and<br>Biodiversity<br>Conservation (EPBC)<br>Act 1999             | Provides the regulatory framework for<br>Matter of National and Environmental<br>Significance (MNES).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The most significant groundwater related MNES in the GAB are GAB artesian discharge springs.                                                     |
| Water Resource<br>(Cooper Creek) Plan<br>2011                                                  | The Plan applies to watercourses and non-artesian groundwater systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Defines water rights for accessing non-<br>GAB groundwater systems and<br>surface water                                                          |

Table 1. Additional Legislative Requirements Related to Groundwater

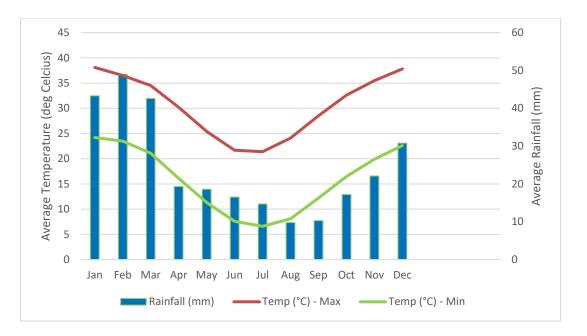
## 4.0 Existing Environment

The Cooper Basin covers a total area of 130,000km<sup>2</sup>, of which approximately 80,000km<sup>2</sup> lies within SWQ (refer to Figure 1). The Queensland portion of the Cooper Basin can generally be described as arid with a uniform climate. It contains a wide diversity of land systems that are defined by geological, geomorphological and hydrological influences.

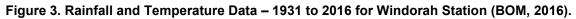
This section provides an overview of the operational areas regional climatic conditions, biophysical and physical environment and its environmental values.

#### 4.1 Climate

The Cooper Basin is located within the south-western portion of Queensland, which is an arid to semi-arid region of central Australia. The seasons are generally characterised by hot summers and dry winters. December to February are the wettest and hottest months and temperatures exceed 35°C. For more detailed description please refer to <u>http://www.bom.gov.au/</u>.


Rainfall variability in the Cooper Basin is amongst the highest in Australia, while average annual totals are amongst the lowest. Rainfall is generally less than 300mm per year and average evaporation can be up to 3,500mm per year.

The prevailing wind direction throughout the year is from the south-east, however wind direction is more southerly in the south of the basin and more easterly in the north. Light winds (<20km/h) are most common from May to July, while the greatest frequency of strong winds (41-61km/h) is from September to January.


Table 2 presents the average minimum and maximum monthly temperatures, and average monthly total rainfall for the study area collected from Windorah Post Office as the closest station to Durham. Maximum values are in red and minimum values in green. Annual average values for temperature and rainfall are also presented in Table 2 and Figure 3.

| Mean               | Jan  | Feb  | Mar  | Apr  | Мау  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual | Years     |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------|-----------|
| Temp (°C)<br>- Max | 38.1 | 36.5 | 34.5 | 30.2 | 25.4 | 21.7 | 21.4 | 24.1 | 28.5 | 32.6 | 35.5 | 37.8 | 30.5   | 1931-2014 |
| Temp (°C)<br>- Min | 24.2 | 23.5 | 21.1 | 16.1 | 11.3 | 7.6  | 6.6  | 8.1  | 12.2 | 16.5 | 19.9 | 22.6 | 15.8   | 1931-2014 |
| Rainfall<br>(mm)   | 43.3 | 49.0 | 42.6 | 19.3 | 18.6 | 16.5 | 14.7 | 9.8  | 10.3 | 17.2 | 22.1 | 30.8 | 290.6  | 1887-2016 |

#### Table 2. Climate Characteristics within the Cooper Basin Operations Area - Windorah Station



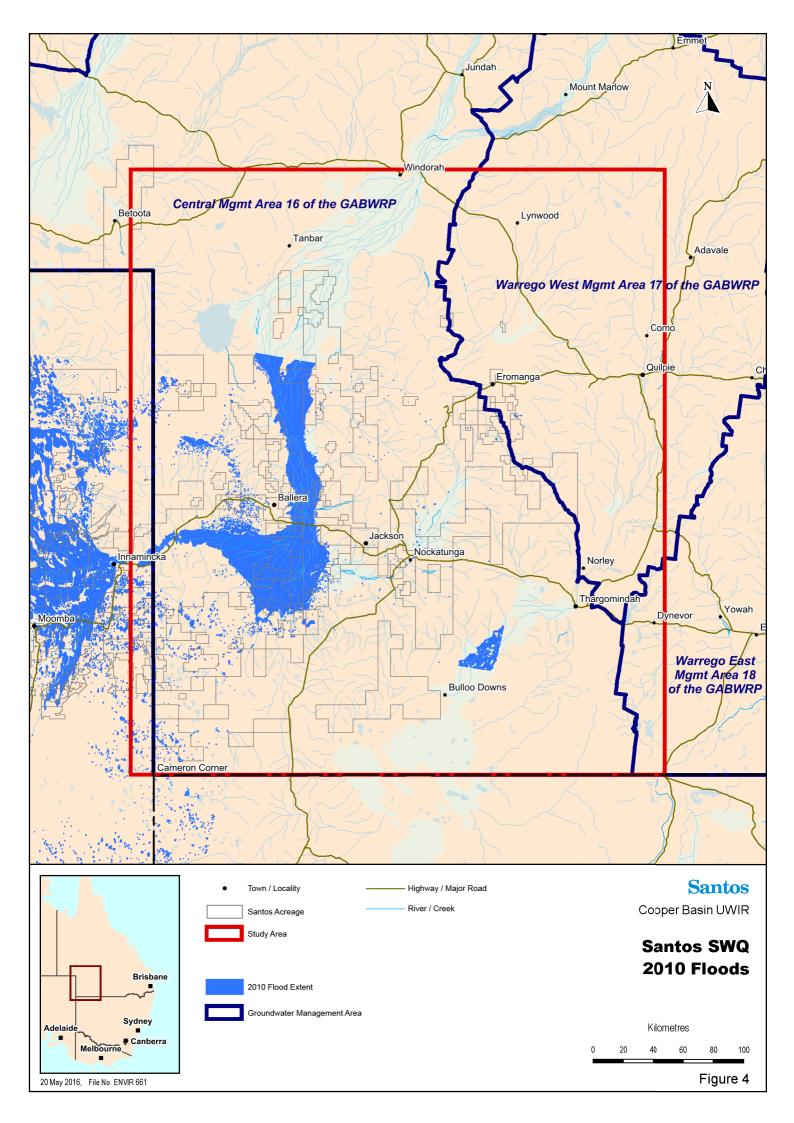
#### UWIR – Santos Cooper Basin Oil and Gas Fields, February 2020

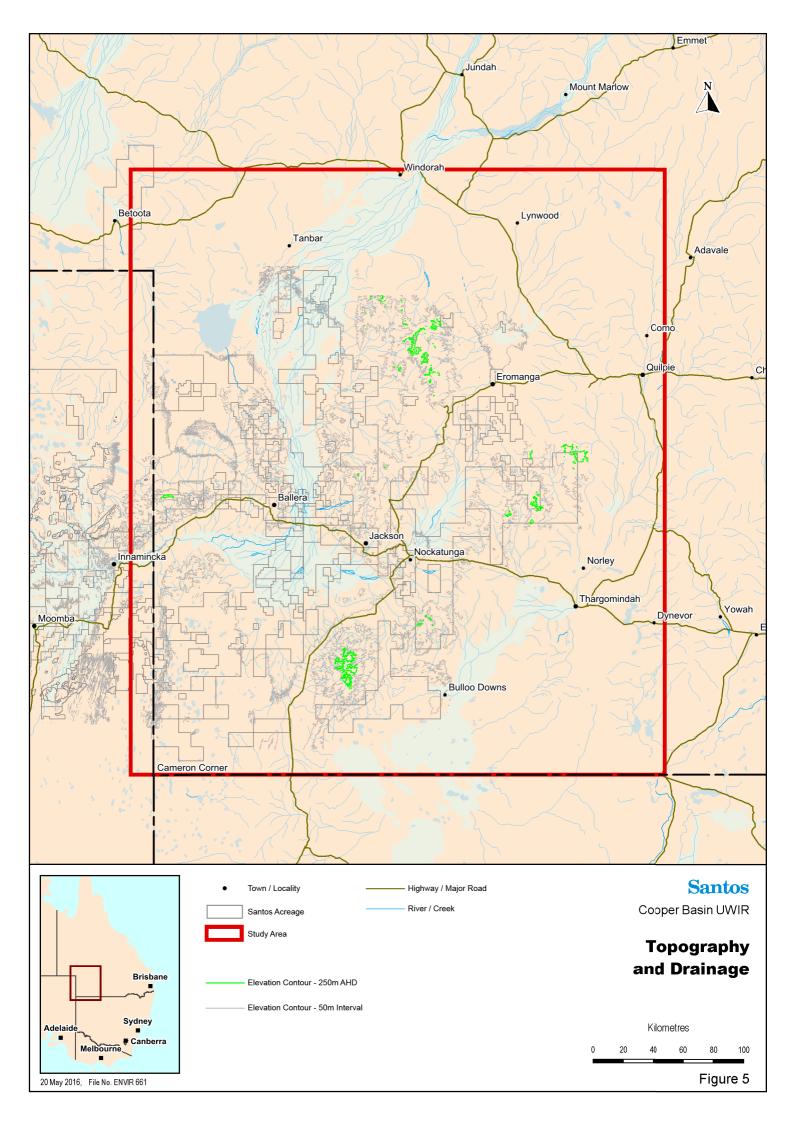


#### 4.2 Topography and Drainage

Much of Santos' SWQ operations are located within the Channel Country, which is a large, generally flat drainage area which extends into South Australia.

The general topography is limited to low undulating hills and ridges between the drainage channel systems. The Channel Country is characterised by vast flat lying braided, flood and alluvial plains of the Diamantina and Coopers Plains. Surrounding the floodplains are gravel or gibber plains, dunefields and low ranges. The low resistant hills and tablelands are remnants of the flat-lying Cretaceous (65-140 million years ago) sediments.


The area is dominated by the Cooper Creek Basin which drains towards Lake Eyre (Figure 4 and Figure 5). During period of high rainfall, the flat topography and drainage channel system becomes inundated and the water flow bottlenecks where the Cooper Creek crosses the Queensland-South Australia border.


The Cooper Creek is an inland river which is 1,523km in length and covers a catchment area of 306,000km<sup>2</sup>. Water flows across the catchment vary significantly however, most of the creek reaches, braided channels and the main tributary (Cooper Creek and Wilson River) are dry for most of the year and little more than a string of waterholes.

Generally, Cooper Creek stream flows are confined to the main channels, but every 3 to 4 years flows are sufficient to inundate parts of the Cooper floodplain, via a network of tributary channels. During extended periods of no flow, the Cooper contracts to a series of semi-permanent and permanent waterholes, which provide drought refuges for a variety of flora and fauna.

Within the study area (largely confined to the Cooper Creek catchment basin), there are also intermittent surface water flows following storm events that cause ponding of surface water on interdune clay pans, predominantly in the dunefield regions.

The most recent significant flood event occurred in January and February 2010.



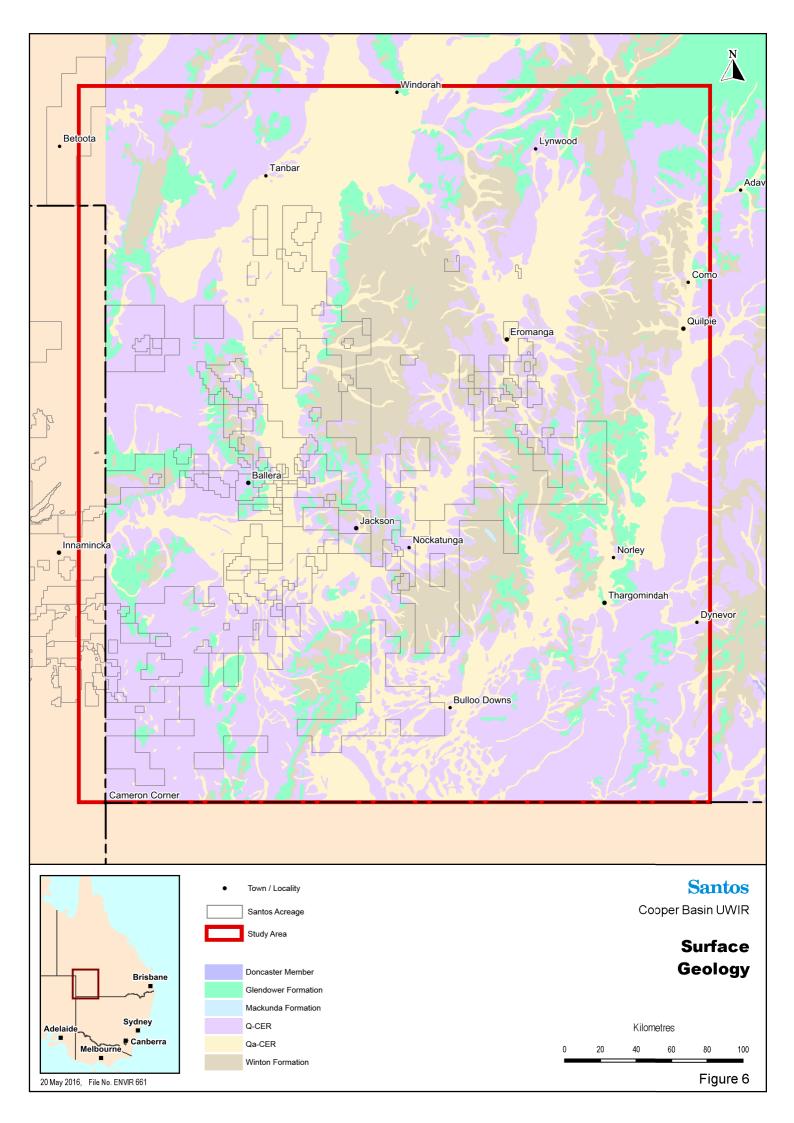


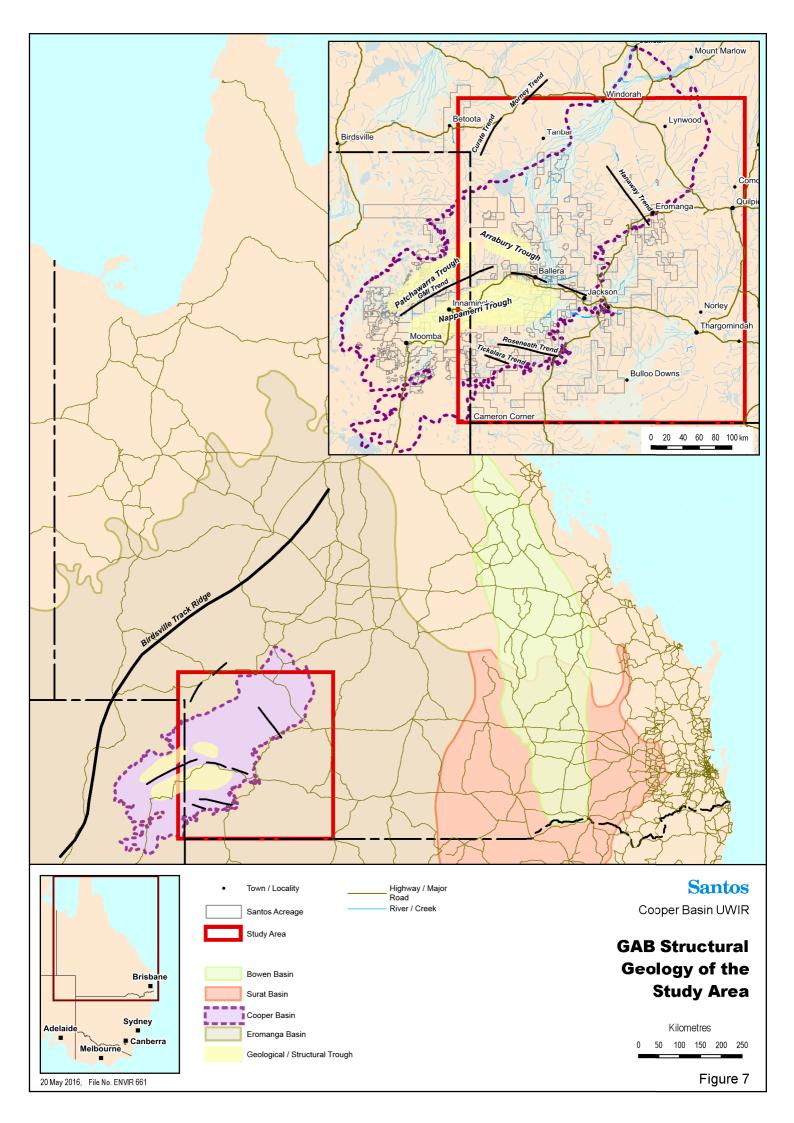
#### 4.3 Geology

#### 4.3.1 Regional Setting

This section defines the regional geological setting of the study area.

Santos SWQ oil and gas operations are located within the Eromanga Basin and the Cooper basin. While in QLD the regulation relevant to management of the GAB includes the upper formations of the Cooper Basin in the definition of the GAB, geologists consider the Cooper Basin and the Eromanga Basin as two separate basins not belonging to the GAB.


#### 4.3.2 Depositional Configuration


At surface, the geology of the area is dominated by Quaternary alluvium deposits (Figure 6) associated with the flood plains and consolidated sediments of the Glendower Formation (Tertiary) or Winton Formation (Cretaceous).

The GAB underlies approximately one-fifth of the Australian continental area and extends beneath a large portion of Queensland, South Australia, New South Wales and the Northern Territory, stretching between the Great Dividing Range and the Lake Eyre depression (Figure 7). The Eromanga Basin is the largest sub-basin within the GAB, and it contains two major centres of subsidence: the Central Eromanga depositional centre and the Poolowanna Trough, separated by the Birdsville Track Ridge (Figure 7). Total sedimentary thickness range between 100m and 3000m.

The GAB is underlain by several older sedimentary basins, of which the Permian-age Cooper Basin is one example, with the Cooper Basin being entirely overlain by the Eromanga Basin. A major unconformity at the base of the Jurassic succession separates the Jurassic- Cretaceous Eromanga basin from the underlying Carboniferous-Triassic Cooper Basin.

It is noted that names of the formations within the Cooper Basin and the GAB vary between different areas. This section aims to use the geological nomenclature defined for SWQ by Draper (2002) and as reported in Figure 8. Reference to "equivalent naming" will be required in order to link with the nomenclature used in the QLD GAB regulation.





| ICAL<br>E | ERA                     | PERIOD                  | EPOCH             | STAGE (AGE)                    | SPORE-POLLEN UNITS<br>Price & others, 1985;<br>Filatoff & Price, 1988; | DINOCYST<br>Helby & others, 1987 <sup>1</sup> ;<br>Backhouse, 1988 <sup>2</sup> | UNITS<br>Price, 1997 | LITHOSTRATIGRAPHIC UNITS<br>SW N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Æ          | BASIN    | NUMEF<br>AG<br>(Ma |
|-----------|-------------------------|-------------------------|-------------------|--------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|--------------------|
| Ē         |                         |                         |                   |                                | Filatoff & Price, 1988;<br>Price, 1997                                 | Backhouse, 1988*                                                                | 1186, 1007           | (STH AUST) (QL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .D)        |          | 1                  |
| E         |                         |                         | LATE<br>(in part) |                                |                                                                        |                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4          | <u></u>  | 9                  |
|           |                         |                         |                   | CENOMANIAN                     | APK7                                                                   |                                                                                 | 2 2                  | Winton Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |                    |
| E         |                         |                         |                   |                                | APK6<br>APK5 APK52<br>APK51                                            | P. ludbrooklae                                                                  | ADK22                | Oconadatta Formation Toolebuc Formation 2??-?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          | -10                |
| E         |                         |                         |                   | ALBIAN                         | APK4                                                                   | C. denticulata'<br>M. tetracantha'                                              | ADK21<br>ADK19       | Coonkiana Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |          | -                  |
|           |                         | CRETACEOUS<br>(in part) |                   | APTIAN                         | APK32                                                                  | D. davidii '                                                                    | ADK18                | Buildog Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          | -11                |
| -         |                         | ETAC<br>(in pa          |                   | or tion                        | APK3                                                                   | 0                                                                               | 10/147               | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          |                    |
|           |                         | CRI                     | EARLY             | BARREMIAN                      | APK31                                                                  | O. operculata'                                                                  | ADK17                | Mt Anna-Trinity Well<br>Sandstone Wyvandre Sandstone Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          | 11/12              |
|           |                         |                         |                   | HAUTERIVIAN                    | APK22                                                                  |                                                                                 |                      | Members<br>Cadna-owie Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          | 1                  |
| Ē         |                         |                         |                   | VALANGINIAN                    | APK21                                                                  | -2                                                                              |                      | x <sup>2</sup> -2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |                    |
|           |                         |                         |                   | BERRIASIAN                     | APK12<br>APK1                                                          | G. mutabilis <sup>*</sup><br>(? = E. torynum <sup>*</sup> )                     |                      | A Murta Formation Hooray Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |                    |
|           |                         |                         | LATE              | TITHONIAN                      | APK11<br>APJ622                                                        |                                                                                 |                      | Namur Vupper<br>Namur Namur Vuppermost<br>Sandstone' Veppermost<br>Comation'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          | 14                 |
|           |                         |                         |                   | KIMMERIDGIAN                   | APJ6 APJ622                                                            |                                                                                 |                      | Sandstone Westbourne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | BASIN    |                    |
|           | ð                       |                         |                   | OXFORDIAN                      | APJB1<br>APJ5                                                          |                                                                                 |                      | Pormation<br>Address Senderton<br>Address Senderton<br>Ad | e          | 80       | 11111              |
|           |                         | ē                       |                   | CALLOVIAN                      | APJ43                                                                  |                                                                                 |                      | Billies romain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2          | ANGA     | 1111               |
|           | MESOZOIC<br>(in part)   |                         |                   | BATHONIAN                      | APJ4 APJ42                                                             |                                                                                 |                      | Apethodia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | EROMANGA |                    |
|           | W                       | JURASSIC                | MIDDLE            |                                | APJ41                                                                  |                                                                                 |                      | Hutton<br>Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |          |                    |
|           |                         | Ъ                       |                   | BAJOCIAN                       | APJ APJ 333                                                            |                                                                                 |                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          | 18                 |
| -         |                         |                         |                   | AALENIAN                       | APJ 3 33 APJ 331                                                       |                                                                                 |                      | Evergreen Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |          | -                  |
|           |                         |                         |                   | TOARCIAN                       | APJ 32<br>APJ 31                                                       |                                                                                 |                      | Poolowanna Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-         |          | - 19               |
|           |                         |                         | EARLY             | PLIENSBACHIAN                  | APJ 2 4PJ 22<br>APJ 22 4PJ 22<br>APJ 21                                |                                                                                 |                      | Propiet/<br>Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1          |          |                    |
| E         |                         |                         |                   | SINEMURIAN                     | APJ1                                                                   |                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          | -20                |
| 0         |                         |                         |                   | HETTANGIAN<br>RHAETIAN         | APT APT522                                                             |                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          | -                  |
|           |                         |                         |                   |                                | APT5 52 APT521<br>APT51                                                |                                                                                 |                      | Cuddepan<br>Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1          |          | 21                 |
| -         |                         |                         |                   |                                |                                                                        |                                                                                 |                      | ·····3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |          |                    |
| E         |                         |                         | LATE              |                                | APT42                                                                  |                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          | 22                 |
| E         |                         | ssic                    |                   |                                | APT 4                                                                  |                                                                                 |                      | how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |          |                    |
| Ē         |                         | TRIASSIC                |                   | N SPANN                        | APT41<br>APT34                                                         |                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          | 23                 |
|           |                         |                         | MIDDLE            | LADINIAN                       | APT3<br>APT3<br>APT32                                                  |                                                                                 |                      | Gilpeppee Member of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GROUP      |          |                    |
| E         |                         |                         |                   | ANISIAN                        | APT31<br>APT22                                                         |                                                                                 |                      | for and the second seco                                                                                                                                                                                                                         |            |          | 24                 |
|           |                         |                         | EARLY             | SCYTHIAN                       | APT2 APT21<br>APT1                                                     |                                                                                 |                      | Catanuna Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NAPPAMERRI |          |                    |
|           |                         |                         |                   |                                | APP6                                                                   |                                                                                 |                      | Callamurra Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          | 25                 |
| 260       |                         |                         |                   | CHANGHSINGIAN TATARIAN         | APP5                                                                   |                                                                                 |                      | Toolachee Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | BASIN    |                    |
|           |                         |                         |                   |                                |                                                                        |                                                                                 |                      | Musikanie beds'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | -        | 20                 |
| E         |                         |                         | U GUADALUPIAN     | CAPITANIAN<br>WORDIAN KAZANIAN | APP 4<br>APP 4 APP 42                                                  |                                                                                 |                      | Daralingie Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A          | COOPER   |                    |
| E         | ZOIG                    |                         |                   |                                | APP 41<br>APP 33                                                       |                                                                                 |                      | Epsilon Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GROUP      | COC      | 27                 |
| E         | PALAEOZOIC<br>(in part) | PERMIAN                 |                   | KUNGURIAN                      | APP 3 APP 32                                                           |                                                                                 |                      | Munerov Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                    |
| Ē         | PA                      |                         | ž                 | ARTINSKIAN                     | APP 31                                                                 |                                                                                 |                      | Patchawana Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GIDGEALPA  |          | 28                 |
| E         |                         |                         | CISURALIAN        | SAKMARIAN                      | APP 2<br>APP 21<br>APP 21                                              |                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GIDG       |          |                    |
|           |                         |                         |                   |                                | APP 122                                                                |                                                                                 |                      | 7 Tirrawarra, Sandstone<br>7 Merrimelia: Formation<br>7 Merrimelia: Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          | - 29               |
| E         |                         |                         |                   | ASSELIAN                       | (in part) <sup>12</sup> App<br>121                                     |                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          |                    |

#### Figure 8. Chronology and stratigraphy of the Cooper and Eromanga Basins

#### 4.3.3 Tectonic Setting and Basin Stress Regime

#### Introduction

The primary stresses within the Cooper-Eromanga Basin are vertical overburden stress  $\sigma_H$  and minimum horizontal stress  $\sigma_h$ . The stress regime within the basins are based on the assumption that  $\sigma_V$  is a principal stress and therefore  $\sigma_H$  and  $\sigma_h$  are also principal stresses, however,  $\sigma_h$  is considered the lesser of the stresses. This assumption is considered valid given the relatively flat topography across the basins.

#### General stress orientation

The maximum horizontal stresses  $\sigma_H$ , in the basin generally follow an east to west orientation at approximately 101° which is indicated by stress data from borehole breakout testing (Hills *et al*, 1998; Reynolds et al, 2004). The east-west trending nature of  $\sigma_H$  predominates in the Nappamerri Trough, however regional variations across the basin have been observed. In the Patchawarra Trough  $\sigma_H$  is oriented southeast to north-west, north of Gigealpa  $\sigma_H$  was oriented west-northwest to east-southeast. The orientation of  $\sigma_h$  does not exhibit significant variation with depth (Reynolds et al, 2004).

The vertical overburden stress  $\sigma_v$  is governed by overlying rock mass and the stress gradient does not exhibit significant variation with depth. The  $\sigma_v$  stress is gradient is approximately 20.3Mpa/km at 1000m depth and approaches approximately 22.6Mpa/km at 3000m depth.

The magnitude of  $\sigma_h$  varies significantly across the basin(s); with the  $\sigma_h$  stress gradient ranging from 13.6Mpa/km up to 22.6Mpa/km, with  $\sigma_h$  approaching  $\sigma_v$  in some local areas (Reynolds et al, 2004).  $\sigma_h$  decreases with depth up to approximately 1000m (below surface) and then stabilises. At 1000 to 4000m depth  $\sigma_h$  is between 0.6 to 0.7  $\sigma_v$ , with  $\sigma_h$  generally approaching the higher end of this range (Hills et al, 1998). At lower depths  $\sigma_h$  approaches, and may exceed  $\sigma_v$ , resulting in  $\sigma_v$ , becoming the minimum principal stress (Reynolds et al, 2004).

#### Stress Assumptions and principal stresses – general faulting regime

On the basis that  $\sigma_v$  is the minimum principal stress, the Cooper-Eromanga basin stress regime is primarily associated with strike-slip faulting  $\sigma_{H, >} \sigma_{V, >} \sigma_{h}$ , normal faulting  $\sigma_{V, >} \sigma_{H, >} \sigma_{h}$ , and transitional strike-slip/reverse faulting ( $\sigma_{H, >} \sigma_{h} \approx \sigma_{v}$ ) at depth where  $\sigma_{h} \approx \sigma_{v}$ . Reverse faulting ( $\sigma_{H, >} \sigma_{h, >} \sigma_{v}$ ) is not associated with the stress regime in the basin however, at lower depth where  $\sigma_{h >} \sigma_{v}$  may occur some reverse faulting may exist (Reynolds et al, 2004).

#### Hydrostatic stress

Pore pressures within the basin are generally hydrostatic. Overpressure are thought to occur in deeper shalier strata within the basin and have been observed in the Nappamerri Trough from depths of 2.7km (Hills et at, 1998). Local under-pressures have also been observed and are attributed to extensive production within the basin (Reynolds et al, 2004). This is of particular importance when considering the impact of depressuring formation though oil and gas extraction. The implication is that impact translation though the depositional sequences are minimised or negated completely. This is further discussed in the following sections.

#### Seismic activity

Major earthquake events within the region surrounding the basin include:

Tennant Creek, NT (6.7Mb) in January 1988.

Simpson Desert, NT (5.6Mb) in August 1972.

Simpson Desert, NT/QLD/SA (4.7Mb) in November 1978.

The region has been subject to intermittent earthquakes of low to moderate magnitude (0 - 3.5Mb) each year since seismic records were established.

#### 4.3.4 Geological Summary of the Cooper Basin

The Cooper Basin comprises a thick late Carboniferous to Middle or late Triassic non-marine sedimentary stratigraphic pile within a broad basin setting located in central Australia.

Structurally, the Cooper Basin is one of a number of remnant Late Carboniferous to Early Permian depositional centres which lay in the Australian interior of the Gondwana Supercontinent. The Cooper Basin differs from the other depositional centres by containing an additional sequence which ranges in age from Late Permian to Middle Triassic and spans the Permo-Triassic boundary without a break in deposition. It is also the only such basin with major oil and gas production (Petroleum Geology of South Australia, Volume 4 - Cooper Basin, PIRSA, 1998). Three major troughs (Patchawarra, Nappamerri and Tanapperra) are identified within the basin, each separated by structurally high ridges.

The Cooper Basin depositional episode was terminated by a period of gentle regional compressional deformation resulting in landmass uplift and sustained erosion within the basin. Sedimentary basin development re-initiated subsequently with the formation of the Eromanga Basin (Section 4.3.5) during the Early Jurassic to Late Cretaceous times.

The Cooper Basin is completely overlain by the Eromanga Basin and contains a succession of fluviolacustrine sandstone, shales and coals ranging from 600m thick in the north and up to 1800m in the south.

The description of the stratigraphy and lithology for the study area is provided in Figure 9 which provides information on the continuity of the deposition process and discontinuities or major unconformities present in the stratigraphic sequence.

The Cooper Basin can be subdivided into two major geological groups:

Late Carboniferous.

Permian Gidgealpa Group and the Triassic Nappamerri group.

The earliest formations of the Cooper Basina are glacial in origin. The subsequent formations are generally finer sediments forming a succession of sandstone and shale formations. The Tirrawarra Sandstone represents low sinuosity fluvial to proglacial outwash deposits overlain by peat swamp, floodplains and high sinuosity fluvial facies of the Patchawarra Formation. Two lacustrine shale units (Murteree and Roseneath Shales) with intervening fluvio-deltaic sediments (Epsilon and Daralingie Formations) were deposited during a phase of continued subsidence. Early Permian uplift led to erosion of the Daralingie Formation and underlying units from basement highs (SA DPI 1998).

The upper sequence of the Cooper Basin, the Gilpeppee Member of the Tinchoo Formation, is dominated by siltstones and shales. Draper (2002) has mapped the thickness of the Tinchoo Formation shales in SWQ. The mudstone (both shale and siltstone) thicknesses average between 80 and 160m in the centre of the Cooper Basin with maximum thickness of 182m.

The formations of most interest to Santos are the Tirrawarra Sandstone, Patchawarra Formation, Epsilon Formation and Toolachee Formation:

- The Tirrawarra Sandstone comprises fine to coarse-grained and pebbly sandstone with locally common interbeds of conglomerate and minor interbeds of carbonaceous siltstone, shale and coal. On average, the Tirrawarra Sandstone is 30 to 40m thick in SWQ.
- The Patchawarra Formation comprises interbedded, variable size sandstone beds with siltstone, shale and coal beds, sandstone and mudrock beds. The Patchawarra Formation is thickest (up to 680m in the Nappamerri Trough and up to 550m in SWQ near the SA border Figure 7) of the Cooper Basin formations and in QLD the second most widespread Permian unit after the Toolachee Formation (Draper, 2002).
- The early Permian Epsilon Formation is defined as a series of sandstones, siltstone and shales with minor coals and is widespread across the Cooper Basin. The maximum thickness of the formation is observed in the Nappamerri Trough (156m), but averages between 30 to 40m.
- The late Permian Toolachee Formation comprises sandstones, siltstones and shale with thin coal seams and some conglomerates. It spreads unconformably over older formations across the whole Cooper Basin and is observed at its thickest in the Patchawarra and Nappamerri Troughs. In QLD, the average thickness ranges from 25 to 50m, with the maximum thickness observed north of the Jackson–Naccowlah–Pepita Trend(100 to 130m thick (Draper, 2002)).

Geological contour maps for the following formations are presented in Section 4.3.6, including:

Depth to Toolachee Formation.

Depth to Patchawarra Formation.

Thickness of Patchawarra Formation.

Thickness of Toolachee Formation.

Thickness of shale within the Nappamerri Group.

The top pre-Permian faults provide the basin's overall fabric, whereas the younger faults of the basal Toolachee Formation and basal Eromanga unconformity are generally reactivated Permian faults (refer to 4.3.3).

The Tirrawarra Sandstone, Patchawarra Formation, Epsilon Formation and Toolachee Formation (Figure 8) are the main gas producers in the Cooper Basin. Minor gas reservoirs are also present in the Tirrawarra Sandstone, the Wimma Sandstone Member of the Arraburry Formation and the Tinchoo Formation. Some oil reservoirs are present in the Paning Member of the Arraburry Formation.

#### 4.3.5 Geological Summary of the Eromanga Basin

The Jurassic – Cretaceous Eromanga Basin unconformably overlies the older Carboniferous - Permian Cooper Basin. The sedimentary sequences which comprise the Eromanga Basin reaches a total thickness of up to 2,500m and were deposited during a period of subsidence subsequent to that of the Cooper Basin. There are two main sub-basin centres in the Eromanga Basin: the *Central Eromanga Depositional centre* and the *Poolowanna Trough* separated by the Birdsville Track Ridge (Figure 10). The top of the Eromanga Basin is delineated by an unconformity.

The study area for this UWIR is located in the Central Eromanga Basin.

The deposits of the Eromanga Basin follow three episodes (and three different origins) of deposition:

- Lower non-marine sediments from early Jurassic to Mid-Cretaceous corresponding to the Poolowanna Formation to the Cadna-owie Formation. During that period the largest transgression over the Eromanga Basin was the "Birkhead Lake" transgression.
- Marine sediments from mid-cretaceous to late Cretaceous corresponding to the Wallumbilla Formation to the Mackunda Formation.

Upper non marine sediments (fluviolacustrine) of the Winton Formation.

The formations of the Eromanga Basin are a succession of well identified sandstones and siltstones and mudstones with interbedded minor sandstones and occasional coal seams (Figure 9).

The formations of the Eromanga Basin occur throughout the GAB (Figure 7), however the naming nomenclature is not always consistent. The nomenclature used in this section aims at using the SWQ naming convention as presented in

Figure 8.

The GAB is Australia's largest groundwater system, with confined artesian and sub-artesian aquifers. However, it is noted that some aquifers are also oil and/or gas reservoirs.

The major formations of the Eromanga Basin are (from top to bottom):

- *The Winton Formation:* The Winton Formation comprises interbedded, fine to coarse sandstone, shale, siltstone and coal seams deposited in fluvio-lacustrine environments. The Winton Formation outcrops on higher relief areas surrounding the valleys and flood plains of the study area and show lateral facies changes from east to west.
- The Wallumbilla Formation or Rolling Downs Group: The confining beds of the Rolling Downs Group, and, in particular, the Lower Wallumbilla Formation and Upper Wallumbilla Formation, referred to as Doncaster and Coreena Members in other parts of the GAB, occur throughout the Eromanga Basin, Surat Basin and Carpentaria Basin. The fine-grained nature of the Rolling Downs Group sediments is reflected in the low to very low porosity and permeability of these units. The thickness averages at 500m in the component basins but thins to less than 300m over the Eulo-Nebine Ridge and Euroka Arch (Appendix B of Appendix A). Within the Eromanga Basin, the sequence reaches a maximum thickness of 1,000m (BRS, 2000).
- *The Cadna-Owie and Hooray Formations:* The Cadna-owie and Hooray formations are thinnest (<50 m) on the existing erosional margins, and thickens toward the basin centre, reaching a maximum interpreted thickness of 800m in the Surat Basin (Figure 9). The aquifer reaches a

maximum saturated thickness of 350m over the southwestern regions of the underlying Patchawarra, Nappamerri, Allunga and Tenappera Troughs which occur within the Cooper Basin (BRS, 2000).

- The Westbourne Formation, Adori Sandstone and Birkhead Formation: This group is dominated by shale and mudstone beds with thicknesses of up to 140m in the Westbourne Formation and 110m in the Birkhead Formation. The Adori Sandstone contains the main sandstone beds of the group, with thicknesses varying from 20 to 130m in the Cooper region but limited to 55m in SWQ, which are cemented in the lower section.
- The Hutton and Poolowanna Formations: these formations are major sandstone formations of the GAB and can reach thickness of up to 200m in the Poolowanna Trough and up to 360m in the Hutton Sandstone in the Patchawarra Trough. In SWQ, the Hutton reaches 244m and is typically 90 to 210m thick and the Poolowanna Formation reaches a maximum thickness of 165m. The equivalent of the Poolowanna Formation in the eastern parts of the GAB is the Precipice Sandstone. In the study area, the Evergreen Formation which separates the two sandstone formations in the Surat Basin is absent.

Geological contour maps for the following formations can be found in (Appendix A):

Depth to Winton Formation.

Depth to Cadna-owie Formation.

Depth to Hooray Sandstone.

Depth to the Hutton Formation.

Depth to the Poolowanna Formation.

Thickness of the Cadna-owie Formation.

Thickness of the Hooray Sandstone.

Thickness of the Hutton Sandstone.

Thickness of the Poolowanna Formation.

Major faulting events and structural uplifts have occurred within the eastern region of the Eromanga Basin, however they have not had a structural effect on the portion of the Eromanga Basin covered by Santos tenements.

Within the study area, significant oil reservoirs are present in the Hutton Sandstone, the Birkhead Formation and the Murta Formation. The Wyandra Sandstone Member, McKinlay Member (which forms part of the Murta Formation) and Namur Sandstone, Westbourne Formation and Adori Sandstone and Lower Poolowanna hold minor oil reservoirs (Figure 9).

|                    |             | Т                     |                                                    | -                                                                      | 0.000-                                                                    |                                                                                                                                                       |                                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                               |                                                           |                                   |
|--------------------|-------------|-----------------------|----------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|
|                    | 10.00       |                       | Joistame                                           | Utha-<br>Equivalent<br>Sub-unk Camadan In<br>Adver para of the<br>GAB= |                                                                           | stadgraphy<br>Depails environment*                                                                                                                    | Listalogy Description =                                                                                                                                                                                          | Geological Age                                                | Thi done m                                                                                                                                                                                                    | Santas Curnent<br>Praduction Renervair<br>(dilă:Gae)      | kydragaal agical<br>Chraceristica |
|                    |             |                       | Whiteles Farmasian<br>Marian Farmasian             |                                                                        |                                                                           | Fluxial relacion rin e                                                                                                                                | interbedded condorane, allrarane, ry udorane and<br>davarane                                                                                                                                                     | Terriary                                                      | Mohimum af 160 m, carfined ra<br>dawm-argo<br>Abaur úm, liwined geographical<br>ehrend                                                                                                                        | ha                                                        |                                   |
|                    |             | 1                     |                                                    |                                                                        |                                                                           | Nuvial departe                                                                                                                                        | Sandranean diguanta pebble conglarverare. Sarve<br>daara, alii dhiartan                                                                                                                                          |                                                               |                                                                                                                                                                                                               | ha                                                        |                                   |
|                    |             |                       | Glandover Farracian                                |                                                                        |                                                                           | Filman and a second                                                                                                                                   | Sandsrane, silvesilsrane, canglaversresndrvinar                                                                                                                                                                  |                                                               | in Qi0, 70m in sversge,                                                                                                                                                                                       | ha                                                        | Aquilter                          |
|                    |             |                       |                                                    |                                                                        |                                                                           | Terreambi depasirian                                                                                                                                  | rvudsrane<br>In rerbedded Hine racastae-graine daandarane, afole,                                                                                                                                                |                                                               | na≫invirvanv Hänv""<br>Over∔üürv in mis⊂aaperregian,                                                                                                                                                          |                                                           | · ·                               |
|                    |             |                       | WinsenFormasian                                    |                                                                        |                                                                           |                                                                                                                                                       | nine active in a reconsergent accession, and a<br>distance and coaleearca v-inhim aclear<br>congleteers ea.                                                                                                      |                                                               | rvas kulv in maccapar ragat<br>rvas inurv midoneaa at i lüürv in<br>men anhem Parchav-arra Traugh                                                                                                             | ha                                                        | Aquiter (papilis)<br>Invited)     |
|                    |             |                       | Madaunda Farmarian                                 |                                                                        |                                                                           | Morine environment                                                                                                                                    | interbadded, portivial coreaus very fine-gained<br>sondar ane, silt state and state in the bosin centre.                                                                                                         |                                                               | 60–120 iv ittild: in the Calaper<br>region                                                                                                                                                                    | ha                                                        | Aquilter                          |
|                    |             |                       | AllaruMudesana                                     |                                                                        |                                                                           | l aenergy, shall a-<br>rvarine environment                                                                                                            | Madarane v-irh rhin calarreaus allrarane and rvinar<br>rhin, ver v Hine-grain ed candarane in rerbeda                                                                                                            |                                                               | Franciùùra aver 2001/citild;<br>generalivibeing aver 2001/citil<br>QID, thim er in aurarapareza                                                                                                               | ha                                                        | Waterbearing                      |
|                    |             | F                     | Taol dau cl'armadian                               | upper Walturybilla                                                     | Surar Sibrane<br>Care era Meryber                                         | kbrine enviranse en                                                                                                                                   | Madoran e                                                                                                                                                                                                        |                                                               | In QID, 20-45rv mildk                                                                                                                                                                                         | ha                                                        | CanHningbed                       |
| Canonal L. Warnago | pa Waans 1  |                       | WalumbilaFarmadan                                  | opper watervella                                                       | Canasrer<br>Danasrer                                                      | Vorine environment                                                                                                                                    | Madarah etan datikarah eta-irin reinar innerbeda af Mine<br>grain edizan dar ane                                                                                                                                 |                                                               | In QID, 200 ra aver 250 rv mild:                                                                                                                                                                              | ha                                                        | Aquilter                          |
|                    |             | ł                     |                                                    | Upper Codno-av-la                                                      | Marybar                                                                   | a-aran dayareny infiling                                                                                                                              |                                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                               |                                                           |                                   |
|                    |             |                       | Cadro-avia Farradan                                | Including the<br>Wyondro Sondorane<br>Meryber                          | Cadro-av-le                                                               | fusial damab then                                                                                                                                     | Medium na contra-grained, quarra osena isibile<br>xondorane v-irh scorrened pebblea                                                                                                                              | Cresceaux                                                     | Malmiv Sö-Sönvin Qið, Wyandra<br>Sandarana Mary bar Yray Dra IS<br>Iv in Quaanaland, Tay-ar Cadro-                                                                                                            | Oli in ar 'r equerrj                                      | Aquiter                           |
| Canonal 2 Warrago  |             | E<br>r<br>o<br>m<br>a |                                                    | l averCadna-avia                                                       | Fanvarian                                                                 | en vir annvern                                                                                                                                        | Săranane v- Ir hwarw fina rafin a-grained aandaran e<br>Innerbeda an drvin ar carbana aa aa ob varane. Pebbliv<br>bwera, dibrviorirea and course breach, bwera accur<br>around ribe toain reargin.               |                                                               | avia Fariyarian replasily 10-50re<br>hiddaraund rhabasin wargin,<br>Increasing na 75-100re in rha<br>deeper parts of rha basin.<br>Masimuw rhidoneas af Al 15re in<br>rhah apparvent Trough.                  | ha                                                        | ConMiningbad                      |
|                    |             | g<br>a                | ka anay San desan e                                | Murra Farryarian<br>Uncluding rha<br>McKiniay Marybarj                 | Haarav<br>Sandarane,<br>Malaga                                            | Mean de ring Muvial,<br>Maa dpialman dia asamine<br>en vinaniye ni                                                                                    | Thinky inverted ded all rannel, shale, very finena fine-<br>grained condumers and reinar wedlew and course-<br>grained condumers. A boostationane bis-kiespread in<br>the Cooperington.                          |                                                               | in QD, repissivitian-aan 60-65<br>vi rhid:                                                                                                                                                                    | 011, sarvegas in ar<br>hequentj<br>Sest                   |                                   |
| Canval 3 Wamaga    |             | B<br>a<br>s           |                                                    | Upperharvur<br>Sandarane                                               | San dar ane , Oralla<br>Farryari an and<br>Gubbe rary unda<br>San dar ane | Mean de ring brai de d<br>Hustal avarensa                                                                                                             | Energical contra-golined conductines with twin at<br>Interbackled difference and twickbrane. The bool<br>horver conductines, like the Adorf Conductine, hos<br>been amongly cervier ad with disgeneric coldrein. |                                                               | in QID, Sùra Tùre thid: In<br>Sveragehav-ever an be leat ar<br>thidea.                                                                                                                                        | ollinartraquentj                                          | Aquiter                           |
|                    |             |                       | Westbaume Farmadan                                 |                                                                        |                                                                           | l saomine de posirs                                                                                                                                   | pisces.<br>In rerbedded dark grev stale an dall rarane with winar                                                                                                                                                |                                                               | in Qiū, 7ūra 14ūrv rhidkin rha                                                                                                                                                                                | 00 in at traquent)                                        | Confiningbed                      |
|                    |             | n                     | Adari San desana                                   |                                                                        | injuna Creak<br>Graup<br>Middle Birkhead                                  | Anvaigny anad braided<br>Huwiai sandarane<br>deposited inito-grand                                                                                    | pindor ane inverteeds<br>Veell-samed, subraunded, crass-bedded, Mine na<br>castrae-gained condir ane. Cildre cervernedzianea<br>up na 45 m rhickore developed lacativin the boot                                 |                                                               | Cooper region<br>20 no 120 m rhid: In rhe Coloper<br>region: maximum 25 m in 0(10)                                                                                                                            |                                                           | Aquiter                           |
| Carrord A Warrago  | Da Manica   |                       | Brithod Famisian                                   | Middle Brithand                                                        |                                                                           | Meandering ra bourral<br>depaalrian - Brithead<br>"bise", largear                                                                                     | Adari andhawur Sandaranea<br>Inrerbedded all crane, wuchrane and fine ra wediuw<br>grained condor ane v-th rhin, lenri aubr coal saawa<br>Hôù ry rhickj                                                          | וענזעו                                                        | at a 150 m accurs in the                                                                                                                                                                                      | all - Boxi Bir Head and<br>Middle Birthead<br>Iscorrend)  | Warenbearing                      |
| Central S Warrego  | pa Waans S  |                       | Human Sandistana                                   |                                                                        |                                                                           | Crastan mentakaranan<br>ayaren                                                                                                                        | finera cause-goined quart are conditanes-irit<br>winar air arane interbedi                                                                                                                                       |                                                               | in QD, 20-210m thids, washware<br>at 244 m.                                                                                                                                                                   | 011, sarvegas in ar<br>hequentj - rvasirvin<br>upper part | Aquiter                           |
| Canvral 6 Warnaga  | pa Waansi S |                       | Padasana Famadan                                   | Upper Paalavanna<br>Laver Paalavanna                                   | Pracipica<br>Son dar ana                                                  | Tisrogeaslanra highrish<br>systems<br>Lak-asindi Musisi jand<br>ear kirrishog essi ve system                                                          | interbaddad alliotrane, condorate and rate cool<br>seary a Sandarane beda range haw very fine to<br>readiury golined, and containtering publication<br>granules of quantitie and reviate discoursers.            |                                                               | in QB, vəsinun ətidanı                                                                                                                                                                                        | Oli in ar 'r equenrj                                      | Aquitar                           |
|                    |             |                       | QuábpanFarmasian                                   |                                                                        |                                                                           | Highainucaire Huxiai and<br>coal 2-arep development                                                                                                   | рп                                                                                                                                                                                                               | 11222                                                         | in QB, wainiv 2014 raaver 50 rv.<br>Reamland ge agraphically.                                                                                                                                                 |                                                           |                                   |
| MAJOR UNCONFOR     | TIMBO       | ł                     |                                                    |                                                                        |                                                                           |                                                                                                                                                       | MAJORUNCONFORMITY<br>Interbadded deroeplitoratepand light grev                                                                                                                                                   |                                                               | In QID, harv 125-200rv thick,                                                                                                                                                                                 |                                                           |                                   |
|                    |             |                       | A Tincheaf armadan                                 | Glipappas Mervbar<br>Daonryulis Mervber                                | Madavereber<br>Farrvarian                                                 |                                                                                                                                                       | zandar ane<br>UniParty dense silicarane, withiny inar casi searys<br>(Gilpeppee Merviser) and intracioar can glaverane                                                                                           |                                                               | restinuer of 200 m. The<br>Gilpeppes Merrise to generativ<br>A5 rasion milds<br>Notinuer rasi misiness of 400<br>m in the Pandov-ana Traugh<br>Calarvara Merriser to Talon<br>androane. Panding Merriser 100m | Gaa inar 'ne guerrij                                      | Confiningbed                      |
| Central 7 Vorrego  | ga Vasar 7  |                       |                                                    | Wiwwa Sandarane                                                        | Clervaria                                                                 |                                                                                                                                                       | Finera realizy-gained quart area and ranes-ith                                                                                                                                                                   |                                                               |                                                                                                                                                                                                               | Gaa inar trequent)                                        | Aquiter                           |
|                    |             |                       |                                                    | Marvbar<br>Paning Marvbar                                              | Sandarane<br>Rev-an Farryarian                                            |                                                                                                                                                       | rehor interbado d'alizzone and readarane.<br>Uptor d'Afring code so Pine na readium-grained<br>andar ane grading intracilies autore donate and<br>alizzone units.                                                |                                                               |                                                                                                                                                                                                               |                                                           | Confiningbed                      |
|                    |             | ۲<br>•                | ź                                                  | Callaryurra Meryber                                                    |                                                                           |                                                                                                                                                       | sitrana anta.<br>Sitrana and rudrana, mina andrana interbada<br>(Carly Tribale) Siderina and carverra to ve harved in<br>Sitrana and andrane bed.                                                                |                                                               | ra 200 m and rears. Wirerea<br>Sandarans : 115 m m astronom                                                                                                                                                   |                                                           | CanHningbed                       |
|                    |             | o<br>P                | Ta di sche e l'armani ar                           | Ta al sche a l'armad an                                                |                                                                           |                                                                                                                                                       | hrarbaddad Hina racarna-golina doondarana,<br>sliraana ond arbaro caana shola, sarvariryaa (- hh<br>rhin caal saavoo (-Cav-rhide), ond canglarwaraa.                                                             |                                                               | lup na 180 nv                                                                                                                                                                                                 | G33                                                       | Aquiter                           |
|                    |             | e<br>r                | Daralingis Farmadar                                |                                                                        |                                                                           | Deinicdepæin                                                                                                                                          | Silinane and roudmane t-lift intertaed ded Mine to<br>very Mine-grained conditione. Minar cool sectors and<br>orbano ceaso partings and america accur.                                                           |                                                               | In QID, waariv 15-30w rhid, up<br>ra 36w in happawent Traugh                                                                                                                                                  |                                                           | Confiningbad                      |
|                    |             | в                     | R <i>a</i> s ana schish sia                        |                                                                        |                                                                           | i saomine deposins                                                                                                                                    | Silirarane, wudatane and winataandatane.                                                                                                                                                                         |                                                               | Up ra 100 rv, generaliv≦0-60 rv<br>rhidkin Qi0                                                                                                                                                                |                                                           | Confiningbad                      |
|                    | :           | ส<br>5<br>            | a<br>G<br>Cpellan Formation<br>a<br>Murvares State |                                                                        | Deirsicdepasis                                                            | Thiniv be dded, Mne na rvedi urv-grained condorane<br>Virth arbaro ceaso olirarane and shale, and rhinr a<br>accasionally rhidki 43-2014) cool searys | Pervian                                                                                                                                                                                                          | Mo>irvuv rhidoreos at 1561v in<br>rheih spporverri Traugh, in | G33                                                                                                                                                                                                           | Aquiter                                                   |                                   |
|                    |             | n                     |                                                    |                                                                        |                                                                           | Watnivisauanine                                                                                                                                       | Frigilisaeaus silirarane and Mine-grained son dat ane.                                                                                                                                                           |                                                               | in QID, wasiryleas from Sûry<br>Hilde                                                                                                                                                                         |                                                           | Confiningbad                      |
|                    |             |                       | 64<br>D<br>Pashawana Famad                         | n                                                                      |                                                                           | ind Midual and aracked<br>channels                                                                                                                    | Interbaddad Yne rarved uw-goined, iacolly coorse-<br>goined and publik condorane, altarane, shale and<br>cool.                                                                                                   |                                                               | inhide.<br>Sú na 15ú ny Ginh up na 55ú ny In<br>Q10                                                                                                                                                           | G33                                                       | Aquiter                           |
|                    |             |                       | Tirraw arta Sandina na                             |                                                                        |                                                                           |                                                                                                                                                       | aas.<br>Finena coorse-golined and pebbly sondarane with<br>la ally convolationersed soft conglarversne and what<br>Interbeds af arbanace as all strane, shale and cost.                                          |                                                               | 20–40 m range in Qi B, washvurv<br>75 m ratsi rhidate 20                                                                                                                                                      | Gaa inar 'ne geenrj                                       | Aquitur                           |
|                    |             |                       | Merrimelia Formado                                 | n                                                                      |                                                                           | Giadai sediwenta<br>deposito, deepgiado-<br>lacuatine aediwenta                                                                                       | Canglarverare, zandarare, canglarverark ryudarare,<br>dinarare and shale                                                                                                                                         | lana<br>Carbani Peraus<br>na Carly Perivian                   | Maximum Afre in Qi D                                                                                                                                                                                          |                                                           | Warer bearing                     |

Figure 9. Stratigraphy Sequence in the Study Area

UNCONTROLLED IF PRINTED

<Page intentionally left blank>

UNCONTROLLED IF PRINTED

## 4.3.6 Conceptual Geological Cross Section

A schematic geological cross-section across the Eromanga Basin is presented as Figure 10. The "A-B" section cuts the main depositional centre of the basin in SWQ and corresponds generally to the location of the study area. As shown on the cross section, the upper formations of the Eromanga Basin (from Cadna-Owie and Hooray systems up) are continuous which is in contrast to the older formations which are confined to areas within sub-basins (these formations or their equivalent may be present in several basins).

Abbreviations commonly used by Santos as stratigraphy markers or reservoir markers, and used in some of the geological figures are summarised in Table 3.

| Name of Marker   | Definition                                                            |  |
|------------------|-----------------------------------------------------------------------|--|
| 'C' Horizon      | Top Cadna-owie                                                        |  |
| 'E' Horizon      | Top Birkhead Formation                                                |  |
| 'H' Horizon      | Top Hutton Sandstone                                                  |  |
| 'L*' Horizon     | Basal Eromanga Unconformity                                           |  |
| 'PC00' Horizon   | Top Toolachee Formation (chrono-marker)                               |  |
| 'PU-70' Horizon  | Basal Toolachee Formation (chrono-marker and Daralingie Unconformity) |  |
| 'VC00' Horizon   | Top Patchawarra Formation (chrono-marker)                             |  |
| 'VC50' Horizon   | Lower Patchawarra Formation (chrono-marker)                           |  |
| 'VCxx' - Horizon | Chrono-stratigraphic marker within the Patchawarra Formation          |  |
| 'ZU00' Horizon   | Top Pre-Permian (Basement)                                            |  |

Table 3. Geological Abbreviations for Stratigraphic markers of the Eromanga and Cooper Basin Fms

A geological conceptual cross section across the Cooper and Eromanga Basins has been generated in a SW to NE axis and is presented as Figure 11. The section cuts the study area passing through the Barrolka fields (Barrolka Trough).

## UWIR - Santos Cooper Basin Oil and Gas Fields, February 2020

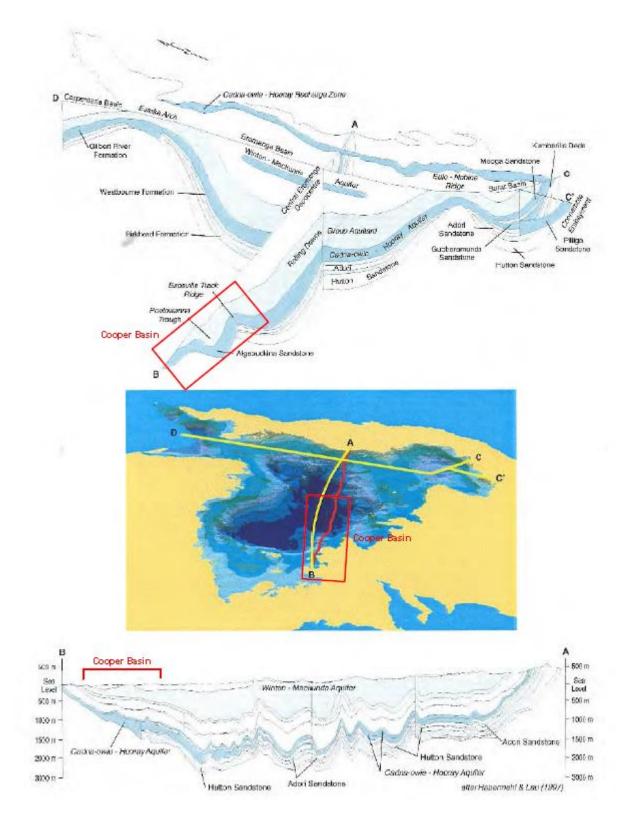



Figure 10. Geological Schematic Cross Section across the GAB Eromanga Basin

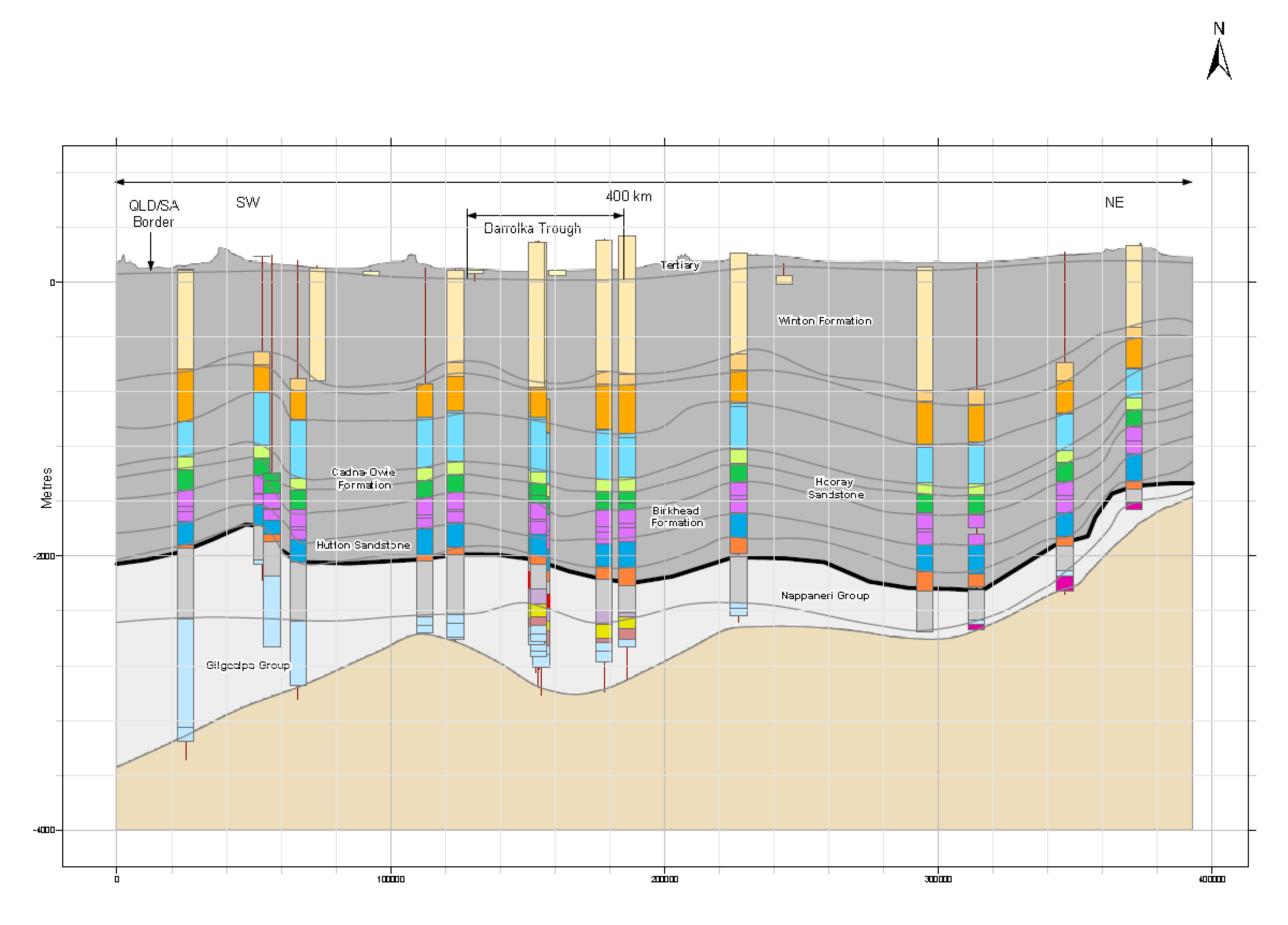



Figure 11. Geological Conceptual Cross Section across the Study Area UNCONTROLLED IF PRINTED

<Page intentionally left blank>

## 4.3.7 Tectonic Controls and Trapping Mechanisms

## Faults

The structural framework of the Cooper Basin, particularly in relation to faulting, is complex in the study area. However, in 2004, Santos undertook a mapping exercise to simplify the tectonic features within the basin(s). The primary driver for the mapping was to identify likely fault conduits (likely to enhance vertical migration of petroleum fluids) and fault baffles (likely to prevent lateral migration of petroleum fluids).

Across Santos SWQ activities, the major episodic faults occur in the top pre-Permian (basement), the basal Toolachee Formation and the basal Eromanga unconformity (Figure 13). The top pre-Permian faults provide the basin's overall fabric, whereas the younger faults from the basal Toolachee Formation and basal Eromanga unconformity are generally reactivated Permian faults.

In the Eromanga Basin formations, very few regional faults are observed as very little fault movement occurred during deposition of Eromanga Basin sediments. Subsidence and compaction dominated the structural geology (PIRSA, 2006).

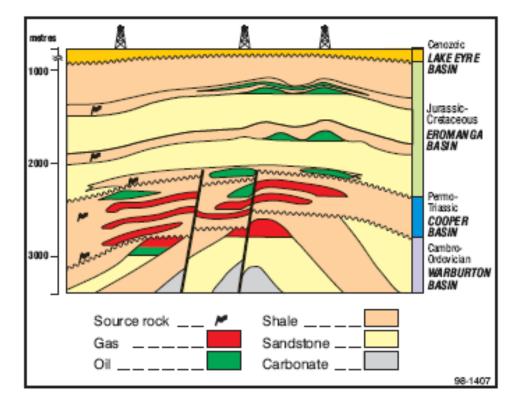
## Hydrocarbon Trapping Mechanisms

## Eromanga Basin

Trapping mechanisms are predominantly structural, with a minor stratigraphic component (e.g. Hutton–Birkhead transition, Poolowanna facies, McKinlay Member and Murta Formation). Seals consist of intraformational siltstones and shales of the Poolowanna, Birkhead and Murta Formations. Where these units are absent, potential seals higher in the sequence include the Bulldog Shale and Wallumbilla Formation (SA DPI, 1998).

#### **Cooper Basin**

Anticlinal and faulted anticlinal traps have been relied on as proven exploration targets but potential remains high for discoveries in stratigraphic and sub-unconformity traps, especially where the Permian sediments are truncated by the overlying Eromanga Basin succession. Economic oil and gas in the Nappamerri Group are reservoir sands, with the majority of mudrocks in this unit forming a regional seal to the Cooper Basin. Intraformational shale and coals form local seals in the major reservoir units. Underlying the Daralingie Unconformity are two important early Permian regional seals - the Roseneath and Murteree Shales. The Roseneath Shale is the top seal of the Epsilon Formation and the Murteree Shale seals the Patchawarra Formation.


#### **Tectonics and Uplifts**

Tectonics and uplifts are discussed in the PIRSA reports on the Eromanga and Cooper Basins geology (PIRSA, 1998).

In the Cooper Basin, the Permo - Carboniferous – Triassic depositional episode terminated at the end of the Early Triassic by regional uplift, tilting and erosion.

Deposition in the Eromanga Basin commenced in the Early Jurassic and was governed by the topography of the unconformity surface. No major depositional breaks occur in the Eromanga Basin, indicating a period of minimal tectonic activity. As part of the large scale Early Cretaceous marine

inundation of the Australian continent, a rapid period of subsidence took place in the Eromanga Basin.



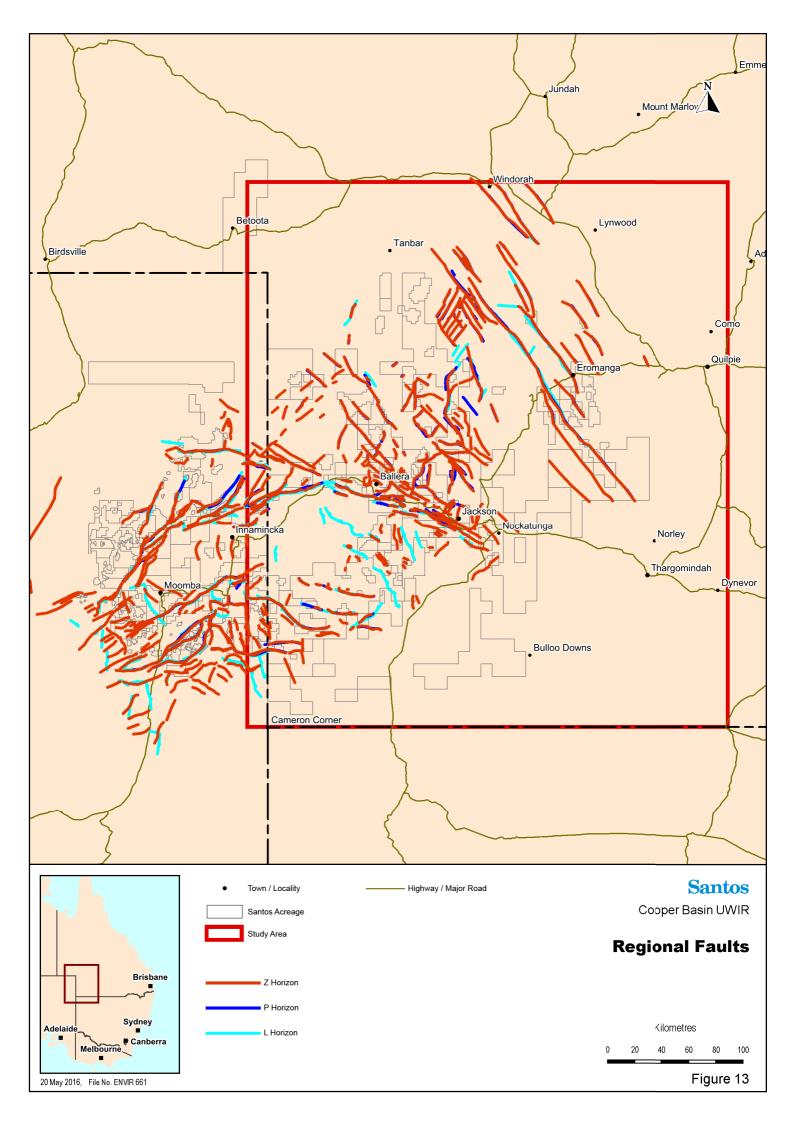
# Figure 12. Petroleum Reservoirs Trapping Mechanisms of the Cooper and Eromanga Basins (from SA DPI, 1998).

## Environmental Values

The environmental values defined in this section include surface water or groundwater resource within the study area. They are defined as "those qualities of the waterway that make it suitable to support particular aquatic ecosystems or human use" (*Environmental Protection (Water) Policy, 2009*, referred to as EPP Water). The EPP Water provides guidelines on determining the environmental value that should be considered for a particular project site or area, which follow the framework set out in *Appendix H* of the *Queensland Water Quality Guidelines 2006* (QWQG 2006).

There are a number of environmental values associated with surface water bodies, however, these may or may not be related to groundwater systems. Environmental ecosystems depending on groundwater are referred to as Groundwater Dependent Ecosystems (GDE).

Environmental values depending relevant to groundwater resources in the study area are:


Groundwater Dependent Ecosystems (Incl. wetlands and springs).

Drinking Water.

Sandstone Aquifers of the Great Artesian Basin.

Groundwater Users.

The hydrogeology of the study area is described in Section 5.0



## 4.3.8 Groundwater dependent ecosystems (Incl. Springs)

GDEs can be defined as those ecosystems whose ecological processes and biodiversity are wholly or partially reliant on groundwater. The extent of GDE dependency on groundwater can range from being marginally or episodically dependent to being entirely dependent on groundwater (SKM, 2001).

Examples of GDEs include:

Terrestrial vegetation supported by shallow groundwater.

Aquatic ecosystems in rivers and streams that receive groundwater baseflow. Baseflow typically accounts for a significant portion of total flow volume in major rivers and streams. Baseflow can sustain streamflow volumes long after rainfall events, or throughout dry seasons, and is therefore critical to the maintenance of aquatic ecosystems in rivers and streams in many Australian environments. Baseflow can occur as springs discharging into a river or stream, or as diffuse influx of groundwater through banks and bed sediments.

Wetlands, which are often established in areas of groundwater discharge.

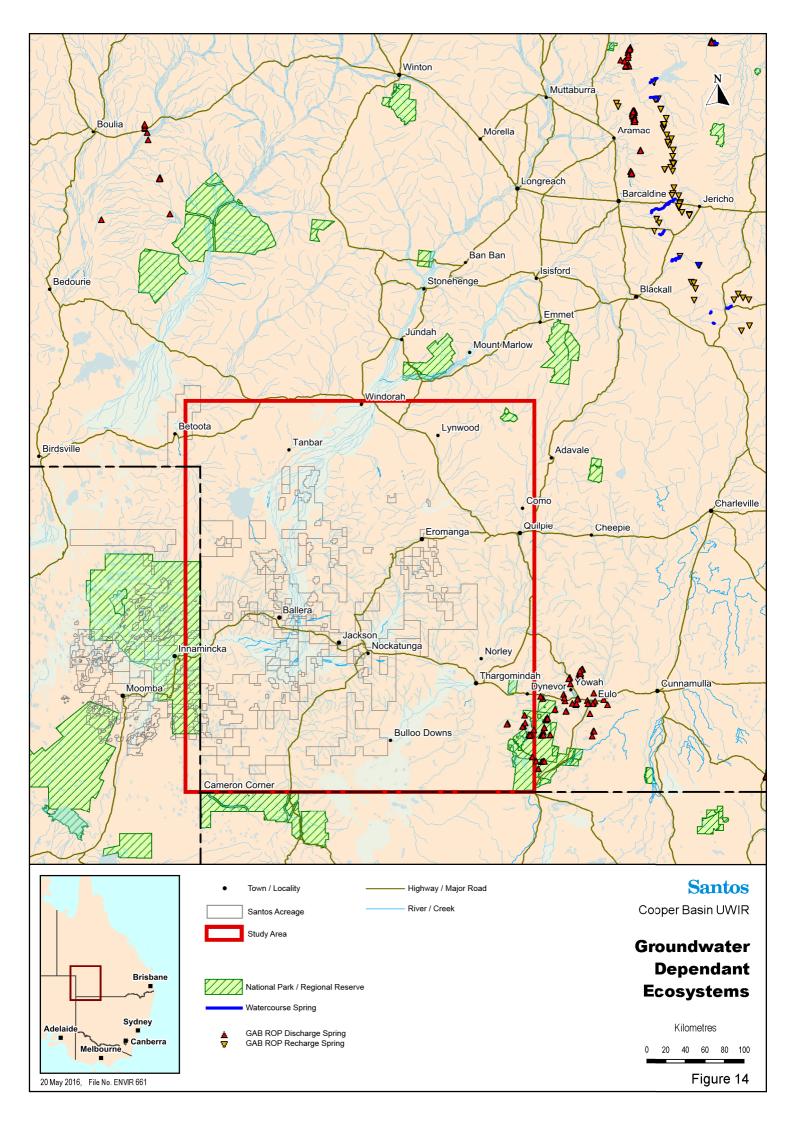
Springs and associated aquatic ecosystems in spring pools.

Aquifers and caves, where stygofauna (groundwater-inhabiting organisms) reside.

Potential GDEs in the Study Area are presented on Figure 14

The closest QLD GAB spring to a Santos tenement is located 95km to the east-east.

Cooper Creek Basin is the largest catchment in the Lake Eyre Basin region.


The Cooper Creek has been recognised as one of Australia's most iconic inland rivers and largely intact natural values. The *Cooper Creek Basin Wild River Area Summary: Natural Values Assessment* (DERM, 2010) concluded that "the persistence of waterholes in the Cooper Creek is largely influenced by surface water flows and evaporation, with little inputs from groundwater". As a result, the Cooper Creek system is not classified as a GDE.

As noted above, the study area lies within the Channel Country regional ecosystem. Within this region, there are no recognised endangered regional ecosystems (EREs) (Santos, 2011).

Within the study area, only the Currawinya Lakes National Park *wetland* is listed as being of international significance under the EPBC Act Protected Matters database (Ramsar sites). The Currawinya Lakes National Park is located in the south eastern corner of the study area. It includes low dunefields, lakes, clay and saltpans, dissected tablelands and low hills. The Currawinya Lakes National Park is located more than 240km to the east of Santos' Cooper Basin petroleum activities. The wetland is underlain by the Eromanga Basin but not by the Cooper Basin.

Other nearby national parks include the Lake Bindegolly National Park which is located to the west of the town of Thargomindah and the Innamincka Recreation Reserve located to the east in SA.

To summarise, there are no known GDE's in the study area.



## 4.3.9 Drinking Water and Groundwater Users

Groundwater is a common drinking water source for many inland areas of Australia, especially where aquifers of good quality and yield are present at reasonably shallow depths.

Municipal water supply accounts for the majority of large volume licensed groundwater allocations across the study area and may represent up to 10% of the total number of groundwater licences. Municipal water supply bores found in the QLD Government database are licensed in the Hooray Sandstone.

In addition to municipal water, individual properties in remote areas are likely to access groundwater for water supply. These water supplies do not typically require a license.

Groundwater as a drinking water supply and water resource for the rural community is considered to be an important environmental value in the study area.

It should be noted that groundwater use by the local communities is limited to the formations of the Eromanga Basin and overlying sediments and more generally, the shallower formations. A large proportion of the water supply bores target the Winton Formation aquifer (based on information in the DERM groundwater database).

Groundwater use is further discussed in Section 5.7

#### 4.3.10 Sandstone Aquifers of the Great Artesian Basin

The main GAB aquifers (i.e. in the Eromanga Basin stratigraphy) over the study area are the Winton Formation, Cadna-owie Formation, Hooray Sandstone, Hutton Sandstone and Poolowanna Formation (Precipice Sandstone equivalent).

The aquifers of the Eromanga Basin are considered highly productive aquifers over most of the GAB.

The aquifers of the Cooper Basin (pre-GAB) are not considered by the regulator within the defined *"sandstone aquifers of the GAB"*. Nevertheless, the major aquifers are the Wimma Sandstone, Toolachee Formation, Epsilon Formation, Patchawarra Formation and Tirrawarra Formation.

In the study area, only the upper aquifers of the Eromanga Basin sequence are of interest to the local community due to the significant depth of the deeper aquifers. As such, the Hutton and Poolowanna Sandstone aquifers are not used by the community (with the possible exception of exploration bores converted to groundwater supply bores).

## 5.0 Hydrogeological Conceptual Model

## 5.1 Hydrogeological Setting

The Cooper and Eromanga basins are two chronologically successive stacked basins. The Cooper Basin is often considered by geologists as not being part of the GAB, however the upper formations of the Cooper Basin are included in the QLD GAB regulation (Great Artesian Basin Resource Operations Plan (GAB ROP) and Water Resource (Great Artesian Basin) Plan 2006(GAB WRP)). The Eromanga Basin is one of the main basins of the GAB and covers the whole of the Cooper Basin. The connection between the two basins is geologically marked by a major discontinuity.

The Cooper Basin and Eromanga Basin are multi-layered systems comprising alternating layers of sandstone, shales, mudstones and siltstones (Section 4.3). The sandstone formations of the Eromanga Basin correspond generally to water bearing formations and aquifer formations, and may yield significant quantities of groundwater to springs and for extraction from water supply bores.

The siltstone, shale and mudstone formations are generally low permeability rocks and are not classified as aquifers. However, lenses of sandstone are present within the some mudstone and siltstone beds, which may provide limited groundwater to low yielding supply bores.

In general, the formations are laterally continuous and hydraulically connected. However, due to the variability in the nature of the deposits this may not always be the case.

For management purposes, the GAB is subdivided in Groundwater Management Area (GMA) as defined in the *GAB Hydrogeological Framework for the GAB WRP Area* (DERM, 2005) [Section 2.0]. Each area is further divided in Groundwater Management Units (GMU) as represented on Figure 9 GMU groupings follow stratigraphy and hydrogeological characteristics as presented on Figure 9. The identification of GMUs allows for administration of access to water and water entitlements.

## 5.2 Hydrostratigraphy

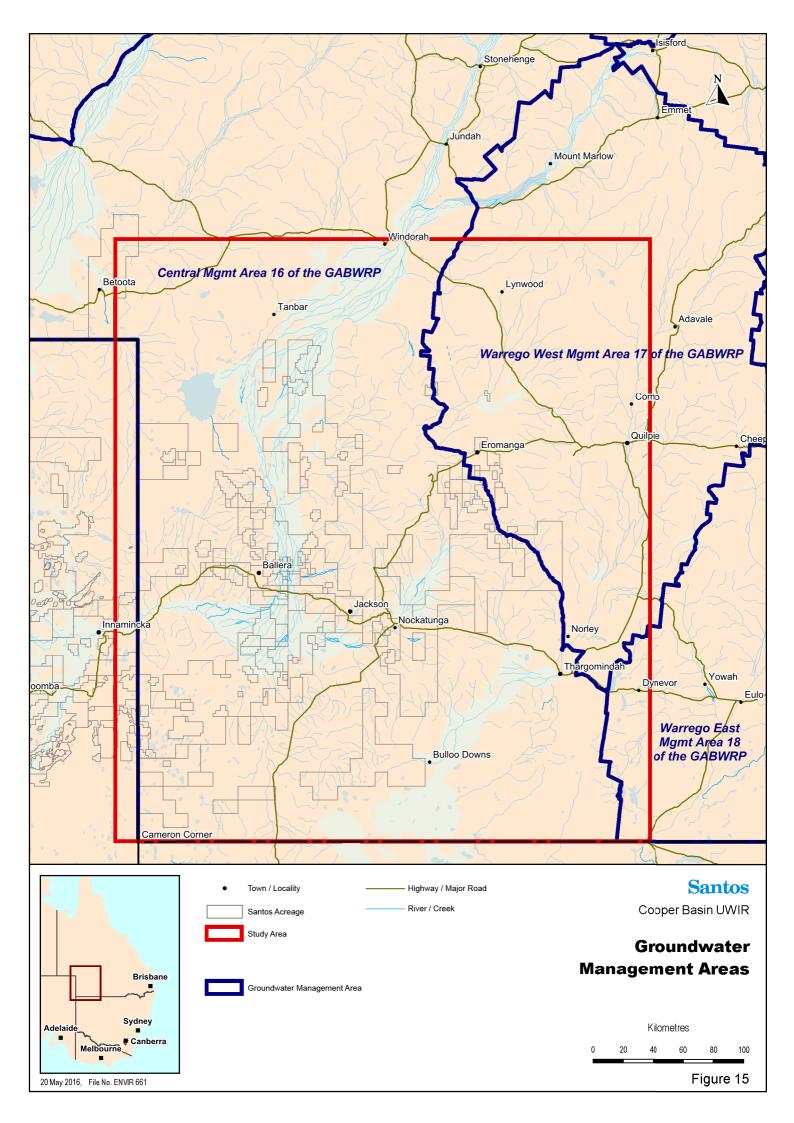
Santos tenements are located within the Great Artesian Basin Water Resources Plan *Central Management Area* (AP12099) mostly, and the western part of *Warrego West Management Area* (AP12100) as illustrated on Figure 7.

The main aquifer and aquitard units are presented in Table 4. The main aquifer groupings, in relation to groundwater production include:

Shallow Quaternary formations and Tertiary sediments

- The GAB aquifers of the Eromanga Basin (water supply for agricultural and drinking water, and groundwater extraction associated with the production of oil).
- The older and deeper Cooper Basin aquifers (groundwater extraction associated with the production of gas).

The targeted development of the main aquifer units of the Eromanga Basin is due primarily to accessibility (i.e. aquifer units occur at shallower depths and are therefore easier and cheaper to access). The aquifers of the Cooper Basin occur at much greater depths and are therefore usually only accessed during the production of gas.


Detailed hydrostratigraphy data of the Eromanga Basin has been sourced from the DERM database and some other relevant literature. Insufficient information is available to provide a detailed description of the hydrostratigraphy of the Cooper Basin formations.

Note that the Quaternary and Tertiary sediment aquifers and the Winton Formation are not administered under the GAB ROP (DERM, 2007).

| GMA Unit                         |                    | Unit name              | Sub-unit                    | Equivalent Formation<br>other parts of the<br>GAB                                          |  |
|----------------------------------|--------------------|------------------------|-----------------------------|--------------------------------------------------------------------------------------------|--|
|                                  |                    | Glendower Formation    |                             |                                                                                            |  |
|                                  |                    | Winton Formation       |                             |                                                                                            |  |
|                                  |                    | Mackunda Formation     |                             |                                                                                            |  |
|                                  |                    | Alluru Mudstone        |                             |                                                                                            |  |
| Operatural 4                     |                    | Toolebuc Formation     |                             | Surat Siltstone                                                                            |  |
| Central 1 -<br>Warrego           |                    | Mallurahilla Competing | Coreena Member              |                                                                                            |  |
| West 1                           |                    | Wallumbilla Formation  | Doncaster Member            | Wallumbilla Formation                                                                      |  |
| Central 2 -                      |                    |                        | Wyandra Sandstone<br>Member | Cadna-owie Formation,                                                                      |  |
| Warrego<br>West 2                |                    | Cadna-owie Formation   | Lower Cadna-owie            | Bungil formation,<br>Gilbert River Formation                                               |  |
| Central 3 -                      |                    |                        | Murta Formation             | Hooray Sandstone,<br>Mooga Sandstone,<br>Orallo Formation and<br>Gubberamunda<br>Sandstone |  |
| Warrego<br>West 3                |                    | Hooray Sandstone       | Namur Sandstone             |                                                                                            |  |
|                                  |                    | Westbourne Formation   |                             |                                                                                            |  |
| Control 4                        |                    | Adori Sandstone        |                             |                                                                                            |  |
| Central 4 -<br>Warrego<br>West 4 |                    |                        | Upper Birkhead              | Injune Creek Group                                                                         |  |
| vvesi 4                          |                    | Birkhead Formation     | Middle Birkhead             |                                                                                            |  |
|                                  |                    |                        | Lower Birkhead              |                                                                                            |  |
| Central 5 -<br>Warrego<br>West 5 | Basin              | Hutton Sandstone       |                             |                                                                                            |  |
| Central 6 -                      | Eromanga           | Poolowanna Formation   | Upper Poolowanna            | Dracinica Sandatana                                                                        |  |
| Warrego<br>West 6                | Erom.              | Poolowanna Formation   | Lower Poolowanna            | Precipice Sandstone                                                                        |  |
| MAJOR UNCC                       | MAJOR UNCONFORMITY |                        |                             |                                                                                            |  |

Table 4. Hydrostratigraphy of the Study Area

| GMA Unit          |                               | Unit name                                                     |                       | Sub-unit                  | Equivalent Formation<br>other parts of the<br>GAB |
|-------------------|-------------------------------|---------------------------------------------------------------|-----------------------|---------------------------|---------------------------------------------------|
|                   |                               |                                                               | Tinchoo Formation     | Gilpepee Shale            | Moolayember                                       |
|                   |                               | d                                                             | Tinchoo Formation     | Doonmulla Member          | Formation                                         |
|                   |                               | Nappamerri Group                                              |                       | Wimma Sandstone<br>Member | Clematis Sandstone                                |
|                   |                               | amei                                                          | Arraburry Formation   | Panning Member            | Rewan Formation                                   |
|                   |                               | Napp                                                          |                       | Callamurra Member         |                                                   |
| Central 7 -       |                               |                                                               | Toolachee Formation   |                           |                                                   |
| Warrego<br>West 7 |                               | asin<br>Group                                                 | Daralingie Formation  |                           |                                                   |
|                   |                               |                                                               | Roseneath Shale       |                           |                                                   |
|                   |                               |                                                               | Epsilon Formation     |                           |                                                   |
|                   |                               |                                                               | Murteree Shale        |                           |                                                   |
|                   | Isin                          |                                                               | Patchawarra Formation |                           |                                                   |
|                   | Cooper Basin<br>Silgealpa Gro |                                                               | Tirrawarra Sandstone  |                           |                                                   |
|                   | Coop                          | Normalize     Tirrawarra Sandstone       Merrimelia Formation |                       |                           |                                                   |
|                   | Major Aquifer                 |                                                               |                       |                           |                                                   |
|                   | Water Bearing                 |                                                               |                       |                           |                                                   |
|                   | Confining Bed                 |                                                               |                       |                           |                                                   |



## 5.2.1 Quaternary and Tertiary Alluvium

The Quaternary and Tertiary alluvium formations cover a large portion of the study area and are often associated with the very flat structures of the flood plains. In general they are absent where the Winton Formation outcrops.

The Quaternary and Tertiary sediments are generally unconfined and form the uppermost phreatic water table (where present). Insufficient water level data is available for the Quaternary formations to determine the level of continuity.

The Glendower Formation is the primary Tertiary formation in the study area. The Australian Stratigraphic Database identifies the Whitula Formation as overlying the Glendower Formation, however the significance of the Whitula Formation in the study area is unknown.

The Glendower Formation comprises consolidated sediments of sandstones, sandy siltstones and minor conglomerate and mudstones (Australian Stratigraphic Database, Geosciences Australia).

In general, groundwater flow follows the topographical profile of the study area, with the only limitations imposed by the fluvial nature of the sediments. A hydrogeological map of the area is presented as Figure 16, which indicates that the hydraulic gradient is small.

According to the data available in the DERM database, the salinity of the aquifer water is brackish, with electrical conductivity (EC) values ranging from 3,000 to 7,000µS/cm or 2,000 to 4,700mg/L Total Dissolved Solids (TDS).

## 5.2.2 Winton Formation

Based on the information available through the DERM database, the Winton Formation is a significant aquifer as it supplies community stock and domestic water bores. As shown on Figure 17, the depth to, and thickness of the Winton Formation is on average 50m below ground level (bgl) and in some areas may be up to 970m thick.

Contrary to the information provided in the DERM database data, Santos does not consider that the Winton Formation is a significant aquifer in SWQ. Although it covers a large area of QLD, the quality of the water present in the Winton Formation decreases progressively to the west as you move away from central QLD toward SA (Pers. Comm. N. Lemon, Santos, November 2011).

It is also noted that the top and the bottom of the Winton are so poorly defined in the subsurface that it is difficult to determine with any real certainty that water production currently assigned to the Winton Formation does not come from the overlying Tertiary (Eyre Formation in South Australia) or underlying Mackunda Formation. The uncertainty around water production currently assigned to the Winton Formation was also reported by Gravestock et al. (1995)

The Winton Formation is overlain by Tertiary sediments. It is expected that there is some level of hydraulic conductivity between the two formations however, no data is available to confirm this.

The water quality in the Winton Formation is brackish (to saline) with ECs ranging from 900 to  $13,000\mu$ S/cm or 600 to 9000mg/L TDS. In general, groundwater flow is to the south west.

## 5.2.3 Cadna-Owie Formation

The Cadna-Owie Formation is considered a major unit of the GAB. Its upper section, the Wyandra Sandstone, is an aquifer however, its thickness is limited over SWQ. The Lower Cadna-Owie is considered an aquitard.

The limited data available in the DERM groundwater database indicate fresh to slightly brackish water quality with the Wyandra Sandstone. Insufficient water level information is available to describe water flows and water levels and therefore a hydrogeological map has not been generated. Habermehl defines the Cadna-Owie unit as non-artesian (1986, 1997), however the DERM groundwater database identifies a number of artesian bores present in the Formation.

The proportion and spatial distribution of aquifer bearing sandstones and siltstones in the Cadnaowie is much lower than that in the Hooray Sandstone. The Wyandra Sandstone is recognised as the 'productive unit' in this formation. It is a highly permeable shallow marine sandstone, and most prevalent in the eastern regions of the Formation (BRS, 2000).

## 5.2.4 Hooray Sandstone

The Hooray Sandstone system is a major GAB unit. Oil reservoirs and minor gas reservoir are also present within this unit (Figure 18). Two sub-units are identified in the Hooray Sandstone and include:

- The Murta Formation: the equivalent in other GAB basins are the Mooga and Gubberamunda Sandstones. However, it is noted that in the study area, the Murta is considered to be a confining bed. The confining layer is a siltstone at the base of the Formation which is widespread accross the Cooper region. Oil and some gas reservoirs are present in the Murta Formation. The McKinlay Member, which forms part of the Murta Formation, is not always present in SWQ, and contains only minor oil reservoirs.
- The Namur Sandstone: is the major water bearing unit of the Hooray Sandstone. Oil is present in this unit.

The water quality in the Hooray Sandstone is generally fresh but may be slightly brackish. EC values (DERM groundwater database) range from 675 to  $3,930\mu$ S/cm or 450 to 2700mg/L TDS. A number of Hooray water supply bores have salinity values measured over a 40 year period, the latest of which compare well with historical values.

It is noted that a number of bores within the Hooray Sandstone may be artesian. Groundwater bores are concentrated in the south-eastern region of the study area however, water level and salinity data is limited for the majority of the bores in the study area (i.e. within Santos tenements).

Based on the information that is available, the groundwater flow direction is generally towards the southeast and the water salinity is fresh to slightly brackish.

## 5.2.5 Westbourne Formation, Adori Sandstone and Birkhead Formation

Limited hydrogeological information is available for the Westbourne Formation, Adori Sandstone and Birkhead Formation.

In general, the Westbourne Formation is considered to be a confining bed with homogeneous characteristics (lacustrine deposits associated with a large transgression). However, in the south-

eastern region of the study area, a number of private bores have been completed in the Westbourne Formation, most likely in some of the minor sandstone beds/lenses of the formation.

The Adori Sandstone is an aquifer however, insufficient information is available to fully characterise it. The Birkhead formation comprises of a succession of discontinuous confining beds and water bearing sandstone units.

Salinity data are not available for the Westbourne, Adori and Birkhead Formations.

## 5.2.6 Hutton Sandstone

The Hutton Sandstone is a significant GAB aquifer however, given its depth (2,000mbgl – refer to Figure 11) in the study area, access other than for oil activities is highly unlikely. The groundwater flow is expected to be to the south west i.e. consistent with the flow of the major GAB units as described in the literature (Note: there is insufficient water level data in the Hutton Sandstone to characterise groundwater flow direction further).

The water quality of the Hutton Sandstone in the study area cannot be commented on as no reliable data can be found.

## 5.2.7 Poolowanna Formation

Also referred to as the Basal Jurassic Formation (older name in the nomenclature), the Poolowanna Formation is the equivalent of the Precipice Sandstone (in SE QLD). As per the Hutton Sandstone, groundwater flow is expected to be to the south west, which is consistent with the flow of the major GAB units as described in the literature.

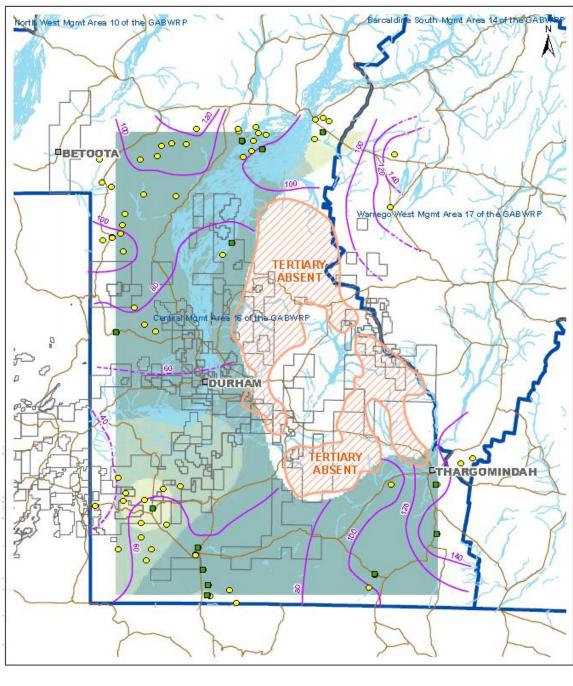





Figure 16. Hydrogeological Map: Tertiary Formation

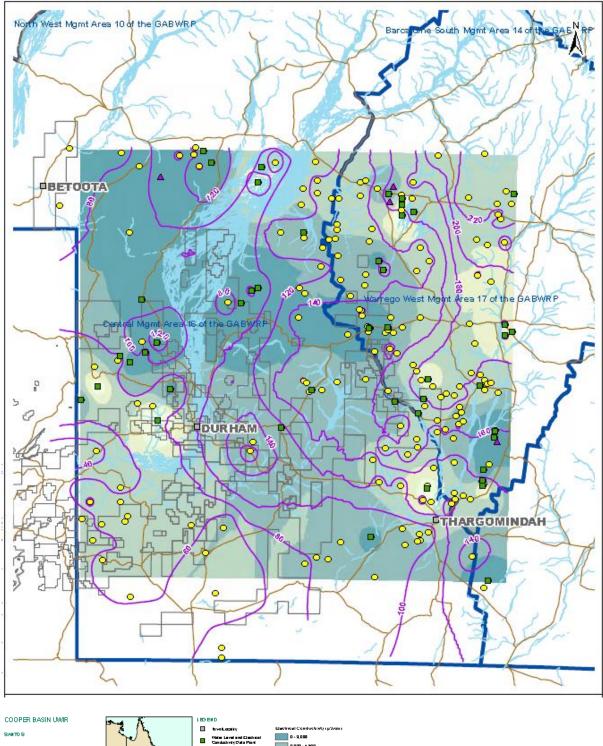





Figure 17. Hydrogeological Map – Winton Formation

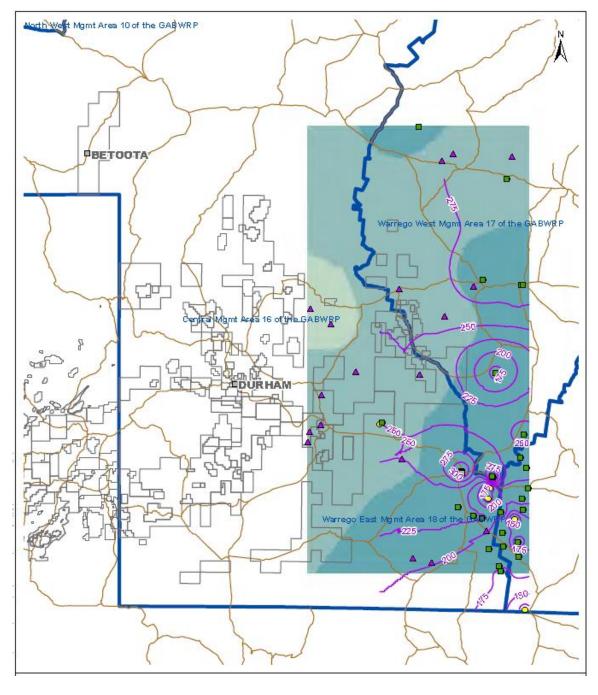





Figure 18. Hydrogeological Map – Hooray Sandstone

## 5.3 Structural Influence on Groundwater Flow

Section 4.3.3 of this report provides details on the tectonic setting and basin stress regime within the Cooper-Eromanga Basins, which provides that, the primary influences are strike-slip faulting, normal faulting and transitional strike-slip/reverse faulting at depth. Consideration of these regimes in relation to groundwater flow (i.e. tight compressive (non-tensional) fault creation) suggests that faults are largely self-sealing and unlikely to form conduits for preferential groundwater (or oil and gas) flow. This position is supported by pressure measurement and profile data as presented in

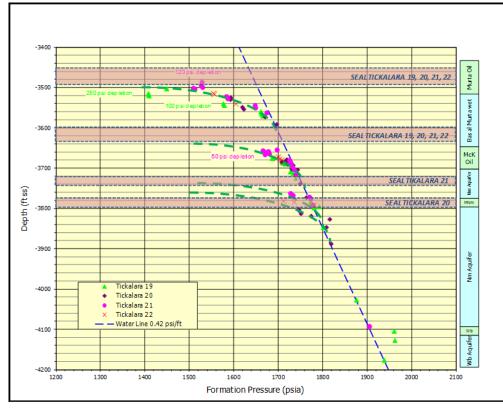



Figure 22 and Figure 23.

## 5.4 Hydraulic Parameters

A review of the hydraulic parameters for the formations in the study area has been undertaken and is summarised in Table 5.

| Basin             | Formation                                                                            | Hydraulic Con | Porosity |            |
|-------------------|--------------------------------------------------------------------------------------|---------------|----------|------------|
| Dasiii            |                                                                                      | Min           | Мах      | (fraction) |
|                   | Quaternary and Tertiary Alluvium                                                     | -             | -        | -          |
|                   | Winton Formation                                                                     | -             | -        | -          |
| Eromanga<br>Basin | Mackunda Formation<br>Alluru Mudstone<br>Toolebuc Formation<br>Wallumbilla Formation | -             | -        | -          |
|                   | Cana-Owie Formation                                                                  | -             | -        | -          |

| Pagin           | Formation                                                                | Hydraulic C              | Hydraulic Conductivity (m/d) |                                     |
|-----------------|--------------------------------------------------------------------------|--------------------------|------------------------------|-------------------------------------|
| Basin           | Formation                                                                | Min                      | Мах                          | (fraction)                          |
|                 | Hooray Sandstone                                                         | 4.3x10 <sup>-4</sup>     | 4.3x10 <sup>-1</sup>         | -                                   |
|                 | Westbourne Formation, Adori<br>Sandstone and Birkhead<br>Formation       | 8.0x10 <sup>-7 [2]</sup> | 2.5x10 <sup>-4 [2]</sup>     | 0.2 [2]                             |
|                 | Hutton Sandstone                                                         | 3.5x10⁻¹                 | 9.8x10 <sup>-3</sup>         |                                     |
|                 | Poolowanna Formation                                                     | 1x10 <sup>-7 [2]</sup>   | 3.7x10 <sup>-3 [2]</sup>     | 0.18 [2]                            |
|                 | Tinchoo / Arrabury Formations                                            |                          |                              |                                     |
| Cooper<br>Basin | Toolachee Formation                                                      | 2.0x10 <sup>-3 [1]</sup> | 4.3x10 <sup>-3</sup>         | 0.15<br>0.08 to 0.12 <sup>[3]</sup> |
|                 | Daralingie, Roseneath Shale,<br>Epsilon and Murteree Shale<br>Formations | -                        | -                            | -                                   |
|                 | Patchawarra Formation                                                    | 3.3x10 <sup>-4 [1]</sup> | 3.5x10 <sup>-3 [1]</sup>     | 0.13<br>0.08 to 0.12 <sup>[3]</sup> |

[1] Gov. of South Australia, Primary Industries and Resources, SA. Petroleum and Geothermal in South Australia – Cooper Basin, 2009.

[2] Alexander, E.M., Reservoirs and Seals of the Eromanga Basin (undated). [3] Santos, 2011.

## 5.5 Groundwater Level Variations

A network of groundwater monitoring bores was selected by the QLD government to monitor groundwater pressures over the whole of the GAB (see Figure 19). Twenty six (26) groundwater monitoring locations are located within the study area, the majority of which target Eromanga Basin GAB aquifers. Although water level data is available from 1974 to 2011, records are limited and the quality of the data cannot be substantiated. Hydrographs for the representative bores are presented in Figure 20 and have been selected based on their proximity to Santos tenements and the number of data points available for review.

It is noted that there is no current water level information available for these bores in the DNRM database.

There are no Santos owned regional groundwater monitoring bores in the study area.

| RN    | Latitude    | Longitude   | Formation*            |
|-------|-------------|-------------|-----------------------|
| 326   | -27.227627  | 144.3736947 | Coreena Member        |
| 358   | -26.6693889 | 143.2727374 | Hooray Sandstone      |
| 3770  | -25.845405  | 144.1222963 | Hooray Sandstone      |
| 5994  | -28.54135   | 144.33206   | Cadna-owie Formation  |
| 12900 | -28.3065933 | 143.9151356 | Hooray Sandstone      |
| 13488 | -28.6094707 | 143.3081558 | Wallumbilla Formation |
| 15286 | -28.6813277 | 143.9381618 | Cadna-owie Formation  |
| 16768 | -27.4510425 | 141.0574634 | Hutton Sandstone      |
| 17428 | -28.2743291 | 144.1420228 | Hooray Sandstone      |

#### Table 6. GAB Monitoring Network - Target Aquifers

| RN      | Latitude     | Longitude    | Formation*            |
|---------|--------------|--------------|-----------------------|
| 18144   | -28.3921154  | 144.3032971  | Wallumbilla Formation |
| 22945   | -25.4831149  | 143.409366   | Hooray Sandstone      |
| 23233   | -25.7300197  | 143.5999248  | Hooray Sandstone      |
| 23349   | -27.9054058  | 143.3229819  | Hooray Sandstone      |
| 23569   | -27.7188708  | 142.5648591  | Hooray Sandstone      |
| 50503   | -27.2872927  | 143.4556593  | Hooray Sandstone      |
| 50623   | -27.274913   | 142.9318421  | Hooray Sandstone      |
| 8 bores | Refer to map | Refer to map | unknown               |

\*Target formation either provided in the DERM groundwater database or inferred from the DERM database information.

The water levels presented in Figure 20 have been converted from calculated static head (as reported on the Bureau of Meteorology Groundwater Information website) to m AHD (Australian Height Datum). In general, water levels recorded in sub-artesian bores are reported as the standing water however, in artesian bores temperature and depressurisation must be taken into consideration to determine the actual static head or standing water level.

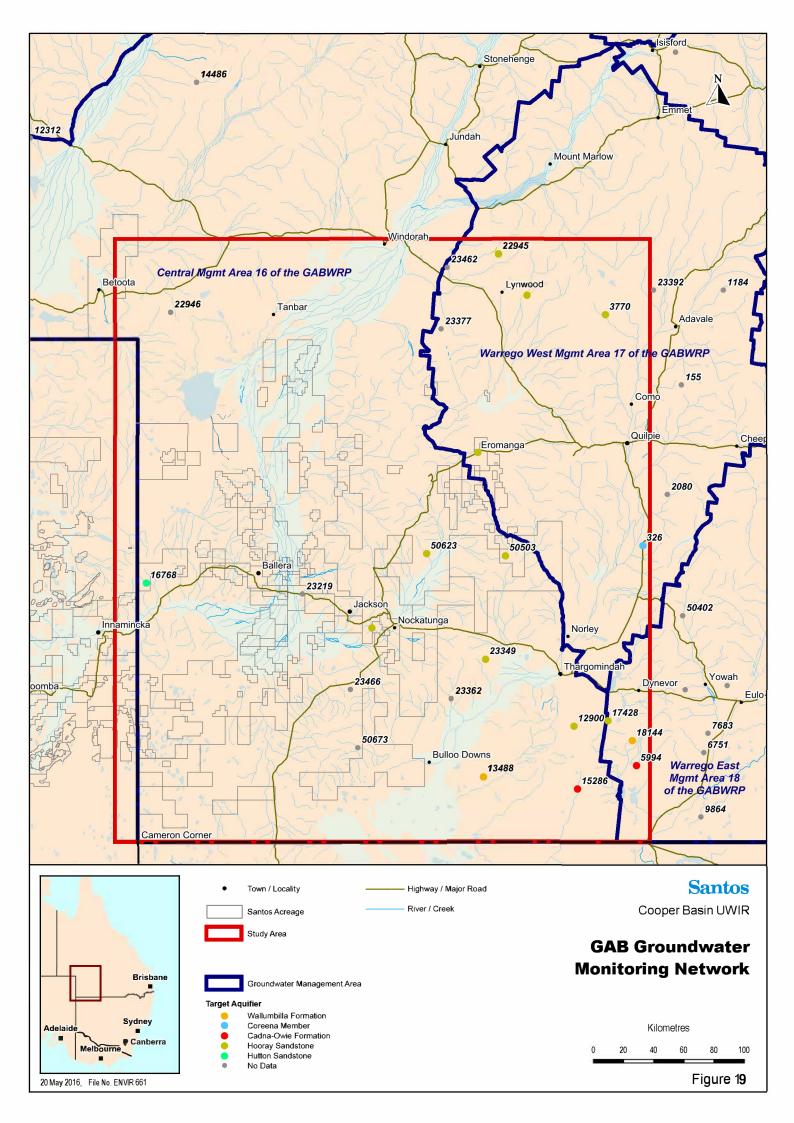
Groundwater levels for the Hutton and Hooray Sandstones and the Cadna-Owie and Wallumbiila Formations are presented as Figure 20. The monitoring data available is sporadic and seasonal trends cannot be interpreted.

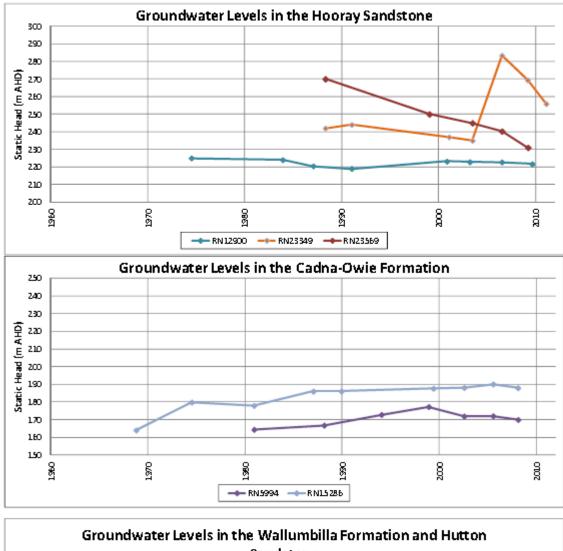
Water levels for the Hooray Sandstone show an overall decreasing trend however, from 1991 to 2009 show an increase in standing water level.

Water levels in the Cadna-Owie Formation show an overall increase in standing water level from the 1960's through to 2012.

Standing water levels in the Wullumbilla Formation show a small (8m) increase in trend from 1981 to 2008. However, the most recent data point, collected in 2011, indicates a decrease in standing water level of 26m. No additional data is available and therefore an assessment of any changes in long term trends cannot be made.

Groundwater pressure and water level trends is presented in the 2018 Annual Groundwater Monitoring Report (Appendix B).


## 5.6 Aquifer Recharge and Discharge


Primary recharge of the GAB aquifers occurs through uptake at the boundary of the system (Figure 21). Recharge via infiltration through overlying formations is limited to the upper GAB formations and is considered only a minor recharge mechanism.

In general, groundwater flow in the GAB is towards the low-lying areas of Central Australia. From the eastern margin of the basin, groundwater flows are predominantly to the west, south and southwest. From the Western Australian recharge beds, flow is generally towards the east (Figure 21).

Naturally occurring discharge areas in the GAB generally manifest as springs, leakage to alluvium aquifers (Tertiary-Recent), and discharge to inland lakes. In the study area there are no identified GDEs (Section 4.3.8) and no inland lakes.

The primary discharge mechanism for GAB water within the study area is anthropogenic water production. Oil and gas operations, and local community extract groundwater for industrial and domestic use. Artificial recharge of water occurs where flooding techniques are used in associated with oil production such as enhanced oil recovery (Appendix A – Section 4.4.1).





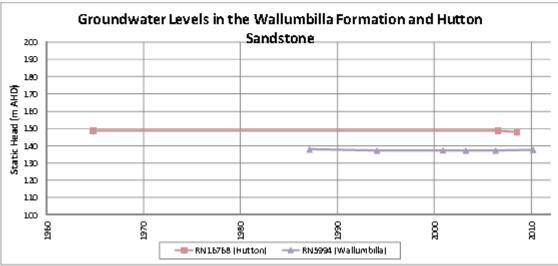



Figure 20. GAB Monitoring Bore Hydrographs (bases on data available in the DERM groundwater database).

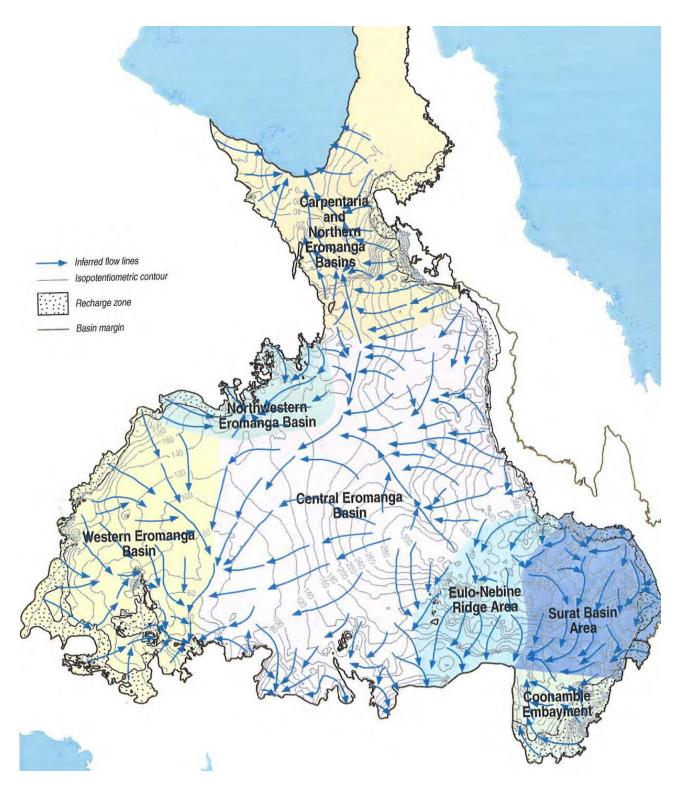



Figure 21. GAB Regional Groundwater Flow and Recharge Intake Beds (BRS, 2000)

## 5.7 Groundwater Quality

#### 5.7.1 Data Quality Assessment

The groundwater chemistry data available within the study area was collected between 1950 and 2012 (BOM Groundwater website) however, the quality of the data cannot be verified.

## 5.7.2 Water Quality Description

#### **Physical Parameters**

Assessment of groundwater quality included analysis of pH, TDS and major ion chemistry. Groundwater classification in terms of pH is presented in Table 7.

#### Table 7. Groundwater pH

| Range    | Description       |
|----------|-------------------|
| pH < 5   | Acid              |
| рН 5 - 7 | Slightly Acid     |
| рН 7     | Neutral           |
| рН 7 - 9 | Slightly Alkaline |
| pH >9    | Alkaline          |

TDS and electrical conductivity (EC) are measures of the dissolved salt content in water. TDS is reported as a concentration (in mg/L) and is either measured by evaporating a known volume of water and weighing the residual solids, or calculated by adding the major ion concentrations.

A range of salinity classifications (based on TDS concentration) have been published in literature. Classifications are generally based on beneficial use applications (irrigation or livestock watering) and do not define the full range of TDS found in natural waters (e.g. seawater or brines). The water salinity classification adopted for this study is presented in Table 8, as adopted from Fetter (1994). A further division of brackish water - slightly brackish and brackish (USDA, 2007) is also presented.

| Water type        | TDS (mg/L)        |
|-------------------|-------------------|
| Fresh             | < 1,000           |
| Slightly brackish | 1,000 to 3,000    |
| Brackish          | 3,000 to 10,000   |
| Saline            | 10,000 to 100,000 |
| Brine             | > 100,000         |

EC is a measure of the conductance of a liquid and is reported in microSiemens per centimetre ( $\mu$ S/cm) at 25°C. There is a linear relationship between dissolved salt load and EC values for water samples. In general, EC is a salinity measurement taken in the field, and TDS is reported following laboratory analysis of a groundwater sample.

## 5.8 Observed Reservoir Pressure Data

Formation pressure data is collected by Santos during drilling operations by means of:

Drill stem test (DST).

Repeat formation tester (RFT).

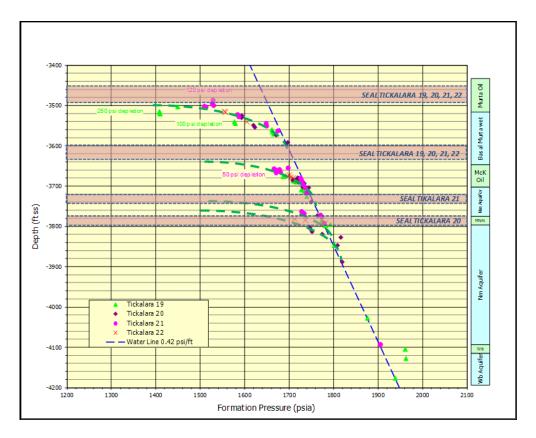
Formation micro tester (FMT).

Pressure testing is undertaken to assess the likely thickness of the oil or gas column found at any particular depth. This is achieved by comparing the pressure in the hydrocarbon-bearing zone with the expected water pressure, predicted by the water pressure-depth line (Figure 17 and Figure 18).

Models for predicting the influence of gas and oil, and associated water production at depth requires data on the pressure transmissibility of the strata that separates the target formations (referred to as seals). In SWQ the following for seals have been identified:

Seals between the Glendower and Winton aquifers.

Seals between the Murta, Namur, (Hooray) and Hutton Sandstone, from which oil is produced.


Numerous Santos wells have been subject to pressure measurements in the Cadna-Owie to establish water pressure-depth lines. This data can be used to evaluate if depletion from underlying hydrocarbon production zones has influenced the aquifers used for water supply. If no depletion is observed in the Cadna-Owie Formation, then production is assumed not to have had an influence on the overlying aquifers.

Where groundwater has been abstracted from the same aquifers as those associated with hydrocarbon production, observed pressure data may provide a direct indication of the groundwater pressure in that aquifer and aquitard. The extrapolation of the water pressure gradient to the surface provides an indication of the level to which water will now rise compared to what it may have been in the past.

Interrogation of historical pressure data, provides an opportunity to evaluate potential reductions in groundwater level. It should be noted however, that results are considered to reflect a combined influence of water resource abstraction and cumulative impact from the hydrocarbon industries.

Two examples of pressure data versus depth for the Tickalara and Iliad Fields are presented in Figure 19 and Figure 20.

The figures show pressure depletion below the predicted water pressure line (blue dashed line that increases in pressure with increasing depth) confined to each target formation (shown as yellow layers) by the presence of an overlying aquitard (seal bed, shown as brown layers).



UWIR - Santos Cooper Basin Oil and Gas Fields, February 2020

Figure 22. Observed Tickalara Oil Field Pressure with Depth Plots

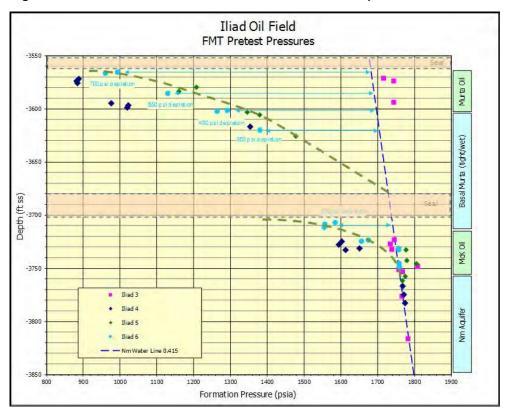
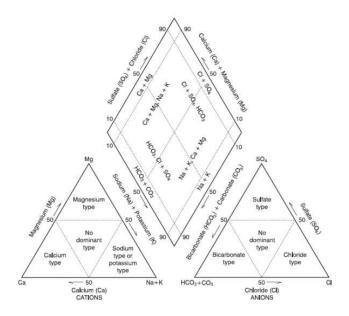



Figure 23. Observed Iliad Field Pressure with Depth Plots


## Major Ion Chemistry

Evaluation of groundwater anions and cations can provide an indication as to the source of a water (i.e. from which aquifer formation it comes) and the potential for interaction between different aquifer formations (i.e. communication or mixing of waters due to recharge or discharge).

One of the most common methods of comparing the ionic composition of groundwater samples is to use a Piper diagram. Piper diagrams provide a graphical representation of the chemistry of a water sample and allow for classification based on the relative major ion composition.

## Piper Diagram

Cation and anion concentrations for each groundwater sample are converted to milliequivalents per litre (meq/L) and plotted as percentages of their respective totals in two triangles (see Figure 24). The cation and anion relative percentages in each triangle are then projected into a quadrilateral polygon that describes the water type.



#### Figure 24. Classification of Hydrochemical Facies using Piper Plot

#### 5.8.1 Groundwater Quality Data in the Study Area

#### Available Data

Water quality data for groundwater bores located within the study area was extracted from the DERM groundwater database (494 samples in total). Using this information, groundwater has been assigned to the following aquifer formations:

Tertiary sediments (10 samples). Glendower Formation (31 samples). Winton Formation (160 samples). Mackunda Formation (16 samples). Alluru Mudstone (7 samples). Wallumbilla Formation (97 samples). Cadna-owie Formation (20 samples). Hooray Sandstone (147 samples). Adori Sandstone (1 sample).

Hutton Sandstone (5 samples).

Groundwater pH values in the study area ranged from 6.2 to 9.9 (slightly acidic to alkaline). The slightly acidic pH (6.2) was associated with groundwater from the *Winton Formation* aquifer and the most alkaline sample was collected from the *Wallumbilla Formation*. For the majority of reported values, the pH ranged between 7.5 and 8.5 (slightly acidic to slightly alkaline).

Evaluation of reported TDS concentrations indicate that majority of groundwater is slightly brackish (TDS<3,000 mg/L). Some samples from Winton Formation, Wallumbilla Formation, Glendower Formation and Hutton Sandstone are classified as brackish with TDS concentrations ranging 3,000 to 10,000 mg/L. The most saline sample was collected from the *Winton Formation* aquifer.

## Water Types of the Study Area Formations

## As presented in

Figure 25 and Figure 26, the dominant ions in groundwater samples collected from within the study area are sodium, bicarbonate and chloride. The corresponding water types can be described as either sodium-bicarbonate or sodium-bicarbonate-chloride. Groundwater from the Winton Formation, Wallumbilla Formation, Hooray Sandstone and Tertiary Sediments/Glendower Formation in general have higher proportion of sodium and magnesium.

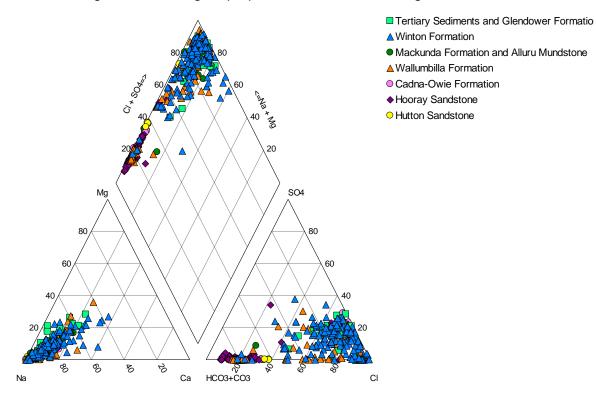



Figure 25. Piper Diagram – Groundwater samples collected within study area.

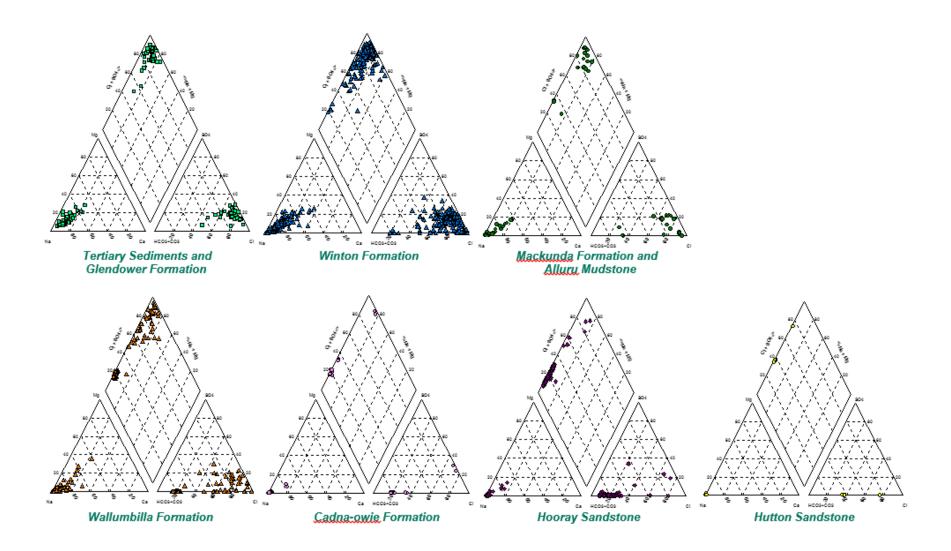
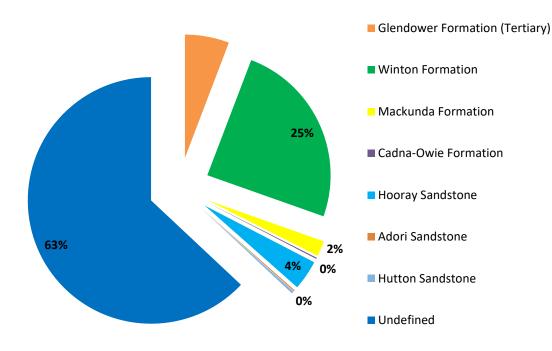



Figure 26. Piper Diagrams of Individual Formations within the Study Area (Golder 2013) Groundwater Use (other than Produced Water)

## 5.9 Groundwater Use (other than Produced Water)


The suitability of groundwater for different uses (potable, livestock, industrial) is largely dependent on aesthetics (taste) including, but not limited to pH and salinity. Groundwater for potable use generally has a pH value between 6.5 and 8.5 and a TDS value of <500mg/L (however TDS values of up to 1,000 mg/L TDS are tolerable). Groundwater suitable for livestock watering depends on the type of livestock (i.e. beef cattle verses sheep) and the length of time livestock will be exposed the water.

In the study area, groundwater is used primarily for stock and domestic use (not limited to potable) and some town water supply bores (municipal bores licenced with the Department of Natural Resource Management) have also been identified for the townships of Eromanga and Thargomindah.

No bores are registered for the Ballera and Jackson production facilities, however it is noted that Santos owns 104 water production bores.

Groundwater is sourced primarily from Tertiary and the upper GAB formations in the Eromanga Basin. Figure 27 presents a graphical representation of the distribution of groundwater sources over the study area.

The geographical distribution of groundwater sources for private bores and Santos bores is provided on Figure 28.



#### Figure 27. Groundwater Sources for Usage in the Study Area

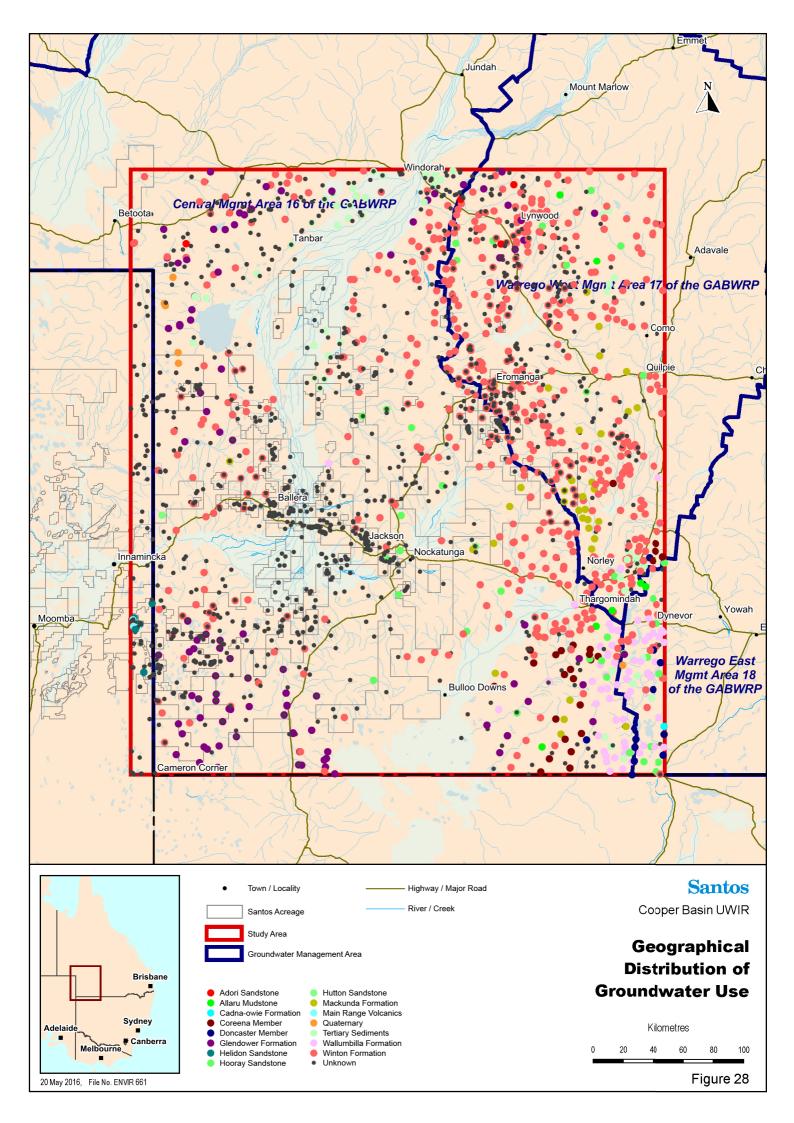
Note: Figure 27 was generated using the data available in the DERM groundwater database. A total of 138 supply bores are licensed in the study area, and data sets provided information on either the

type of pump infrastructure in place or if a bore is artesian. Where this information is available, is has been assumed that the groundwater is used by the community for various types of supply. It is noted that the information available assigns 63% of the bores in use to the Hooray Sandstone aquifer.

It is assumed that the properties in the study area have access to their own water supply through licenced stock and domestic bores. There is no groundwater entitlement associated with these licences however it is understood the bores extract a maximum of 5 ML/year.

Santos' water production, associated with oil and gas operations (as described in Section 6.3), is primarily from the Hutton Sandstone (82% of average annual production), the Birkhead Formation (7.8%) and the oil reservoirs of the Hooray Sandstone (8.6%).

The total volumetric water entitlement in the study area is 2,425ML/yr. Seven (7) urban and town supply bores are licenced however, it is noted that four of the licensed bores (totalling 900ML) were listed as "Lapsed/Never Constructed" and/or expired. The total nominal allowance for stock and domestic bores is 635ML/yr for 127 bores. The total extraction volume for the 134 licensed bores listed in the QLD Government website is therefore 1,525ML/yr (excluding lapsed/non-constructed bores entitlements.


Table 9 provides a summary of the estimated extraction from bores in the study area.

| RN                  | Bore Status                   | Purpose                             | Entitlement (ML/yr) |
|---------------------|-------------------------------|-------------------------------------|---------------------|
| Various (127 Bores) | Installed                     | Stock and Domestic<br>(5ML/yr each) | 635                 |
| 358                 | Installed                     | Stock, Urban                        | 70                  |
| 390 n               | Installed                     | Urban                               | 600                 |
| 50887               | Installed                     | Domestic Supply, Stock,<br>Urban    | 220                 |
| 100219              | Lapsed<br>(Never Constructed) | Irrigation                          | 100                 |
| 116117              | Lapsed<br>(Never Constructed) | Urban                               | -                   |
| 116117              | Lapsed<br>(Never Constructed) | Urban                               | 600                 |
| 116117              | Lapsed<br>(Never Constructed) | Town Water Supply                   | 200                 |
| TOTAL               |                               |                                     | 2,425               |

#### Table 9. Estimated Extraction from Bores in the Study Area

Note: Extraction data in italics have not been included in the total estimated water extraction for the study area (Lapsed/Never)

Figure 28 shows the geographical distribution of known bores in the study area. Bores with known target formations shown in Figure 28 are tabulated in Appendix E of Appendix A.



# 6.0 Santos SWQ Operations

### 6.1 Gas Extraction

#### 6.1.1 Areas of Production and Target Beds

Gas is extracted primarily from the formations of the Cooper Basin. Details on the geology of the Cooper Basin is presented in Section 4.3.4. The major gas reservoirs as include:

The Toolachee Formation.

The Epsilon Formation.

The Patchawarra Formation.

These reservoirs are stacked porous sandstone formations separated by finer grained siltstones and mudstone formations (refer to detailed stratigraphy in Figure 29. The latter are typically referred to as the seal or cap rock beds where they are located over the reservoirs.

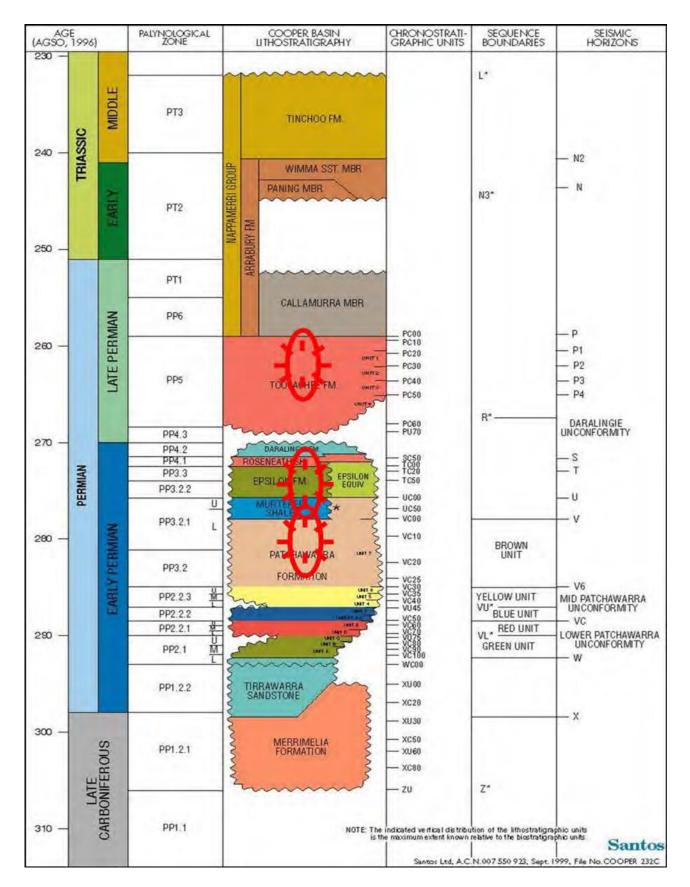
There are approximately 190 producing gas wells within Santos SWQ tenements.

The deep geological setting of the gas targets prohibits access by domestic and municipal users.

### 6.2 Oil Production

#### 6.2.1 Areas of Production and Target Beds

Oil is extracted primarily from the GAB formations within the Eromanga Basin at depth averaging 1,000m below ground level. Details on the geology of the Cooper Basin is presented in Section 4.3.4. The major oil reservoirs include:


- The Murta Formation and the Namur Formation: these are the upper and lower formations of the Hooray Sandstone. Oil reservoirs are not frequent in the Namur Formation (a sandstone) but more abundant in the Murta Formation (interbedded mudstones, siltstones and fine grained sandstones).
- The Birkhead Formation: the Birkhead formations are interbedded siltstone, mudstone and fine sandstone. Oil reservoirs are present in the basal Birkhead mostly, scattered oil reservoirs are found in the middle Birkhead Formation.

The Hutton Sandstone: this is the main extraction unit for oil over the Santos tenements in SWQ.

Minor oil reservoirs are also found in other formations:

- The Wyandra Sandstone Member: this is the upper formation of the Cadna-Owie Formation, oil occurrence is not frequent
- The Westbourne Formation and the Adori Sandstone.

Figure 30 summarises the occurrence of oil reservoir through the stratigraphic profile.



#### UWIR – Santos Cooper Basin Oil and Gas Fields, February 2020

Figure 29. Gas Reservoirs Stratigraphical Distribution

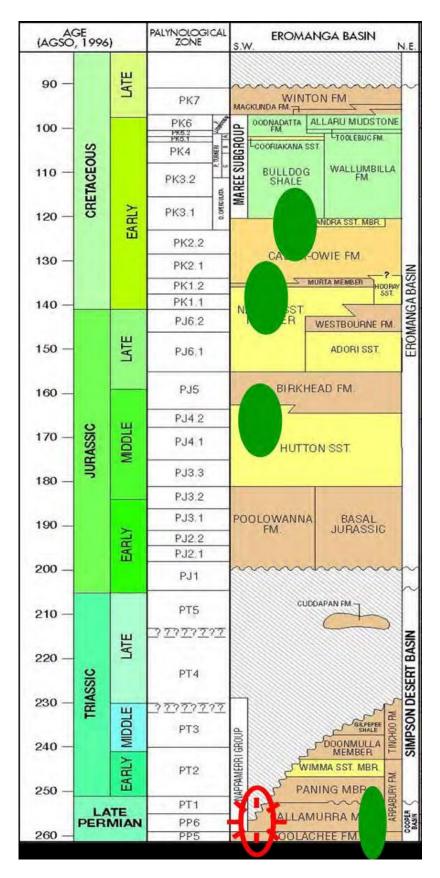



Figure 30. Oil Reservoirs Stratigraphic Distribution

## 6.3 **Produced Water Production**

Water is produced as a co-product of oil and gas operations. The volume of water generated depends on a number of factors including (but not limited to) the type of well (i.e oil well versus gas well), the hydrocarbon formation and the age of the well. By comparison, gas wells generate smaller volumes of water than oil wells.

Santos currently (2019) operate 250 oil wells and 212 gas wells and in the study area.

### 6.4 Produced Water Monitoring Methodology

#### 6.4.1 Produced Water Monitoring – Gas

The volume of water co-produced as part of Santos' gas operations is estimated based on the average water content of the gas produced.

The certainty around the volume of water produced as a result of gas production is lower than that for oil. However, given that gas production accounts for only 3% (approximately) of the total volume of water produced as a result of Santos' SWQ Cooper and Eromanga Basin operations, small variations in estimated versus actual produced volumes will not have a material impact on the overall drawdown calculations.

#### 6.4.2 Produced Water Monitoring – Oil

The methodology for monitoring water produced as a result of oil operations includes:

Individual well water-cut meters (Red-eye or DNOC).

Wellhead water-cut samples.

Tank dips.

Monthly allocation to any given well is based on:

- Estimation of the theoretical monthly oil and water production by well (using latest individual well test rates multiplied by the number of days the well was producing (i.e. uptime)).
- Summing the theoretical volume of a well or wells that collect into some fixed, known gathering point to give the monthly total theoretical oil & water volumes.
- Comparing theoretical volumes to actual monthly oil and water production at a fixed, known gathering point (where the monthly actual oil and water production is based on measurement of trucked oil loads, or oil piped through a fiscal metering point).
- Allocating (pro-rating) the total theoretical volumes to the individual wells based on the ratio of "actual total"/"theoretical total".

Santos' monitoring methodology for produced water (i.e. the approximately 5GL/year abstracted through oil production) is a reasonable approximation of actual volumes based on the premise that the total volume for each well is recorded at 2 points i.e. a known gathering point and a fiscal metering point.

### 6.4.3 Methodology for Predicting Water Extraction

Santos does not estimate future produced water extraction for oil or gas activities in the Cooper and Eromanga Basins for operational planning purposes.

For the purposes of predictive modelling of the Eromanga and Cooper Basins however, Santos has used historical extraction data to estimate future extraction rates, taking into account an allowance for planned new wells within existing petroleum leases and also development of new leases. The history of activities in the Cooper and Eromanga Basins demonstrates an overall declining trend in extraction rates. Assuming water production rates do not decline is a conservative approach for determining depressurisation impact to groundwater because such extraction rates are likely to be higher than actual extraction rates in the future.

The methods used to determine these rates for both the IAA and Long Term Affected Along term (LTAA) for both the Eromanga and Cooper Basins are detailed below. Figure 31 presents the Cooper and Eromanga Basin water production rates over time. Note that annual production is shown on the basis of model layers (refer Section 7.0).

Water extraction rates were reported in Mega-Litres (ML) and sub-divided based on model layers presented in Section 7.0. The final volume for the year was converted into cubic metres per day ( $m^{3}$ /day) and divided by the number of wells within the model domain to obtain a representative extraction rate for each extraction point.

#### Eromanga Basin

- For the purposes of IAA predictive modelling of the Eromanga Basin (i.e. extraction for the next 3 years), Santos has used extraction data from the last year of historical data (2019) to represent future extraction rates. The total 2019 annual water production rates were evenly distributed across the extraction points.
- For the purposes of LTAA predictive modelling of the Eromanga Basin, the long term extraction rates applied were calculated using the following approach:
  - The same extraction rate per well is assumed as for the IAA calculations;
  - The total number of wells is increased at existing petroleum leases according to Santos plans;
  - In addition, at planned new leases additional wells were incorporated in the model with the same rate.

#### **Cooper Basin**

- For the purposes of IAA predictive modelling of the Cooper Basin (i.e. extraction for the next 3 years), Santos has used extraction data from the last year of historical data (2019) to represent future extraction rates. The total 2019 annual water production rates were evenly distributed across the extraction points.
- For the purposes of LTAA predictive modelling of the Eromanga Basin (i.e. extraction for the next 20 years), the longterm extraction rates applied were calculated using the following approach.

The same extraction rate per well is assumed as for the IAA calculations;

The total number of wells is increased at existing petroleum leases according to Santos plans;

In addition, at planned new leases additional wells were incorporated in the model with the same rate.

#### UWIR - Santos Cooper Basin Oil and Gas Fields, February 2020

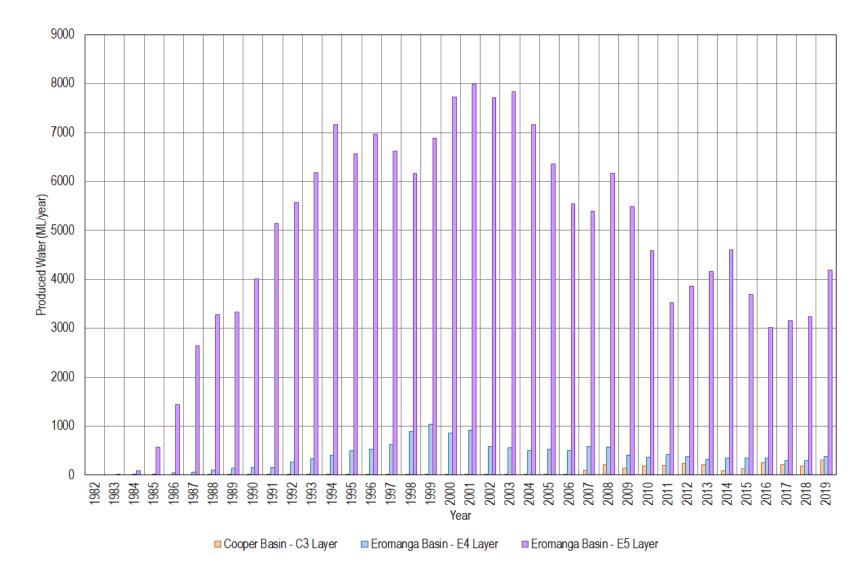



Figure 31. Variation over time of produced Water in Santos SWQ Oil and Gas Fields.

UNCONTROLLED IF PRINTED

# 7.0 Groundwater Impact Estimation

For the purposes of this UWIR, the 'affected area' in shallow alluvial aquifers is considered the areas where a drawdown of 2m is observed and in consolidated rock aquifers areas where a drawdown of greater than 5m is observed. Impacts to groundwater dependant ecosystems (GAB springs) is a calculated drawdown of 0.2 m directly beneath the spring.

# 7.1 Analytical Approach

Analytical groundwater modelling has been undertaken by independent consultants Golder Associates, to provide estimates of the decline in water level response to the extraction of coproduced water from the Cooper and Eromanga Basins. The model used to inform this UWIR is the model that used to develop the 2016 Santos UWIR, approved by DRNM in December 2016. No changes to the 2016 model framework were undertaken in this review period (2016-2019). The 2013 UWIR is attached to this report as Appendix A, since it documents the general geometry, parametrization and boundary conditions of the model.

As per the 2016 UWIR, Golder applied analytical modelling to represent the potential drawdown in the target hydrocarbon reservoirs and adjacent formations of the Cooper and Eromanga Basins for the 2019 review period. Drawdown estimates were made for both the immediate and long term to provide an indication of the magnitude of impact.

An analytical approach was considered appropriate based on the following:

- Depth of extraction: Santos extracts co-produced water from depths greater than 2,000m bgl in the Cooper Basin and for more than 90% of Eromanga Basin wells,1000m bgl. It is noted that most private bores in the Eromanga Basin target the upper (Quaternary and Tertiary) formations where economic hydrocarbons are not present.
- Stratigraphic settings: numerous confining beds separate the deeper target hydrocarbon bearing formations and the upper aquifers which are accessed primarily by private users for water supply.
- Geographic extent: Santos' SWQ operations cover an area in excess of 8,000km<sup>2</sup> and are classified as remote. The density of production activities (including water extraction) is therefore considered to be very low.
- Data availability: Based on the depth of extraction, stratigraphic setting and geographical extent of Santos' SWQ operations, the quality and quantity of data available is not suitable for numerical interpretation.

### 7.1.1 AnAqSim Analytical Software

The groundwater impact estimation was undertaken using the AnAqSim analytical solution (version 2019-1). Details on the AnAqSim modelling package are presented in Section 7.1.2 of the 2013 UWIR (Attachment A).

To evaluate the potential impact of extraction in the study area, analysis was divided into two separate calculation exercises:

- *Eromanga Basin*: containing the Early Jurassic to Late Cretaceous strata, namely the GAB aquifers.
- *Cooper Basin*: containing the Late Carboniferous, Permian and to Triassic strata, namely the older pre- GAB aquifers.

The model domains are presented in Table 25 and Table 26 of the 2013 UWIR attached to this report as Appendix A.

The division into two separate domains permitted the allocation of five layers in the Eromanga Basin, which was considered as a separate hydraulic system from the underlying Cooper Basin strata. Based on the thickness of the low permeability layers, and the small abstraction rate in the Cooper Basin, it was anticipated that impact beyond the top of the Tinchoo Formation (i.e. the top of the Cooper Basin) would not occur. Therefore, if no impact was predicted by the analysis at the top of the Cooper Basin, it is considered reasonable to omit this from the overlying Eromanga Basin calculations.

# 7.1.2 2020 Assumptions and Limitations

The assumptions and limitations associated with development of the 2013 and 2016 AnAqSim analytical model are presented in Section 7.1.3 of 2013 UWIR (Attachment A) and 7.1.2 of 2016 UWIR (see Appendix C).

The assumptions and limitations associated with the 2020 analytical modelling include:

Predictive simulation production rates were based on operational records and run in steady state, which is a conservative approach providing a maximum drawdown scenario for the groundwater impact estimation.

The number and location of extraction points representing production wells in the 2016 UWIR/AnAqSim model were changed in the 2020 model:

- Total annual extraction in 2019 was divided equally between all wells. All the active wells in the Santos data base were explicitly incorporated in the models.
- The 2020 UWIR AnAqSim models include 250 extraction points in the Eromanga Basin and 212 extraction points in the Cooper Basin.
- Given the resolution of the model, this approach was considered representative of the total extraction, both volumetrically and spatially. This was further refined for the immediately affected and long term calculations, as follows:
  - For the purposes of IAA predictive modelling of both the Eromanga and Coopers Basins, Santos has used extraction data from the last year of historical data (2019) to represent future extraction rates. These values are considered to be representative over the next three years. This was considered conservative as the actual extraction is likely to decline over this period.
  - For the purposes of LTAA predictive modelling of both the Eromanga and Cooper Basins, Santos applied extraction data for both basins that was calculated by taking into account an increase in the number of production wells in existing petroleum leases and

production from planned new petroleum leases. The number of additional wells is summarized in Table 10

| Basin    | Number of Existing<br>Wells | Number of Proposed<br>New Wells at Existing<br>PL`s | Number of Proposed<br>New Wells at New PL`s |
|----------|-----------------------------|-----------------------------------------------------|---------------------------------------------|
| Eromanga | 250                         | 287                                                 | 118                                         |
| Cooper   | 212                         | 348                                                 | 263                                         |

Table 10. Number of existing and additional wells in the long term affected area model

# 7.2 Groundwater Impact Calculation Input Parameters

The simplified geological layering used in the calculation for the Eromanga Basin and Cooper Basin is presented in Table 25 and Table 26 of the 2013 UWIR attached as Appendix A to this report. The simplified layering structure grouped similar adjacent strata together (where appropriate), to reduce the observed stratigraphy into no more than five (5) layers.

Input parameters were sourced from Santos records and historical reports, literature values and from Golder's experience in the area (as discussed in Section 5.4). The impact of the selected hydraulic property values was interrogated using a specified sensitivity analysis (Section 7.6 of Appendix A).

QLD Government groundwater level monitoring data including artesian pressure data (Section 5.5) was used to establish a representative initial groundwater levels for each model layer as well as observed pressure data from Santos wells.

### 7.2.1 Analytical Model Abstraction Rates

Details on the extraction rates applied to the study area model layers, and the proportion of extraction assigned to each field is detailed in Section 7.2.4 of the 2013 UWIR provided as Attachment A.

To summarise, the proportion of extraction from each field in the study area was assigned as follows based on the 2019 data set:

- *Eromanga Basin* Layer 4 (Cadna-Owie Formation and Hooray Sandstone): accounting for 7.7% of the total annual extraction.
- *Eromanga Basin* Layer 5 (Late to Early Jurassic (Westbourne Formation, Adori Sandstone, Birkhead Formation, Hutton Sandstone and Poolowanna Formation)): accounting for 85.9% of the total annual extraction.
- *Cooper Basin* Layer 3 (Early to Late Permian (Toolachee and Daralingie Formations, Roseneath Shale, Epsilon Formation, Murtree Shale and Patchwarra Formation)) accounting for 6.4% of the total annual extraction.

As mentioned in the 2013 and 2016 UWIR, abstraction from Layer 4 was assigned to the underlying Layer 5 to maintain numerical stability in the model and that assigning extraction in the base layer of the model provided additional numerical stability. Layer 5 was selected as the majority of extraction is likely to be sourced from these stratums. Concentrating extraction in this manner was considered suitable as drawdown was still able to propagate upwards through Layer 4 to the overlying layer.

# 7.2.2 Model Extent and Boundary Conditions

Details on the model extent, boundary conditions and model layers used to represent the study area and associated stratigraphy are presented in Sections 7.2.1 and 7.2.3 of the 2013 UWIR attached to this report (Appendix A). Figure 32 presents a graphical representation of the Eromanga Basin model extent and Figure 33 presents the Cooper Basin model extent.

# 7.3 Sensitivity Analysis

As noted in Section 7.1, the analytical model developed for the 2013 UWIR and approved by DRNM in July 2013 has been used to inform this UWIR. No changes to the 2013 model framework have been made in this review period and subsequently no sensitivity analysis undertaken as part of this UWIR. Details on the sensitivity analysis undertaken as part of the 2013 UWIR are presented in Section 7.6 of the report (Appendix A).

# 7.4 Water Production Volumes Used for the Analytical Modelling

Water extraction rates were reported in mega litres (ML) and sub-divided based on the geological formations and petroleum lease. The final volume for the year was converted into cubic metres per day (m<sup>3</sup>/day) and divided by the number of wells within the model domain to obtain a representative extraction rate for each extraction point.

- For the purposes of IAA predictive modelling of both the Eromanga and Coopers Basins, Santos has used extraction data from the last year of historical data (2019) to represent future extraction rates.
- For the purposes of LTAA predictive modelling of both the Eromanga and Coopers Basins, Santos applied the same extraction data as in case of IAA for both basins but considered additional new wells at existing petroleum leases and at new petroleum leases.

The rate of groundwater extraction in the analytical model is representative of a steady state solution. Extraction rates used in the modelling are provided in Table 11 and summarised as follows:

#### Eromanga Basin

- For the purposes of IAA predictive modelling for the Eromanga Basin an extraction rate of 49.92m<sup>3</sup>/day per well was used. This approach ensures that production rate per tenement is proportional to the number of existing wells on the tenements. Note this value per well is higher than used in the 2016 model due to the lower number of wells included in the model.
- For the purposes of LTAA predictive modelling for the Eromanga Basin the same extraction rate of 49.92m<sup>3</sup>/day per well was used. The flow rate to individual wells has been assigned in the following way:
  - For the existing petroleum leases, use the same number of wells in the model to represent water extraction (since we don't know the coordinates of the planned wells) as used in the IAA model and increase flow rate from that used in the IAA model in proportion with the number of new wells planned; and

- For the proposed new petroleum leases, add one well per lease (since we don't know the coordinates of planned wells) and use a flow rate proportional to the number of proposed wells.
- This approach ensures that the extraction rate per well remains 49.92m<sup>3</sup>/day and the total extraction rate per tenement matches the number of existing and proposed wells.

## Cooper Basin

- For the purposes of IAA predictive modelling of the Cooper Basin an extraction rate of 4.01m<sup>3</sup>/day per representative well.
- For the purposes of LTAA predictive modelling of the Cooper Basin the same extraction rate of 4.01m<sup>3</sup>/day per well. The methodology used was the same as for the Eromanga Basin model.

#### Table 11. Water Extraction Rates - 2020 UWIR Model

| Analytical Model            | Immediately Affected Area                                                                                                    | Long Term Affected Area                                                                                                       |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Cooper Basin <sup>1</sup>   | No. of representative wells = 212<br>Extraction per well = 4.01 m <sup>3</sup> /day/well<br>Total extraction = 310 ML/year   | No. of representative wells = 823<br>Extraction per well = 4.01 m <sup>3</sup> /day/well<br>Total extraction = 1205 ML/year   |
| Eromanga Basin <sup>2</sup> | No. of representative wells = 250<br>Extraction per well = 49.92 m <sup>3</sup> /day/well<br>Total extraction = 4560 ML/year | No. of representative wells = 655<br>Extraction per well = 49.92 m <sup>3</sup> /day/well<br>Total extraction = 11945 ML/year |

Notes:

1. Extraction from the C3 layer in the Cooper Basin model

2. Combined extraction from layers E4 and E5 in the Eromanga Basin model

### 7.4.2 Observed Groundwater Levels and Calibration Targets

Details of the analytical model calibration process are presented in Section 7.2.5 of the 2013 UWIR provided as Attachment A.

To summarise, hydrostatic pressure and groundwater levels in select, targeted oil or gas formations, in conjunction with data available in the DNRM groundwater database were used to calibrate the study area model. Calibration was undertaken on both model domains using observed groundwater levels and calculated groundwater levels in un-pumped conditions. The bottom flux and hydraulic conductivity values were altered until a satisfactory fit was achieved. A plot of modelled verses observed groundwater level for the Eromanga Basin is provided as Figure 40 of the 2013 UWIR attached as Appendix A.

The analytical model was not re-calibrated as part of the 2020 review period, as no changes to the boundary conditions, extent or domain were made.

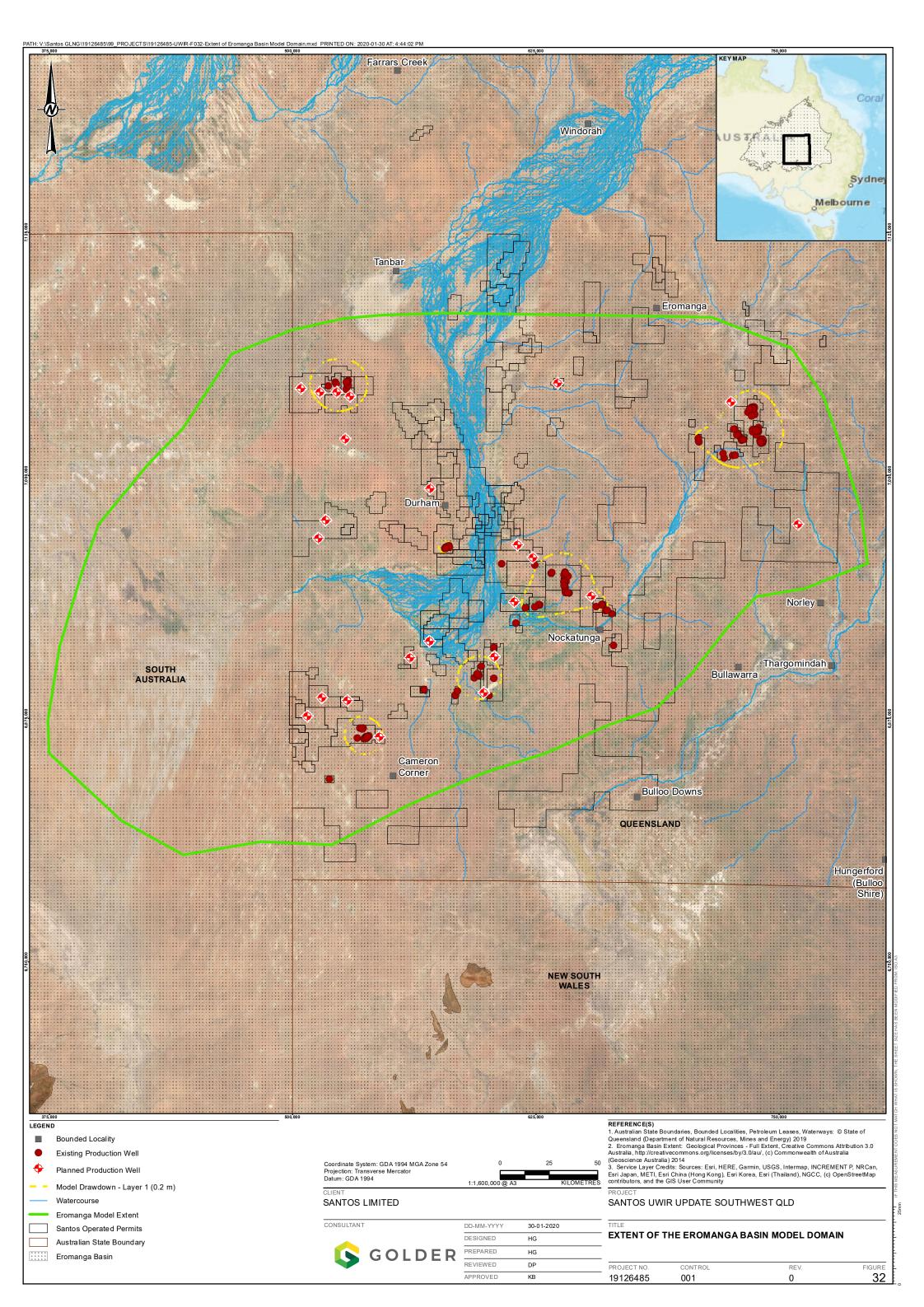
# 7.5 Calculated Impact in the Eromanga Basin

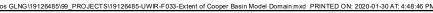
The 2020 model was run in steady state using updated extraction rates (2019) to provide a conservative, worst case scenario for the IAA and LTAA. The calculated drawdown for each layer is presented on Figure 34 to Figure 41.

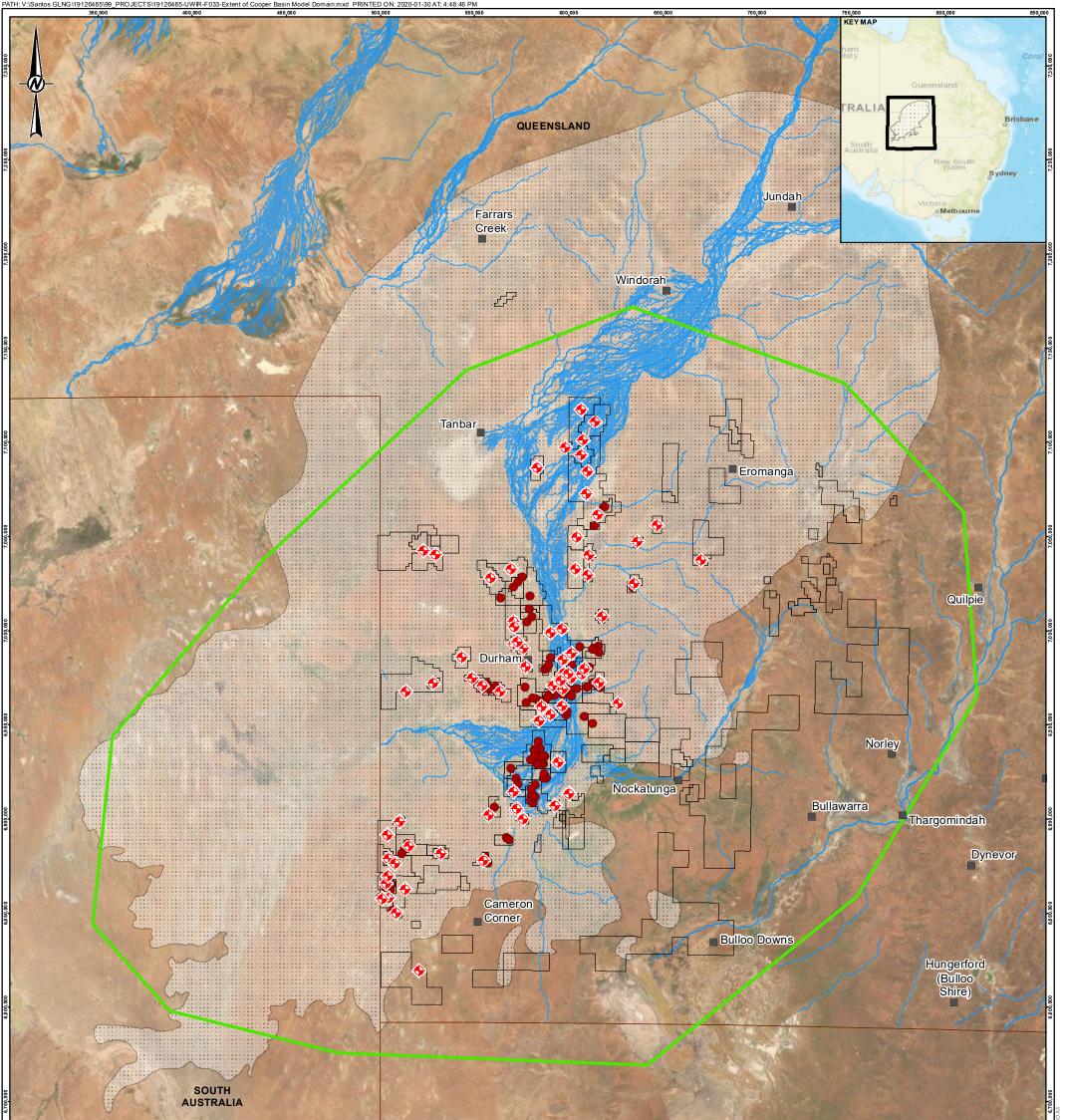
The maximum calculated drawdown in each layer along the cross sectional lines is presented in Table 12. The impacts associated with the predicted drawdown include:

- The maximum estimated drawdown in the IAA due to extraction from the Eromanga Basin in the Tertiary and Quaternary strata (Layer 2, this includes the Glendower and Winton Formations where they are confined) is less than 2m. The maximum estimated long term drawdown in the same units is less than 4m.
- A maximum drawdown of approximately 57m (IAA) and 115m (LAA) was estimated for the Cadna-Owie Formation and Hooray Sandstone. The computed 5m drawdown contour does not extend outside of Santos tenements.
- A maximum drawdown of 11m (IAA) and 21m (LAA) was estimated in Layer 3 of the model (representing the Mackunda Formation, Allura Mudstone, Toolebuc and Wallumbilla Formations). The computed 5m drawdown contour does not extend beyond Santos tenement boundaries.
- A maximum drawdown of approximately 182m (IAA) and 268m (LAA) was estimated for the Westbourne Formation, Adori Sandstone, Birkhead Formation, Hutton Sandstone and Poolowanna Formation of the Eromanga Basin. The calculated 5m drawdown contour line does not extend outside of Santos tenements; however, the drawdown radius of influence has increased from previous modelling and is likely the result of increased pumping rates.

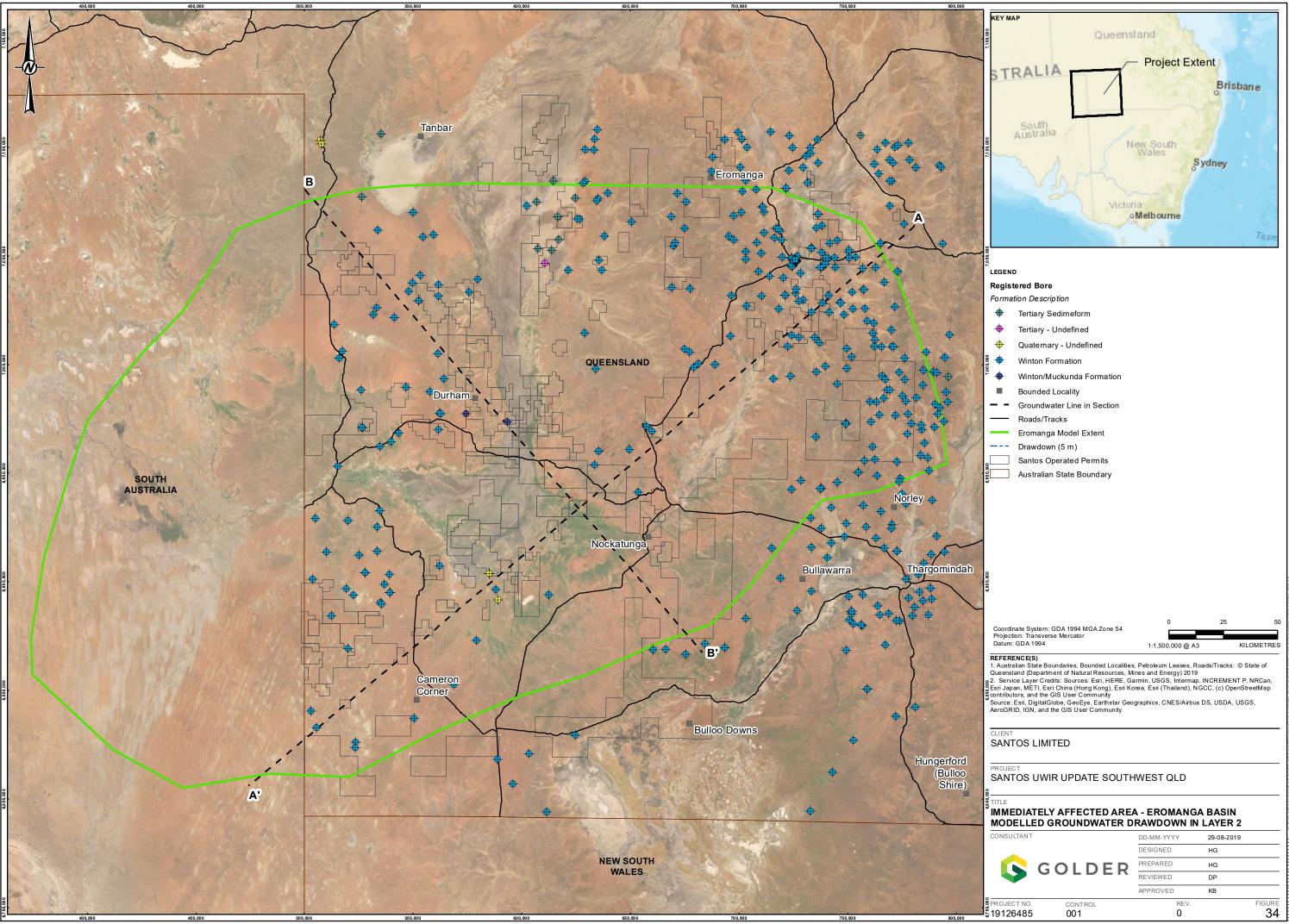
|              |                                                                                                | Maximum Drawdown in          | the Eromanga Basin (m)     |  |
|--------------|------------------------------------------------------------------------------------------------|------------------------------|----------------------------|--|
| Layer Number | Layer Description                                                                              | Immediately Affected<br>Area | Long Term Affected<br>Area |  |
| 2            | Quaternary, Tertiary and Winton Formation                                                      | 2                            | 4                          |  |
| 3            | Alluru, Toolebuc and Wallumbilla Formations                                                    | 11                           | 21                         |  |
| 4            | Cadna-owie Formation<br>and Hooray Sandstone                                                   | 57                           | 115                        |  |
| 5            | Westbourne, Adori and<br>Birkhead Formations /<br>Hutton Sandstone and<br>Poolowanna Formation | 182                          | 268                        |  |

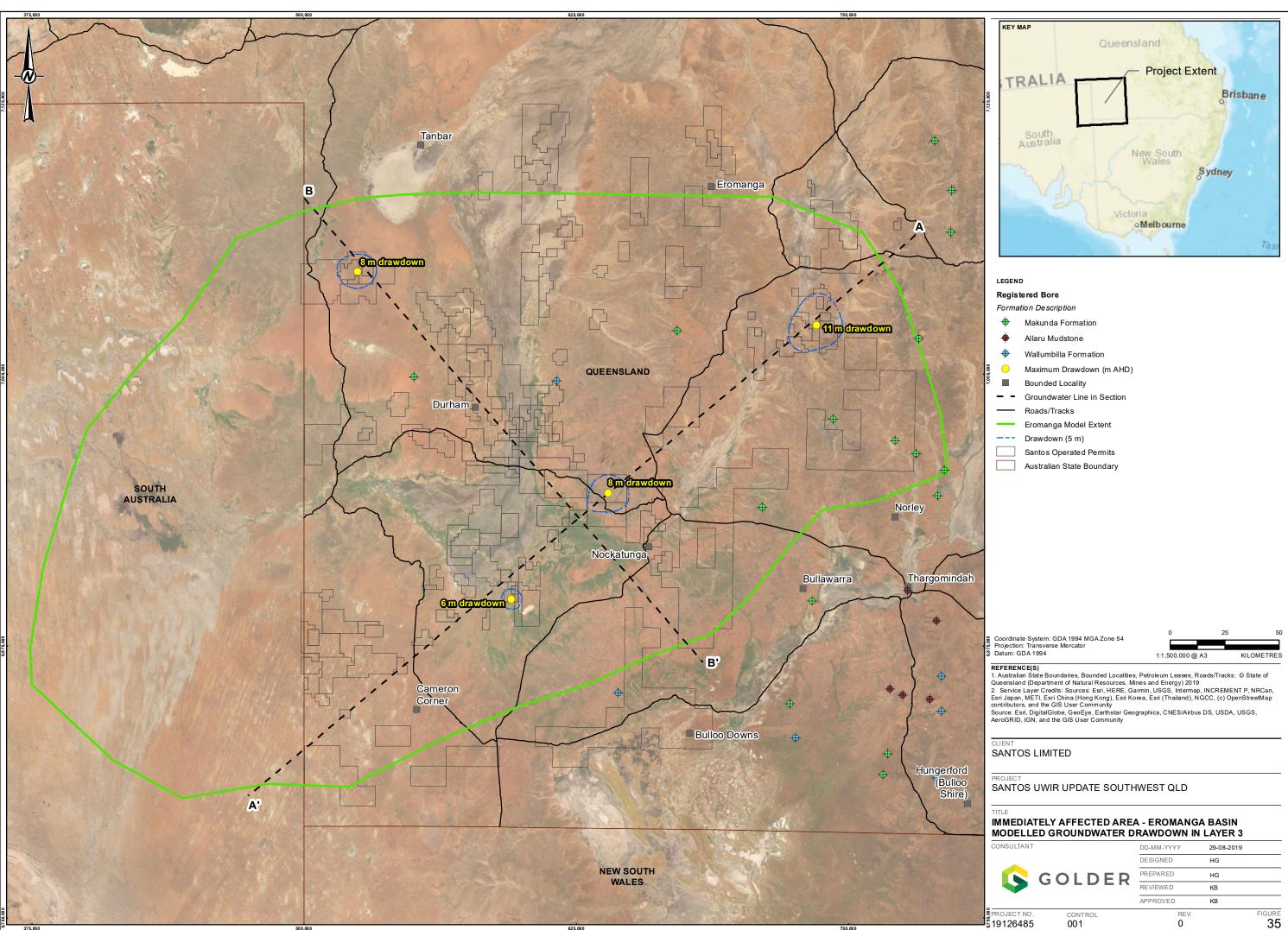

Table 12. Calculated maximum drawdown along lines of section – Eromanga Basin


Groundwater level and pressure model outputs indicate that even under steady state conditions, limited drawdown or pressure decline propagation (from artesian aquifers) into Layer 2 has occurred. It is expected that actual drawdown will be less than the calculated drawdown based on:


intermittent and time-limited operation of the extraction wells.

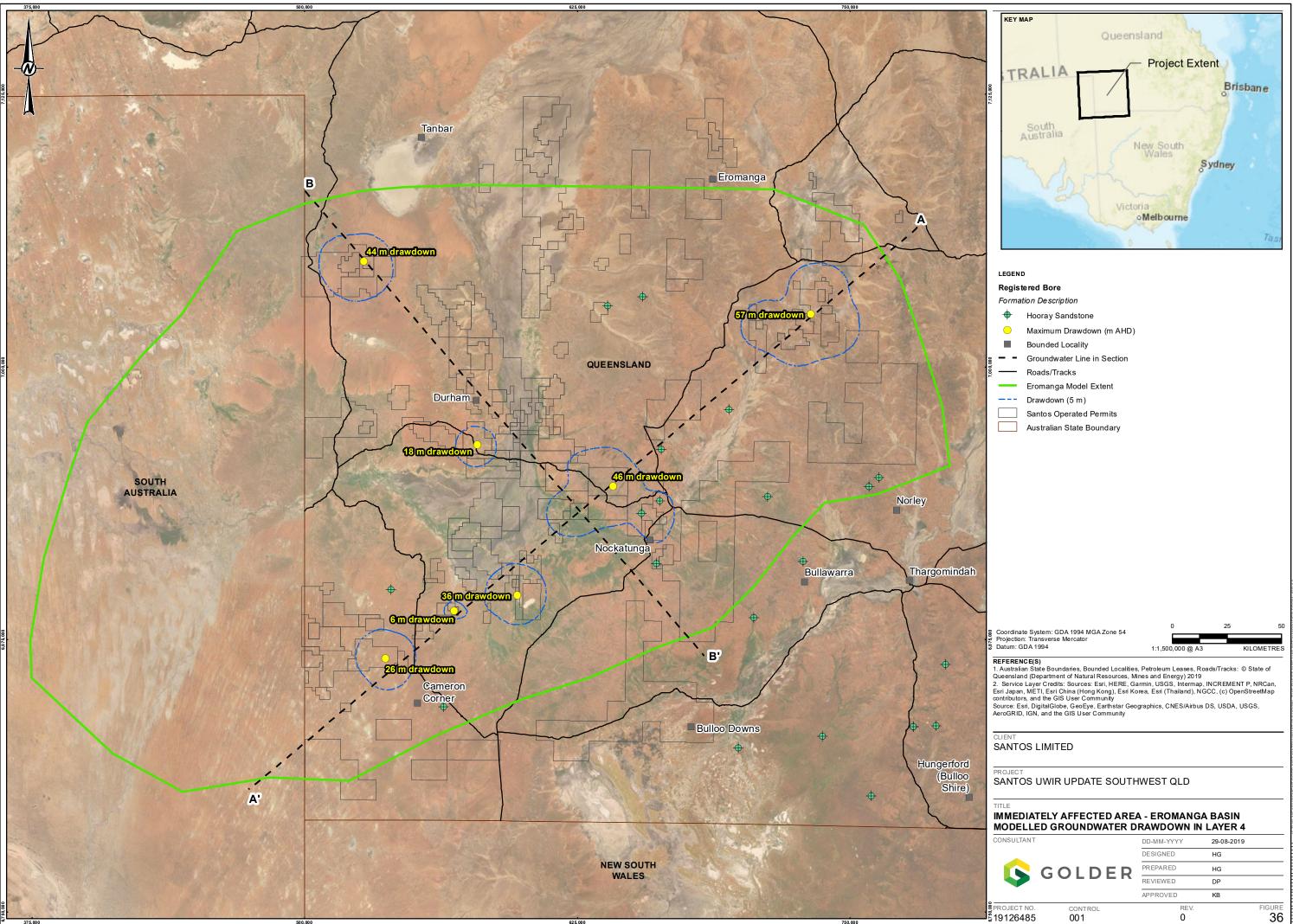
Conservative assessment of flow rate assigned to each well.

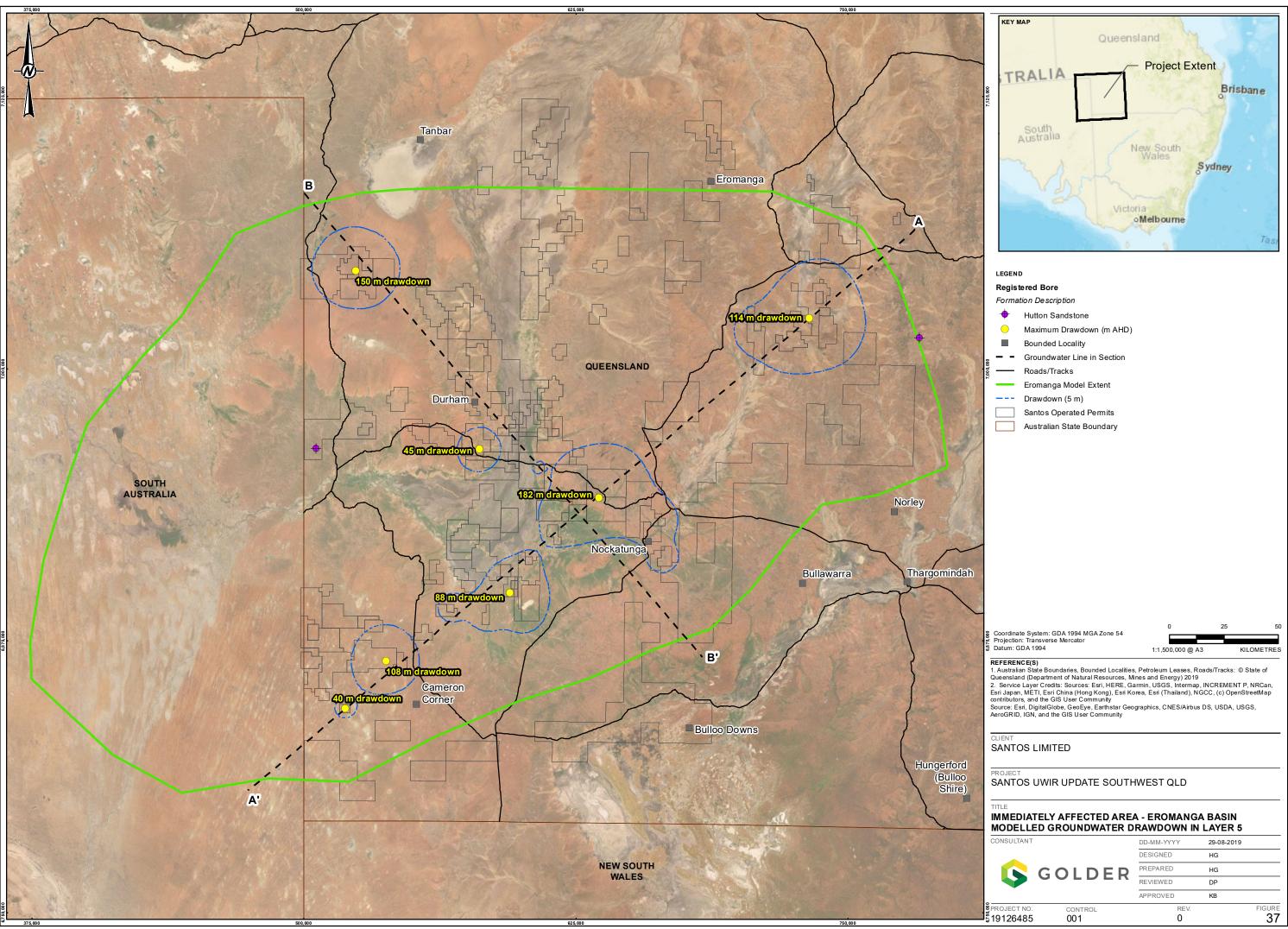

Figure 40 also presents the spatial distribution of contours representing greater than 5m of drawdown. It is noted that contours (>5m) are limited to the areas where wells are most concentrated.

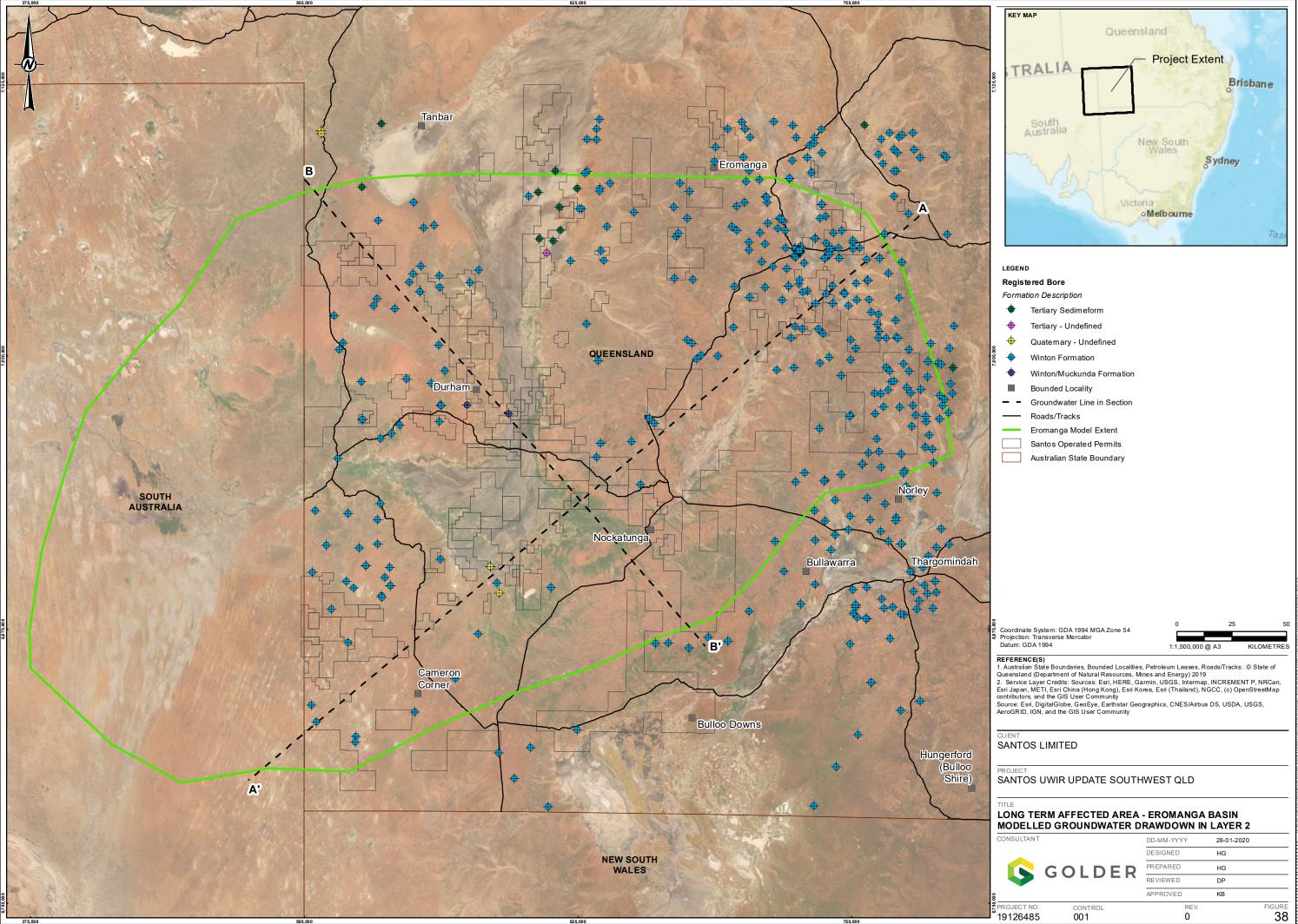






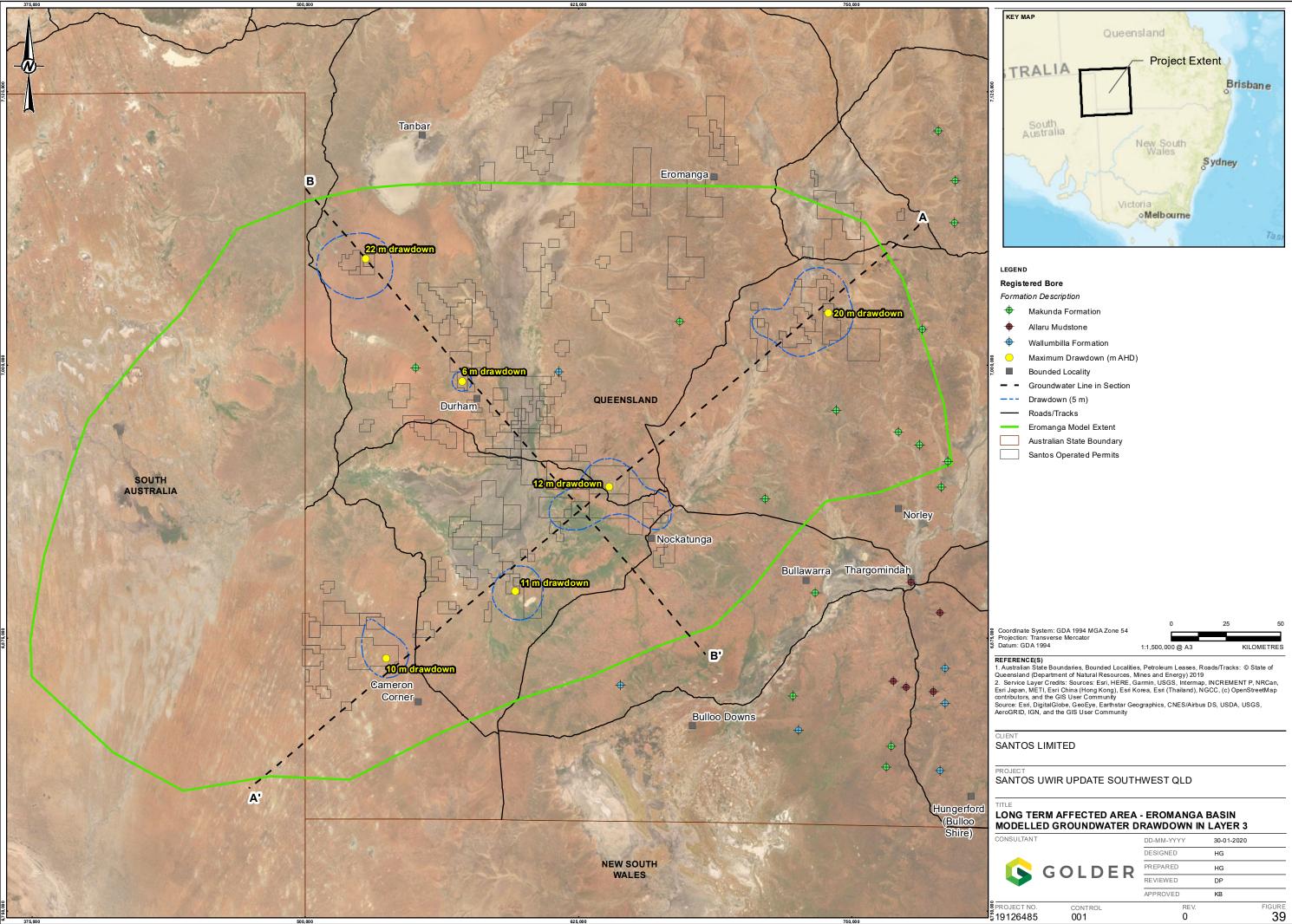


| LEGEND         Bounded Locality         Existing Production Well         Planned Production Well         Watercourse         Cooper Basin Model Domain         Santos Operated Permits         Australian State Boundary         Eromanga Basin         CONSULTANT         DD-MM-YYYY       30-01-2020         TITLE         PROJECT NO.         CONSULTANT         DD-MM-YYYY       30-01-2020         TITLE         PROJECT NO.         CONTROL       REFRENCE         PROJECT NO.       CONTROL         REVIEWED       KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 MALLER                                             |                                 | NEW SOUTH<br>WALES |            |                                                                                                                                               |                                                                                                                                                                                          | -ste                                                                                                                   |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|--------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| LEGEND         Bounded Locality         Existing Production Well         Planned Production Well         Watercourse         Cooper Basin Model Domain         Santos Operated Permits         Australian State Boundary         Eromanga Basin         ConsultAnt         Designed         Perpendence         Eromanga Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                 | 34                 |            |                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                        | 60.000 (\$704,000                          |
| <ul> <li>Bounded Locality</li> <li>Existing Production Well</li> <li>Planned Production Well</li> <li>Waterourse</li> <li>Coordinate System: GDA 1994 MGAZone 54<br/>Projection: Transverse Mercator<br/>Datum: GDA 1994</li> <li>Model Domain</li> <li>Santos Operated Permits</li> <li>Australian State Boundary</li> <li>Consultant</li> <li>Consultant</li> <li>D-MM-YYYY</li> <li>Bounded Locality</li> <li>Consultant</li> <li>D-MM-YYYY</li> <li>Bounded Locality</li> <li>Control</li> <li>Reviewed KB</li> <li>Control KB</li> <li>Reviewed KB</li> <li>Control KB</li> <li>Reviewed KB</li> <li>Control KB</li> <li>Reviewed KB</li> <li>Control KB</li> <li>Control KB</li> <li>Control KB</li> <li>Reviewed KB</li> <li>Control KB</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | 500,000 550,000                 | 600,000            | 650,000    |                                                                                                                                               | 750,000                                                                                                                                                                                  | 800,000                                                                                                                | 850,000                                    |
| Cooper Basin Model Domain   Santos Operated Permits   Australian State Boundary   CONSULTANT   DD-MM-YYYY   BEIGNED   HG   Reviewed   KB       PROJECT SANTOS UWIR UPDATE SOUTHWEST QLD TITLE EXTENT OF THE COOPER BASIN MODEL DOMAIN PROJECT NO. CONTROL REVIEWED KB PROJECT NO. CONTROL REV. FIGUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Existing Production Well     Planned Production Well | Projection: Transverse Mercator |                    |            | Queensland (Departu<br>2. Eromanga Basin I<br>Australia, http://creat<br>(Geoscience Australi<br>3. Service Layer Cre<br>Esri Japan, METI, Es | ment of Natural Resources, Mine<br>Extent: Geological Provinces - F<br>ivecommons.org/licenses/by/3.0<br>a) 2014<br>vdits: Sources: Esri, HERE, Garr<br>sri China (Hong Kong), Esri Kore | s and Energy) 2019<br>ull Extent, Creative Commons /<br>/au/, (c) Commonwealth of Aust<br>nin, USGS, Intermap, INCREME | Attribution 3.0<br>tralia<br>ENT P, NRCan, |
| Santo S Operated Permits       Australian State Boundary         Eromanga Basin       CONSULTANT         DD-MM-YYYY       30-01-2020         TITLE         Eromanga Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                 |                    |            |                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                        |                                            |
| Australian State Boundary<br>Eromanga Basin<br>CONSULTANT<br>Eromanga Basin<br>CONSULTANT<br>CONSULTANT<br>CONSULTANT<br>CONSULTANT<br>CONSULTANT<br>DD-MM-YYYY<br>DD-MM-YYYY<br>BD-MM-YYYY<br>DD-MM-YYYY<br>DD-MM-YYYY<br>BO-01-2020<br>HG<br>REVIEWED<br>KB<br>PROJECT NO.<br>CONTROL<br>REV.<br>CONTROL<br>REV.<br>FIGUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | SANTOS LIMITED                  |                    |            | SANTOS UW                                                                                                                                     | IR UPDATE SOUTHV                                                                                                                                                                         | VEST QLD                                                                                                               |                                            |
| Eromanga Basin<br>Feromanga Bas |                                                      | CONSULTANT                      | DD-MM-YYYY         | 30-01-2020 | TITLE                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                        |                                            |
| Etomatinga basin     Etomatinga basin       GOLDER     PREPARED     HG       REVIEWED     KB     PROJECT NO.     CONTROL     REV.     Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                 | DESIGNED           | HG         | EXTENT OF                                                                                                                                     | THE COOPER BASIN                                                                                                                                                                         | MODEL DOMAIN                                                                                                           |                                            |
| REVIEWED KB PROJECT NO. CONTROL REV. FIGUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lionanya basin                                       |                                 | PREPARED           |            | _                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                        |                                            |
| PROJECTINO. CONTROL REV. FIGU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                 |                    |            |                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                        | FIGURE                                     |
| APPROVED KB 19126485 001 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | •                               |                    |            |                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                        | FIGURE <b>33</b>                           |



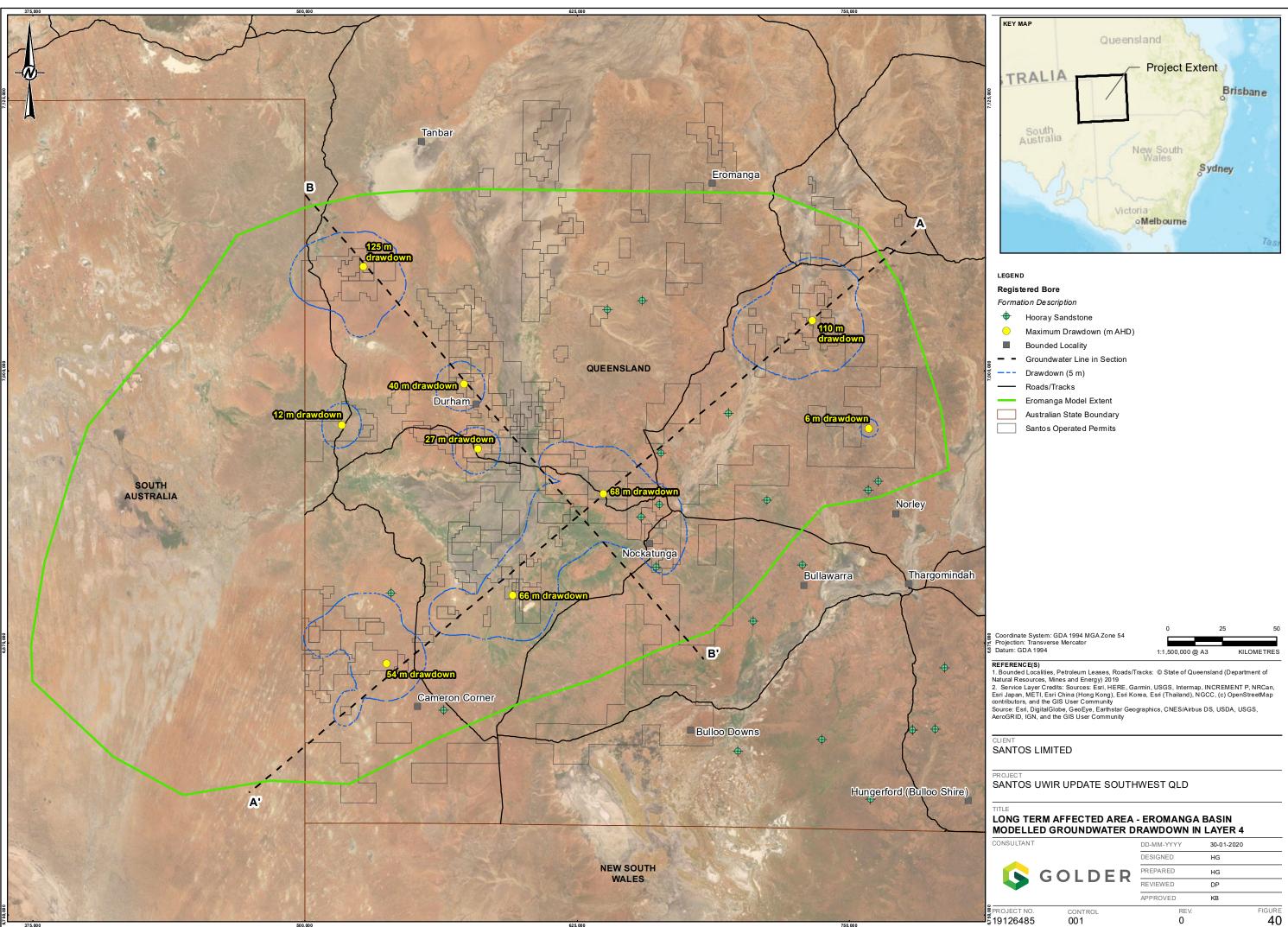

| <b>(</b> | G | 0 | L | D | E | R |
|----------|---|---|---|---|---|---|
|----------|---|---|---|---|---|---|

| DD-MM-YYYY | 29-08-201 | 9      |
|------------|-----------|--------|
| DESIGNED   | HG        |        |
| PREPARED   | HG        |        |
| REVIEWED   | KB        |        |
| APPROVED   | KB        |        |
| REV.       |           | FIGURE |

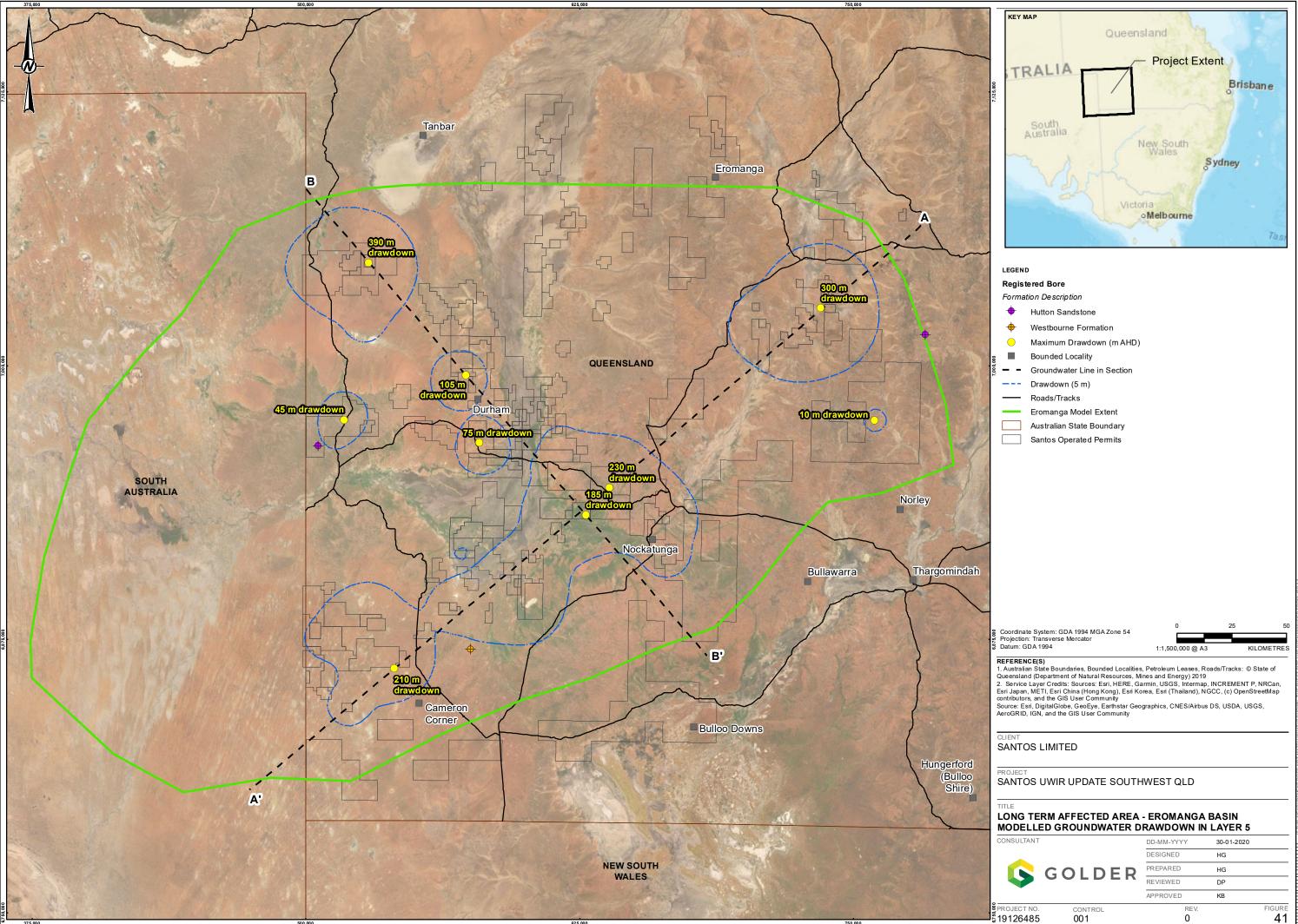


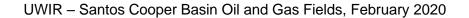






|                                        | 0    |
|----------------------------------------|------|
| oordinate System: GDA 1994 MGA Zone 54 | Г    |
| ojection: Transverse Mercator          |      |
| atum: GDA 1994                         | 1:1, |
|                                        |      |

| CONSULIANT  |          | DD-MM-YYYY | 28-01-2020 |
|-------------|----------|------------|------------|
|             |          |            | HG         |
|             | GOLDER   | PREPARED   | HG         |
|             | REVIEWED | DP         |            |
| 0           |          | APPROVED   | KB         |
| PROJECT NO. | CONTROL  | REV.       |            |





| \$ | GOLD | DER |
|----|------|-----|
|----|------|-----|

| DD-MM-YYYY | 30-01-202 | 0    |
|------------|-----------|------|
| DESIGNED   | HG        |      |
| PREPARED   | HG        |      |
| REVIEWED   | DP        |      |
| APPROVED   | KB        |      |
| REV.       |           | FIGU |



| DD-MM-YYYY | 30-01-2020 |       |
|------------|------------|-------|
| DESIGNED   | HG         |       |
| PREPARED   | HG         |       |
| REVIEWED   | DP         |       |
| APPROVED   | KB         |       |
| REV.       |            | FIGUR |





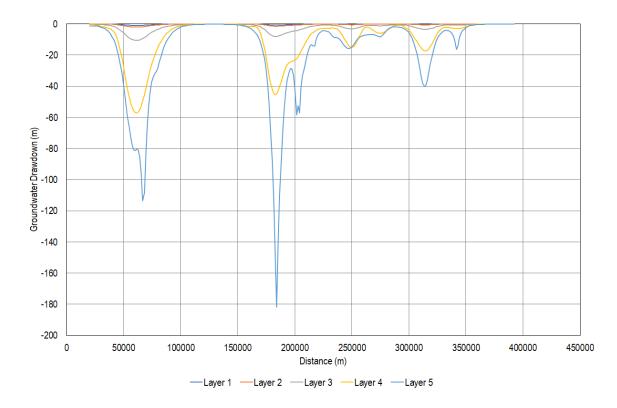



Figure 42. Eromanga Basin: Modelled Immediately Affected Area Groundwater Drawdowns in Cross Section A-A'

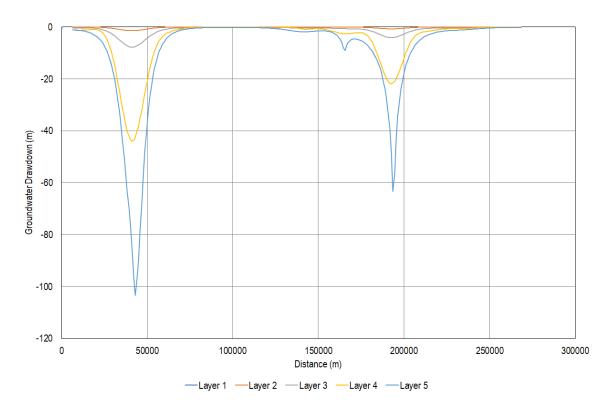
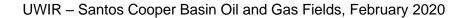




Figure 43. Eromanga Basin: Modelled Immediately Affected Area Groundwater Drawdowns in Cross Section B-B'



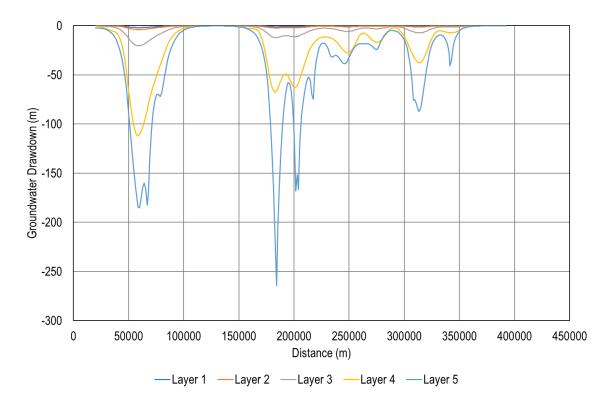



Figure 44. Eromanga Basin: Modelled Long Term Affected Area Groundwater Drawdowns in Cross Section A-A'

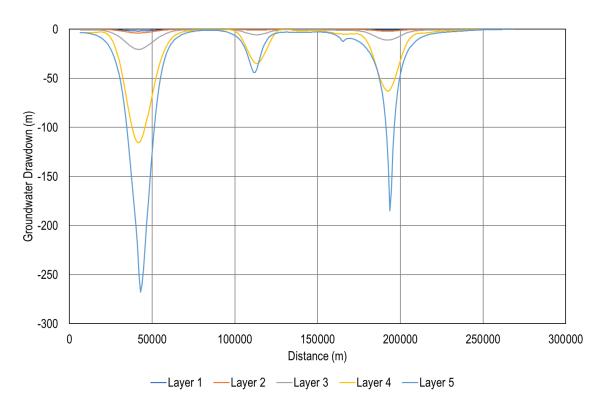



Figure 45. Eromanga Basin: Modelled Long Term Affected Area Groundwater Drawdowns in Cross Section B-B'

# 7.6 Calculated Impact in the Cooper Basin

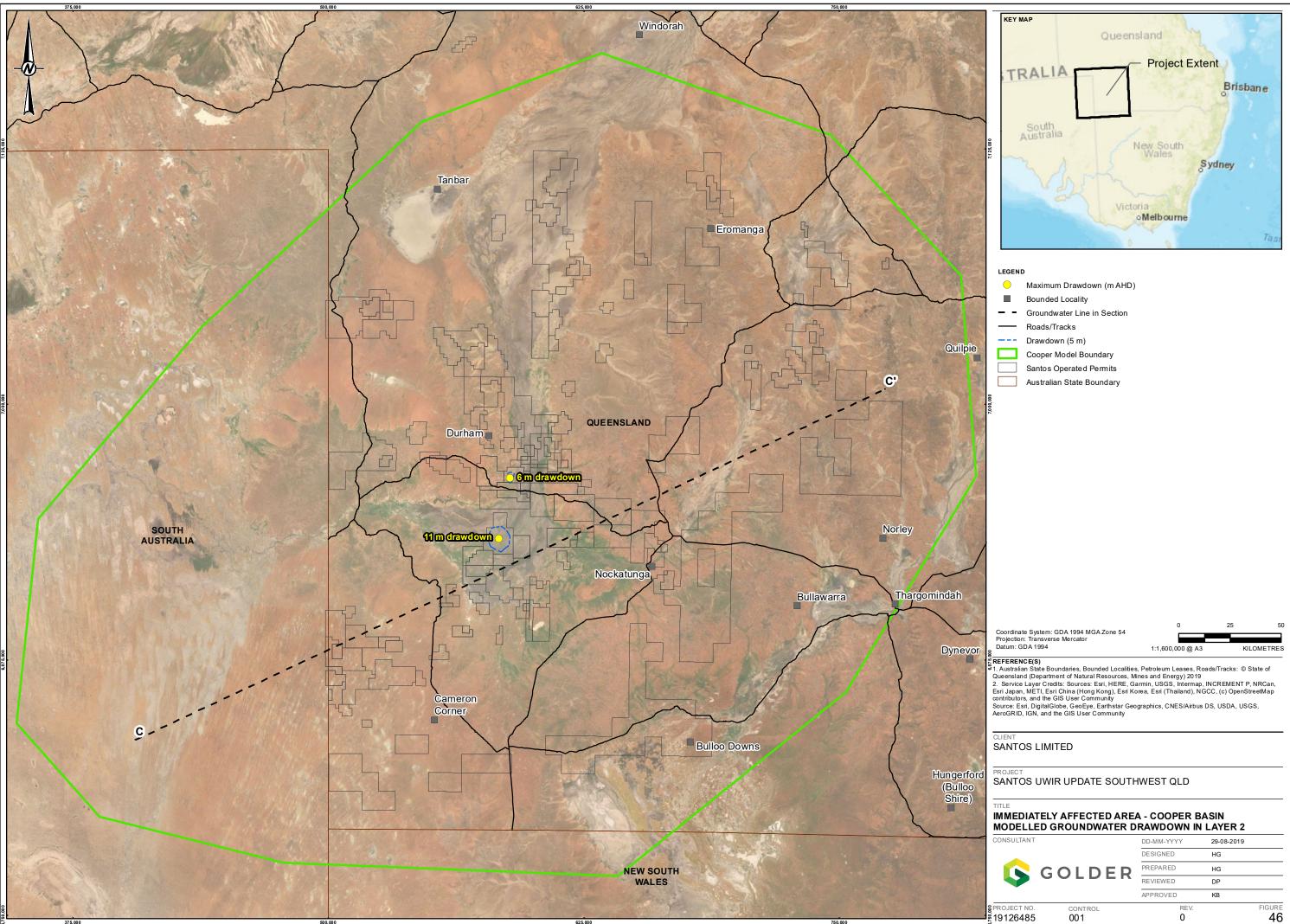
The updated 2016 calibrated model was run in steady state using updated extraction rates (2019) to provide a conservative, worst case scenario for the IAA and LTAA. The calculated drawdown for each layer is presented in Table 13 and Figure 46 to Figure 51 and summarised as follows:

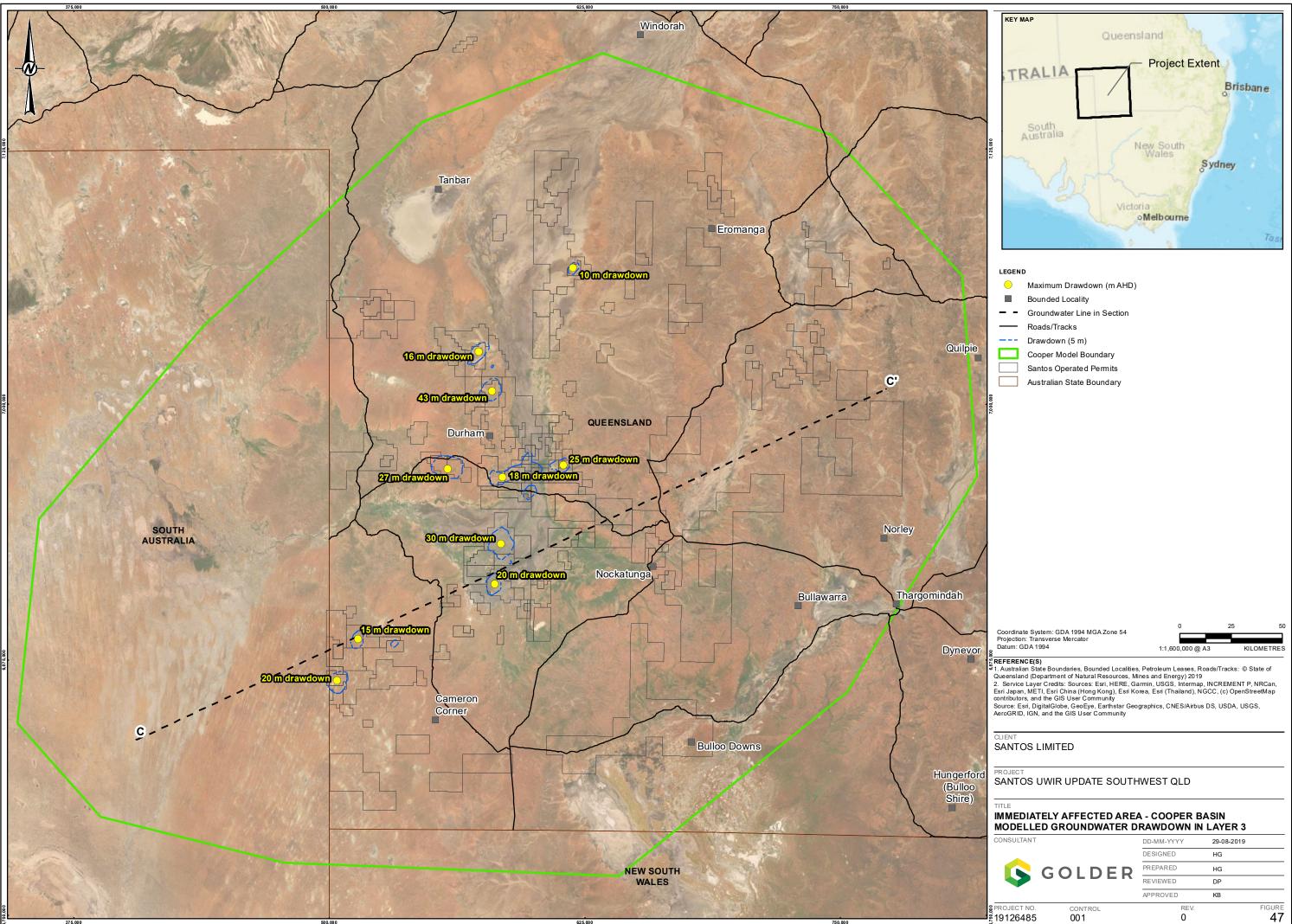
- The maximum estimated drawdown in the IAA due to extraction from the Cooper basin is less than 2m in the Tinchoo and Arraburry Formation (Layer 2).
- The maximum estimated drawdown for the LTAA due to extraction from the Cooper basin is less than 25m in the Toolachee to Patchawarra Formations (Layer 3).

Table 13. Calculated maximum drawdown along lines of section – Cooper Basin

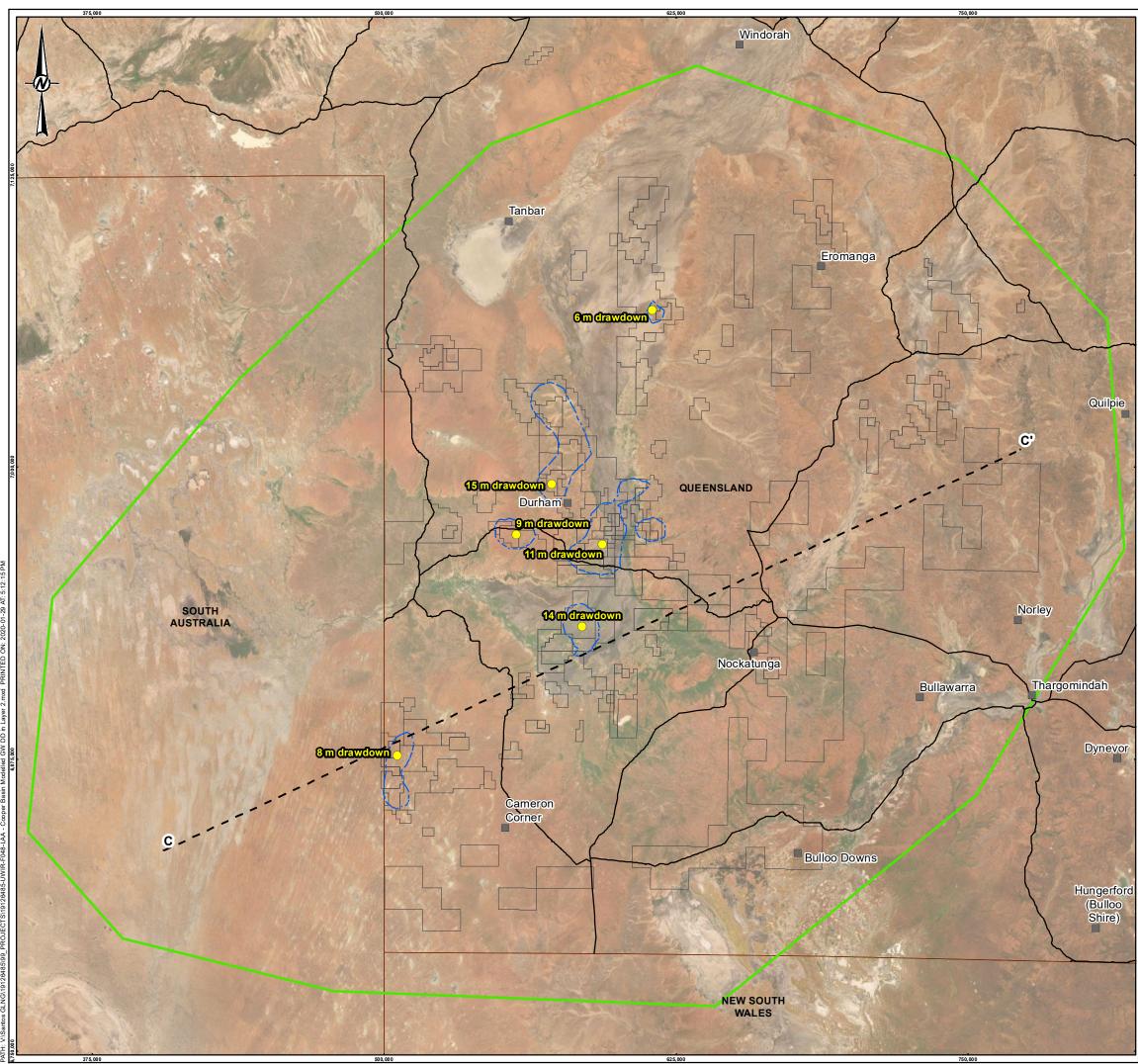
| Layer Number |                                        | Maximum Drawdown in the Cooper Basin (m) |                            |  |  |  |
|--------------|----------------------------------------|------------------------------------------|----------------------------|--|--|--|
|              | Layer Description                      | Immediately Affected<br>Area             | Long Term Affected<br>Area |  |  |  |
| 2            | Tinchoo and Arraburry<br>Formations    | 2                                        | 7                          |  |  |  |
| 3            | Toolachee to<br>Patchawarra Formations | 10                                       | 25                         |  |  |  |

Figure 46 and Table 13 show that the calculated pressure decline at the top of the Cooper Basin stratigraphy is very small in relation of the abstraction rate assigned to the wells. No impact is likely to propagate above the top of the Tinchoo and Arraburry Formations due to extraction in the Toolachee to Patchawarra Formations.


The impact of extraction from the wells in Layer 3 is considered minimal.


### 7.7 Summary of Key Points from the Analytical Modelling

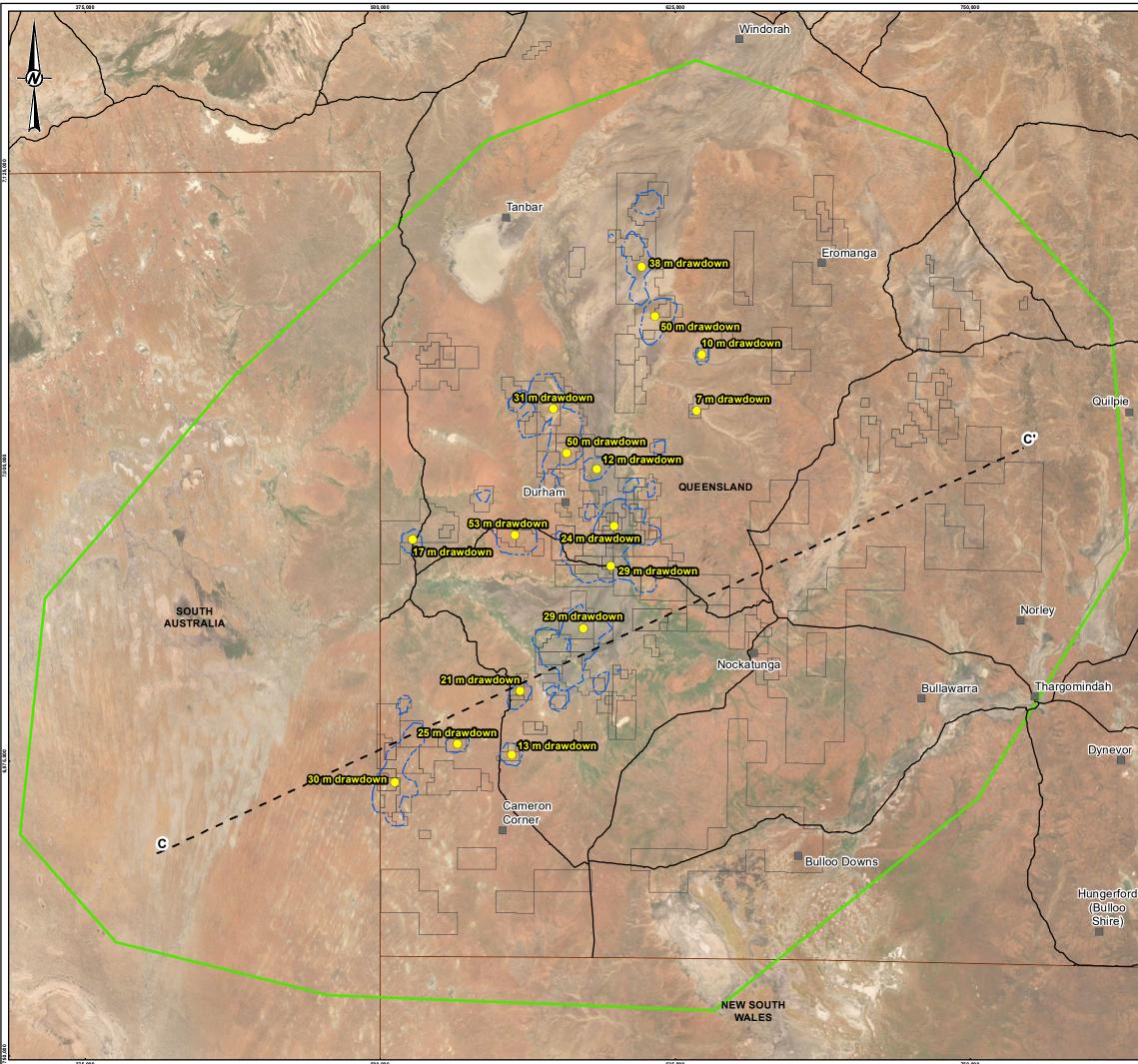
Key points from the analytical modelling include:


- One existing registered bore (RN23059) targeting the Mackunda, Cadna-Owie Formation or Hooray Sandstone may be potentially impacted based on the calculated IAA or the LAA in the Eromanga Basin. The most up-to-date groundwater database compiled by the Department of Natural Resources, Mines and Energy was used for the identification of registered bores within the modelled area (DNRME, 2019). The database identifies registered borehole RN23059 as a GAB monitoring bore. It is unlikely that estimated drawdown in this area will impact local groundwater users.
- The impact of extraction in the Cooper Basin does not affect areas beyond the assumed extraction well locations at the top of the Cooper Basin stratigraphy. These impacts can therefore be discounted from the analysis of the overlying Eromanga Basin.
- The maximum predicted drawdown in the Eromanga Basin stratigraphy, in the strata directly underlying the unconfined Tertiary and Quaternary strata, is 4m under steady state conditions. This is a worst case scenario due to the limited number of extraction well used in the calculation and the steady state analysis conditions applied in the computation. The impact on the Tertiary and Quaternary strata is likely, to be less than 3m.

- A maximum pressure decline of 115m (LAA) is estimated for the modelled unit containing the Cadna-Owie Formation and Hooray Sandstone, however, the 5m contour line does not significantly extend outside of the tenements. Additionally, no private water supply bores targeting the Cadna-Owie Formation and Hooray Sandstone have been identified within the extent of the 5m contours.
- A maximum pressure decline of 268m (LAA) was estimated for Westbourne Formation, Adori Sandstone, Birkhead Formation, Hutton Sandstone and Poolowanna Formation under the long term model run. The 5m drawdown contour does not extend outside of Santos tenements and no private bores targeting those formations have been identified.

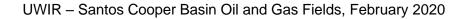





IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN M 260000



| KEY MAP                                                                                              |                                          | - 8                                |                                          |
|------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------|------------------------------------------|
| Q                                                                                                    | ueensland                                | Prove to                           |                                          |
|                                                                                                      |                                          |                                    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|                                                                                                      | Pr                                       | oject Exter                        | nt                                       |
| TRALIA                                                                                               |                                          |                                    | Deta                                     |
|                                                                                                      |                                          |                                    | Brisbane                                 |
|                                                                                                      |                                          |                                    |                                          |
| South                                                                                                | _                                        |                                    |                                          |
| South<br>Australia                                                                                   |                                          |                                    |                                          |
|                                                                                                      | New                                      | South                              |                                          |
|                                                                                                      | 3                                        |                                    | dney                                     |
| - VAAT                                                                                               |                                          |                                    |                                          |
| "SR                                                                                                  |                                          |                                    |                                          |
|                                                                                                      | Victoria                                 |                                    | 1.1                                      |
|                                                                                                      | omen                                     | bourne                             | - A                                      |
|                                                                                                      |                                          |                                    | Tası                                     |
|                                                                                                      | *                                        | 4                                  |                                          |
| LEGEND                                                                                               |                                          |                                    |                                          |
| Maximum Drawdown (                                                                                   | m AHD)                                   |                                    |                                          |
| Bounded Locality                                                                                     | ,                                        |                                    |                                          |
| Groundwater Line in Se                                                                               | ection                                   |                                    |                                          |
| Drawdown (5 m)                                                                                       |                                          |                                    |                                          |
| Roads/Tracks                                                                                         |                                          |                                    |                                          |
| Cooper Model Boundar                                                                                 | ry                                       |                                    |                                          |
| Australian State Bound                                                                               | ary                                      |                                    |                                          |
| Santos Operated Perm                                                                                 | its                                      |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          | _                                  |                                          |
| Coordinate System: GDA 1994 MGA Zo                                                                   | one 54                                   | 0                                  | 25 50                                    |
| Projection: Transverse Mercator<br>Datum: GDA 1994                                                   |                                          | 1:1,600,000 @ A3                   | KILOMETRES                               |
| REFERENCE(S)                                                                                         |                                          |                                    |                                          |
| REFERENCE(S)<br>71. Australian State Boundaries, Bounded<br>Queensland (Department of Natural Res    | Localities, Petroli<br>ources, Mines and | ∋um Leases, Road<br>1 Energy) 2019 | s/Iracks: © State of                     |
| <ol> <li>Service Layer Credits: Sources: Esri,<br/>Esri Japan, METI, Esri China (Hong Kon</li> </ol> | HERE, Garmin, U<br>g), Esri Korea, Es    | ISGS, Intermap, IN                 | CREMENT P, NRCan,                        |
| contributors, and the GIS User Commun<br>Source: Esri, DigitalGlobe, GeoEye, Earl                    | hstar Geographic                         | s, CNES/Airbus DS                  | S, USDA, USGS,                           |
| AeroGRID, IGN, and the GIS User Comr                                                                 | nunity                                   |                                    |                                          |
| CLIENT                                                                                               |                                          |                                    |                                          |
| SANTOS LIMITED                                                                                       |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
| PROJECT<br>SANTOS UWIR UPDATE S                                                                      | SOUTHWES                                 | ST QLD                             |                                          |
|                                                                                                      |                                          |                                    |                                          |
|                                                                                                      |                                          |                                    |                                          |
| LONG TERM AFFECTED                                                                                   |                                          |                                    |                                          |
| CONSULTANT                                                                                           | -                                        |                                    | 29-01-2020                               |
|                                                                                                      | DESIC                                    |                                    | HG                                       |
|                                                                                                      |                                          |                                    | HG                                       |
| GOLDI                                                                                                |                                          |                                    | DP                                       |
| -                                                                                                    |                                          |                                    |                                          |
|                                                                                                      | APPR                                     | OVED                               | KB                                       |


|                          |         | -    |       |
|--------------------------|---------|------|-------|
| PROJECT NO.              | CONTROL | REV. | FIGUR |
| EPROJECT NO.<br>19126485 | 001     | 0    | 4     |
|                          |         |      |       |

URE 48



| KEY MAP                                                                                                              |                        |                        |
|----------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|
| Queen                                                                                                                | sland                  |                        |
|                                                                                                                      |                        | A STATE                |
|                                                                                                                      | - Project Ext          | ent                    |
| TRALIA                                                                                                               |                        | Patat                  |
|                                                                                                                      |                        | Brisbane               |
|                                                                                                                      |                        | 30 7                   |
| South                                                                                                                |                        |                        |
| South<br>Australia                                                                                                   |                        | 2                      |
|                                                                                                                      | Vew South<br>Wales     | 3                      |
| ~ 3 3                                                                                                                |                        | Sydney                 |
| > ) Chrom                                                                                                            | 1                      |                        |
| SR N                                                                                                                 |                        |                        |
| Victo                                                                                                                |                        |                        |
|                                                                                                                      | Melbourne              |                        |
|                                                                                                                      | 1                      | Tası                   |
|                                                                                                                      | 4                      |                        |
| LEGEND                                                                                                               |                        |                        |
| <ul> <li>Maximum Drawdown (m AHD)</li> </ul>                                                                         |                        |                        |
| Bounded Locality                                                                                                     |                        |                        |
| <ul> <li>Groundwater Line in Section</li> </ul>                                                                      |                        |                        |
| Drawdown (5 m)                                                                                                       |                        |                        |
| Roads/Tracks                                                                                                         |                        |                        |
| Cooper Model Boundary                                                                                                |                        |                        |
| Australian State Boundary                                                                                            |                        |                        |
| Santos Operated Permits                                                                                              |                        |                        |
| 2                                                                                                                    |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
|                                                                                                                      |                        |                        |
| Coordinate System: GDA 1994 MGA Zone 54                                                                              | 0                      | 25 50                  |
| Projection: Transverse Mercator<br>Datum: GDA 1994                                                                   | 1.1 600 000 @ 43       | KILOMETRES             |
|                                                                                                                      | 1:1,600,000 @ A3       | KILOMETRES             |
| REFERENCE(S)<br>A. Australian State Boundaries, Bounded Localities<br>Queensland (Department of Natural Resources, M | , Petroleum Leases, Ro | ads/Tracks: © State of |
| <ol><li>Service Layer Credits: Sources: Esri, HERE, Ga</li></ol>                                                     | armin, USGS, Intermap, | INCREMENT P, NRCan,    |
| Esri Japan, METI, Esri China (Hong Kong), Esri Ko<br>contributors, and the GIS User Community                        |                        |                        |
| Source: Esri, DigitalGlobe, GeoEye, Earthstar Geo<br>AeroGRID, IGN, and the GIS User Community                       | graphics, CNES/Airbus  | DS, USDA, USGS,        |
|                                                                                                                      |                        |                        |
| CLIENT<br>SANTOS LIMITED                                                                                             |                        |                        |
|                                                                                                                      |                        |                        |
| PROJECT                                                                                                              |                        |                        |
| SANTOS UWIR UPDATE SOUTH                                                                                             | IWEST QLD              |                        |
| TITLE                                                                                                                |                        |                        |
| LONG TERM AFFECTED AREA                                                                                              | - COOPER BAS           | SIN MODELLED           |
| GROUNDWATER DRAWDOWN                                                                                                 |                        |                        |
| CONSULTANT                                                                                                           | DD-MM-YYYY             | 29-01-2020             |
|                                                                                                                      | DESIGNED               | HG                     |
|                                                                                                                      |                        |                        |
|                                                                                                                      | PREPARED               | HG                     |
| <b>GOLDER</b>                                                                                                        | PREPARED<br>REVIEWED   | HG<br>DP               |

PROJECT NO. CONTROL REV. 19126485 001 0 FIGURE



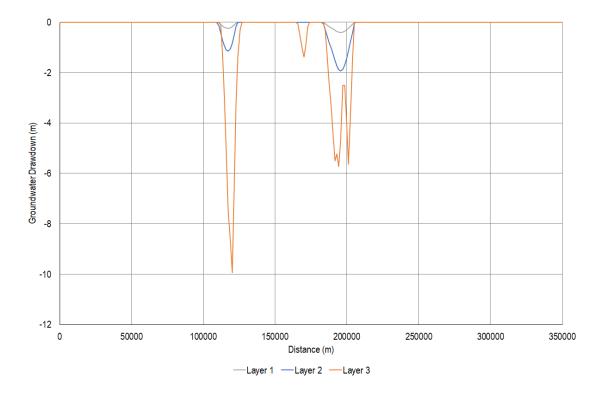



Figure 50. Cooper Basin: Modelled Immediate Affected Area Groundwater Drawdown in Cross Section C-C'

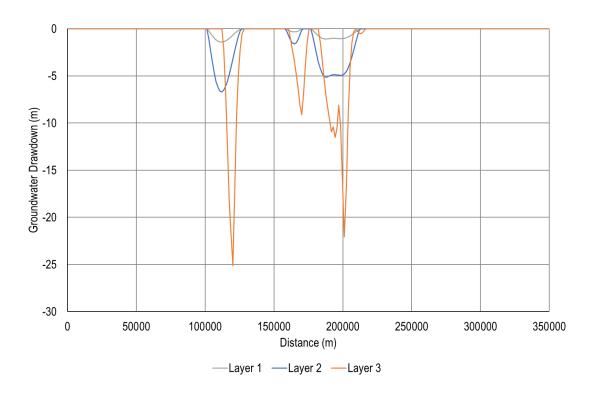



Figure 51. Cooper Basin: Modelled Long Term Affected Area Groundwater Drawdowns in Cross Section C-C'

# 8.0 Vulnerability Assessment

# 8.1 Vulnerability of GDEs

No GDEs are located with Santos' SWQ tenements. The nearest GDEs are located >90km from the tenement boundaries.

The *spring trigger threshold* for a decline in groundwater level, beyond which a spring impact management strategy for any potentially affected springs may be required, is defined in the Water Act as a decline of more than 0.2 metres.

The areas of predicted drawdown that are greater than 0.2 metres are within the model domain (Figure 32). This suggests that the 0.2 metre drawdown areas do not overlap with the location of any mapped GDEs, the closest of which are located >50km south and east of Thargomindah (as shown on Figure 14).

A spring impact management strategy has not been developed because no impact to GDE's greater than 0.2 metres of drawdown is predicted.

# 8.2 Vulnerability of Groundwater Users

The potential for aquifer depletion due to extraction of produced water has been assessed and is discussed in Section 7.0. Table 14 provides a summary of predicted impacts to private bores associated with oil and gas production operations. The results indicate minimal impacts to third party groundwater users.

Changes in groundwater quality and subsequent impacts to third party users could affect bore owners or water supply sources that access Hooray Sandstone (which also hosts oil reservoirs exploited by Santos) within the Murta Formation mostly and to a lower extent within the Namur Sandstone. Note that where no oil produced from the Hooray Sandstone oil reservoirs, the model estimated 5m drawdown contours are considered conservative as pressure measurements data at two oil fields have demonstrated that the depressurisation does not propagate to overlying layers.

Based on the Queensland Groundwater Database (DNRME, 2019) and the simulated drawdown contours for IAA and LAA, three private bores are identified within the IAA and LAA.

Bore RN23372 is a water bore that was identified as being impacted in the 2016 UWIR. A Make Good Agreement, as required under provision in the Water Act, was executed in 2017. The amount of drawdown predicted in the next 3 years is less than was predicted in the 2016 UWIR.

Bore RN23569 was investigated by DES (formerly, as DEHP) and found not to be an authorized bore (does not have a license that permits the owner to extract groundwater). It therefore does not qualify for protection and management in accordance with s363 of the Water Act (as advised by DEHP on 29 July 2014) and no further action is required.

Bore RN23059 is a water bore that has been identified as being impacted by the updated 2020 UWIR. The approximate drawdown calculated in the LAA is 6m. The purpose of this bore is listed as GAB monitoring.

There are less bores predicted to be impacted compared to the 2016 UWIR, largely due to improvements made to the Queensland Groundwater Database (DNRME, 2019). Santos does

not intend to update the Make Good Agreement on RN23372 until such time that the predicted drawdown in the IAA for that bore exceeds the drawdown that was predicted in the 2016 UWIR.

| Bore<br>RN | Latitude                  | Longitude   | Tenure | Date<br>Drilled | Bore Name       | Bore Type | Purpose /<br><i>Status</i> | Formation           | Layer<br>Description | Predicted<br>Drawdown<br>(m) |
|------------|---------------------------|-------------|--------|-----------------|-----------------|-----------|----------------------------|---------------------|----------------------|------------------------------|
| Immedia    | Immediately Affected Area |             |        |                 |                 |           |                            |                     |                      |                              |
| 23372      | -27.6653824               | 142.6485650 | -      | 1986            | PPL Balooma 1   | Artesian  | Stock / GAB<br>Monitoring  | Hooray<br>Sandstone | Eromanga<br>Layer 4  | 12                           |
| 23569      | -27.7188708               | 142.5648591 | PL33   | 1987            | PPL Coothero 1  | Artesian  | GAB<br>Monitoring          | Hooray<br>Sandstone | Eromanga<br>Layer 4  | 11                           |
| Long Te    | Long Term Affected Area   |             |        |                 |                 |           |                            |                     |                      |                              |
| 23059      | -27.92540012              | 142.6376904 | PL245  | 1982            | PPL Noccundra 1 | Artesian  | GAB<br>Monitoring          | Hooray<br>Sandstone | Eromanga<br>Layer 4  | 6                            |
| 23372      | -27.6653824               | 142.6485650 | -      | 1986            | PPL Balooma 1   | Artesian  | Stock / GAB<br>Monitoring  | Hooray<br>Sandstone | Eromanga<br>Layer 4  | 23                           |
| 23569      | -27.66538237              | 142.648565  | PL33   | 1987            | PPL Coothero 1  | Artesian  | GAB<br>Monitoring          | Hooray<br>Sandstone | Eromanga<br>Layer 4  | 27                           |

#### Table 14. Registered Groundwater Bores Affected by Modelled Impacts.

## 9.0 Underground Water Monitoring

In accordance with Section 376(f) of the Water Act 2000, an underground water monitoring strategy is required for the IAA and the LTAA. Monitoring is required to keep track of the quantity of water produced and to monitor changes in underground water level and the underground water quality.

#### 9.1 Rational

Based on the outcomes of the 2019 analytical modelling, the groundwater resources most at risk from Santos activities are the shallow aquifers and the Hooray Sandstone aquifer, which are used by local community for domestic and municipal supply.

In order to mitigate the potential for impact to shallow aquifers and the Hooray Sandstone aquifer within, and adjacent to, the study area, the water monitoring strategy will focus on early detection and protection of these water resources. The monitoring strategy will include evaluation and assessment of the following:

- Changes in water level in shallow unconsolidated aquifers (>2m): evaluate potential to impact third party users.
- Changes in water level in consolidated aquifers i.e. Hooray Sandstone aquifer (>5m): evaluate potential to impact third party users.
- Changes in the water quality in shallow unconsolidated aquifers and consolidated aquifers i.e. Hooray Sandstone aquifer: evaluate the potential to impact third party users.

Results of previous water monitoring events/programs to inform future monitoring strategies.

#### 9.2 Previous Water Studies / Monitoring

#### 9.2.1 Studies

Previous groundwater reports prepared for Santos' SWQ tenements include:

URS, Water Flooding Impact Assessment: Further Information to Support Assessment of Potential Impacts of Water Flooding in PL295, 2010.

Santos, Response to DEHP Re: Use of fracture fluids containing BTEX, 2010.

- Golder Associates Pty Ltd, Underground Water Impact Report for Santos Cooper Basin Oil and Gas Fields, SW QLD (Reference 117636010-3000-001-Rev-1) [UWIR], 2013.
- Golder Associates Pty Ltd, Santos South West Queensland, Regional Water Bore Baseline Assessment Report (Priority 1 and 2 Bores) [WBBA] (Reference 117666006-019-R), 2013.

South-West Queensland UWIR 2018 Annual Groundwater Monitoring Report, LBWCo (2019)

#### 9.2.2 Monitoring

Historical groundwater monitoring undertaken by Santos in the study area includes:

Deep groundwater monitoring associated with the water flooding activities as described in the previous UWIRs.

Shallow groundwater monitoring associated with:

Ballera evaporation pond (8 monitoring bores).

Jackson refueling station (3 monitoring bores).

Jackson landfarm activities (4 monitoring bores).

- DNRM GAB monitoring network spread over the project area and targeting the formations of the Eromanga Basin; however few exist within the area of interest.
- Previous UWIRs identified the quantity of water produced during the production of gas and oil, the potential impact of the groundwater extraction on the groundwater systems environmental values and the existing or proposed groundwater monitoring necessary to manage impact based on a groundwater monitoring strategy. Additional detail on the results of the 2018 UWIR Annual Report are presented below.
- 2013 Water Bore Baseline Assessment (WBBA) to collect baseline data with regards to the existence, construction, condition and accessibility of water bores (so-called "Water Act", 'private' or 'farmers' bores) and, where possible, aquifer data including water level, water quality, pumping and use. The intent of a baseline assessment is also to provide a snap shot of groundwater conditions prior to production. In the case of the Cooper-Eromanga Basins, where operations have been underway for 40+ years, this is not relevant. However, it still provides a basis for future comparison of groundwater conditions, particularly with regard to potential impacts from petroleum production.

#### 9.2.3 2018 Annual Groundwater Monitoring Report

The results of the 2018 Annual Groundwater Monitoring Program (GWMP) undertaken by independent consultants LBWCo (2019), in accordance with the 2016 UWIR reported the following findings:

- There is no evidence of decline in groundwater levels in monitoring bores completed in shallow unconsolidated aquifers which exceeded the bore trigger threshold of 2m.
- There is no evidence of decline in groundwater level in monitoring bores completed in deep consolidated aquifers which exceed the bore trigger value of 5m.
- Shallow unconsolidated aquifer water quality at the monitoring bores locations show no impacts related to oil and gas production.
- Deep consolidated aquifer water quality at the monitoring bore locations shows no impacts related to oil and gas production.
- The report recommended that the following monitoring points be removed from the ongoing monitoring schedule:
- F1 water levels have consistently declined since 2012, but this is extremely shallow bore. This is not representative of deep aquifer conditions.
- Yanda/Munkah Bore no access to the wellhead and no flow. Cannot guage or sample.

Challum Spine Road Bore – the bore was dry.

Tarbat Job No. 1947 Bore – no access to the wellhead and no flow. Cannot guage water level or take water samples. The bore is no longer operational.

#### 9.3 Monitoring Strategy

As part of the 2013 UWIR development and the SWQ Water Bore Baseline Assessment, a monitoring network was established to provide information on formation pressure, water levels and water quality in unconsolidated and consolidated aquifer formations.

To evaluate the potential for impacts to shallow unconsolidated aquifers, consolidated aquifers (such as the Hooray Sandstone) and subsequent third party users, Santos propose to amend the long-term monitoring strategy presented in UWIR 2016. The changes will improve the overall quality of monitoring strategy.

Table 15 and Table 16 provides the revised schedule of monitoring. F1, Yanda/Munkah Bore, Challum Spine Bore and Tarbat Job No. 1947 Bore have been removed in accordance with recommendations in Section 9.2.3. Challum Spine Bore No.2, Gordon's Bore, Apollosa 1 and Ballera West 2 bores have been added to replace them.

The 2019 to 2022 monitoring and sampling schedule takes into account the limited changes observed in groundwater level and quality over the previous reporting period (i.e. no discernible change in water level or quality). Santos consider that the proposed changes to the schedule, including a reduction in frequency (quarterly to annual) and a reduced list of groundwater quality analytes meets the requirements of the Water Act.

The quantity of water produced will be measured as per the methodologies presented in Section 6.4.

The monitoring strategy will implemented following approval of the UWIR.

#### Table 15. UWIR Monitoring Network – 2016 to 2019

| Bore Name                       | WBBA<br>ID | Latitude     | Longitude    | Bore RN | Tenure           | SWL<br>(mbgl) | Bore<br>Depth<br>(mbgl) | Primary Use                          | Comments                                                                                       |
|---------------------------------|------------|--------------|--------------|---------|------------------|---------------|-------------------------|--------------------------------------|------------------------------------------------------------------------------------------------|
| Challum Spine<br>Road Bore No.2 | 5018       | -27.40219675 | 141.66764887 | -       | PL59             |               |                         | Roadwork and<br>construction<br>bore | Sub-artesian.<br>Shallow (Winton Mackunda).<br>Replaces monitoring<br>Challum Spine road bore. |
| Irtalie 1                       | 5028       | -27.7224503  | 142.2545297  | 23570   | PL36             |               | 1915                    | Roadwork and<br>construction         | Artesian.<br>Hutton Sandstone.                                                                 |
| PPL Coothero 1                  | 5033       | -27.7188708  | 142.5648591  | 23569   | PL33             |               | 1415                    | Livestock and<br>roadwork            | Artesian.                                                                                      |
| Gordons Bore                    | -          | -26.952184   | 143.289735   | 23361   | PL170/<br>PL1029 |               |                         | Roadwork and construction            | Artesian.<br>Namur Sandstone<br>Replaces monitoring Tarbat<br>Job No.1947.                     |
| Surlow 1 Water<br>Bore          | 5094       | -27.3368192  | 141.9649231  | -       | PL205            | 6.0           |                         | Not in use                           | Sub-artesian.<br>Shallow (Winton Mackunda).                                                    |
| Supply 1                        | 5229       | -26.7940241  | 143.3906457  | 23923   | ATP636           |               | 1564                    | Industrial                           | Artesian.                                                                                      |
| PPL Balooma 1                   | -          | -27.6653824  | 142.6485650  | 23372   | -                |               | 1513                    | Livestock                            | Artesian.                                                                                      |
| Apollosa 1                      | -          | -28.079852   | 141.860269   | -       | -                |               |                         | Roadwork and<br>construction         | Artesian.<br>Naumr Sandstone.                                                                  |
| Ballera West 2                  | 5015       | -27.3757873  | 141.7755227  | -       | PL61/<br>PL1073  |               |                         | Livestock                            | Artesian                                                                                       |

WBBA – Water Bore Baseline Assessment (WBBA, Golder 2013a) SWL – Standing Water Level mbgl – meters below ground level

|                                  | Water Level                           |                  | ter Sample Collection<br>boratory Analysis        |                |                            |  |
|----------------------------------|---------------------------------------|------------------|---------------------------------------------------|----------------|----------------------------|--|
| Bore Name                        | Measurement<br>Method*                | Januare Analytes |                                                   | Schedule       | Comments                   |  |
| Challum Spine<br>Road Bore no. 2 | Not feasible<br>(due to<br>headworks) | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Shallow (sub-<br>artesian) |  |
| Irtalie 1                        | Pressure<br>transducer                | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Hutton SS<br>(artesian)    |  |
| PPL Coothero 1                   | Pressure<br>transducer                | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Artesian                   |  |
| Gordon's Bore                    | Pressure<br>transducer                | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Artesian                   |  |
| Surlow 1 Water<br>Bore           | Pressure<br>transducer                | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Shallow (sub-<br>artesian) |  |
| Supply 1                         | Pressure<br>transducer                | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Artesian                   |  |
| PPL Balooma 1                    | Pressure<br>transducer                | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Artesian                   |  |
| Apollosa 1                       | Pressure<br>transducer                | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Artesian                   |  |
| Ballera West 2                   | Pressure<br>transducer                | Yes              | pH, TDS, major ions,<br>dissolved heavy<br>metals | Annual<br>(Q4) | Artesian                   |  |

\* If current condition of bore headworks make it feasible

#### 9.4 Annual Review and Reporting

Monitoring data will be reviewed annually and new data used to determine if a material change in groundwater conditions has occurred or is likely to occur. Results will be reported internally and as required by regulatory requirements.

## **10.0 UWIR Review Schedule and Reporting Protocol**

In accordance with the Water Act, a review period of no greater than three years will be undertaken. Site data including the following, will be reviewed annually:

Groundwater level and quality data from the water monitoring plan.

Santos extraction volumes.

Santos pressure data.

It is the intention that data will be reviewed and compared to the assumptions made in this UWIR. Significant discrepancies between the assumptions in this UWIR and the monitoring data will trigger a review of the UWIR.

The review cycle will be incorporated in to the water monitoring plan. In addition to the review schedule, reporting to the regulator will be undertaken as required.

## **11.0 Conclusion**

The impacts to groundwater from Santos' oil and gas operations in the Cooper region of SWQ have been assessed in this UWIR and are based on:

- A description of the geological settings of the gas and oil fields and the development of a conceptual geological cross section and geological contour maps for the top of and thicknesses of key formations.
- A review of the hydrogeological settings of the gas and oil fields and the development of a hydrogeological conceptual model and hydrogeological maps.
- An identification of environmental values related to groundwater system, and in particular groundwater dependent ecosystem including GAB artesian discharge springs.

Characterisation of produced water volumes.

An assessment of impacts from groundwater extraction on the target petroleum reservoir and surrounding formations and on potential groundwater users.

Santos oil and gas fields in SWQ are located away from any major GDEs. Groundwater extractions associated with the oil and gas operations produce limited volumes of water which do not result in large scale depressurisation of the target aquifers. The results of this groundwater impact assessment demonstrate that aquifer drawdown is largely confined to the oil fields. As a result, Santos' current activities are not expected to have a discernible impact on GAB discharge springs and other GDEs.

Santos oil and gas fields in SWQ are located within the Cooper and Eromanga GAB Basins. Groundwater extraction for oil and gas production is undertaken at depth and does not compete with groundwater extraction for private use. Consequently, Santos' current activities are not expected to have a discernible impact on groundwater resources used by the community with the possible exception of localised impacts to two bores screened within the Hooray Sandstone aquifer located within areas of oil production.

This groundwater impact report demonstrates that impacts to GAB aquifers as a result of Santos' SWQ oil and gas operations is localised, that depressurisation is limited and does not propagate across production formations. As such it is considered that Santos' current SWQ activities pose no risk to the GAB aquifers.

## **12.0 References**

ADWG, 2004. Australian Drinking Water Guideline, National Health and Medical Research Council (NHMRC) and Natural Resource Management Ministerial Council (NRMMC)

Alexander, E.M., 1996a. Reservoirs and Seals. In: Alexander, E.M. and Hibburt, J.E. (Eds), 1996, The petroleum geology of South Australia, Vol. 2: Eromanga Basin. South Australia. Department of Primary Industries and Resources. Petroleum Geology of South Australia Series, pp. 141-147.

ANZECC& ARMCANZ, 2000 (Australian and New Zealand Environment Conservation Council and

Agriculture and Resource Management Council of Australia and New Zealand). Australian Water Quality Guidelines for Fresh and Marine Waters, Canberra

AS/NZ Standard 4360, 2004, Risk management - Principles and guideline

Australian Government Department of Environment and Water Resources, 2000, Water Act 2000

AustralianStratigraphicDatabase,GeosciencesAustralia,Availableat:ttp://www.ga.gov.au/productsservices/data-applications/reference-databases/stratigraphic-units.html

BOM, 2016 (Bureau of Meteorology). Climate Statistics from web-site (www.bom.gov.au), May 2016

BOM, 2011, Flood Warning System for the Thompson & Barcoo Rivers & Cooper Creek Page 1

BRS, 2000, Radke B.M, Ferguson J., Cresswell R.G, Ransley T.R, Habermehl M.A, Hydrochemestry and implied hydrodynamics of the Cadna-Owie-Hooray Aquifer Great Artesian Basin, Bureau of Rural Sciences, Canberra

DERM, 2005 a, GAB Hydrogeological Framework for the GAB WRP Area, QLD Department of Environment and Resource Management

DERM, 2011, Groundwater Database, 2011 Version 6

DNRME, 2019, Groundwater Database - Queensland, Version 6.13. Accessed 13 August 2019, from: http://qldspatial.information.qld.gov.au/catalogue/custom/search.page?q=%22Groundwater Database - Queensland%22Draper, J.J. (Editor), 2002, Geology of the Cooper and Eromanga Basins, Queensland. Queensland Mineraland Energy Review Series, Queensland Department of Natural Resources and Mines

Fensham and Fairfax, 2005, The Great Artesian Basin Water Resource Plan: Ecological Assessment of GAB springs in Queensland

Fensham, R.J. and Fairfax, R.J. 2009 Development and trial of a spring wetland monitoring methodology in the Great Artesian Basin, Queensland. Department of Environment and Resource Management.

Golder Associates, 2013. Interim Groundwater Monitoring Plan, Santos Petroleum Tenements, South West Queensland (golder ref. 127666003 R002 Rev 3), dated 10 April 2013.

Golder Associates. 2015 Underground Water Impact Report for Santos' Cooper Basin Oil and Gas Fields, SW QLD. (RN. 117636010-3000-001-Rev3).

Golder Associates. 2015. 2014 Annual Groundwater Monitoring Report, SW QLD. (RN. 137666013-014-R-Rev1)

Government of South Australia, Primary Industeris and Resources, SA, 2009, Petroleum and Geothermal in South Australia – Cooper Basin

Gravestock, D., Callen, R.A., Alexander, E.M. and Hill, A.J., 1995. STRZLECKI, South Australia, sheet SH54-2. South Australia Geological Survey, 1:250,000 Series – Explanatory notes.

Herczeg A. L., Love A. J., 2007, Review of Recharge Mechanisms for the Great Artesian Basin, CSIRO

Herczeg A.L., 2008, Background report on the Great Artesian Basin. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Australia. 18pp.

South-West Queensland UWIR 2018 Annual Groundwater Monitoring Report, LBWCo (2019)

Lowe-Young B.S., Mackie S.L, Heath RS., May 1997, The Cooper-Eromanga petroleum system, Australia: investigation of essential elements and processes, Indonesian Petroleum Association (IPA), Proceedings of the Petroleum Systems of SE Asia and Australasia Conference

Petroleum and Geothermal Group, 2008, Cooper Basin fact sheet

PIRSA, Cooper Basin, 1998, The petroleum geology of South Australia, Volume 4, Cooper Basin (Gravestock)

PIRSA, Eromanga Basin, 2006, The petroleum geology of South Australia, Eromanga Basin, Volume 2, PIRSA

Primary Industry and Resources South Australia, 1998, Cooper-Eromanga Basin Exploration Opportunities Block CO98-A to K

QLD Water Act 2000 (Reprinted in June 2011) Office of the Queensland Parliamentary Counsel

Queensland Department of Environment, 1994, Environmental Protection Act 1994.

Queensland Department of Environment, 2009, Environmental Protection (Water) Policy 2009, under the Environmental Protection Act 1994.

Queensland Department of Mines and Energy, 2004, Petroleum and Gas (Production and Safety) Act 2004.

Queensland Department of Natural Resources and Mines, 2005, Hydrogeological Framework Report for the Great Artesian Basin Water Resource Plan Area.

Queensland Department of Natural Resources and Water, 2006, Great Artesian Basin Water Resource Plan 2006 (GAB WRP).

Queensland Department of Natural Resources and Water, 2007, Great Artesian Basin Resource Operations Plan (GAB ROP)

Queensland Government Water Resource Plan 2003. Office of the Queensland Parliamentary Counsel, Brisbane. Available at:

http://www.legislation.qld.gov.au/LEGISLTN/CURRENT/W/WaterReMooP03.pdf

QWQG 2006, Queensland Water Quality Guidelines 2006 Available at:

http://www.derm.qld.gov.au/environmental\_management/water/queensland\_water\_quality\_guidelines/

Reynolds, S.D., Mildren, S.D., Hillis, R.R., and Meyer, J.J., 2004, The in situ stress field of the Cooper Basin and its implications for hot dry rock geothermal energy development: PESA Eastern Australian Basins Symposium II, p. 431-440

Santos 2004, Cooper Basin, Review of Regional Petroleum Potential

Santos 2005, Santos Engineering Standard, DESIGN PRACTICE 1515-10-G008-0, Rev 2, 2005

Santos 2010 a, Commencement of proposed amendment to Environmental Protection Act 1994:

Santos 2010 b, Response to DERM Re: Use of fracture fluids containing BTEX, Santos 2010b

Santos 2011 a, Extract from DEEDI Presentation, Power Point Presentation, 28 July 2010

Santos 2011 b, Environmental Management Plan for the South West Queensland Eastern Project Area, 2011

Santos 2011 c, Environmental Management Plan for the South West Queensland Central Project Area, 2011

Santos 2011 d, Environmental Management Plan for the South West Queensland Western Project Area, 2011

Santos, 2011, EHSMS09 Hazard Identification, Risk Assessment & Control

SKM, 2001 (Sinclair Knight Merz Pty Ltd). Environmental Water Requirements of Groundwater Dependent Ecosystems, Environmental Flows Initiative Technical Report Number 2, Commonwealth of Australia, Canberra

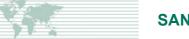
URS, 2010, Water Flooding Impact Assessment: Further Information to Support Assessment of Potential Impacts of Water Flooding in PL295

Appendix A: Underground Water Impact Reports for Santos' Cooper Basin Oil and Gas Fields, SW QLD (Golder, 2013)

#### 5 June 2013

## UNDERGROUND WATER IMPACT REPORT FOR SANTOS COOPER BASIN OIL&GAS FIELDS, SW QLD

# **Santos Ltd**


Submitted to: Santos Ltd Ground Floor Santos Centre 60 Flinders Street Adelaide, SA 5000

REPORT

Report Number. Distribution: 117636010-3000-001-Rev3

Electronic Copy: Santos File Copy: Golder Associates





## **Executive Summary**

Under the Water Act 2000, Santos is required to prepare an Underground Water Impact Report (UWIR) for its south west Queensland (SWQ) oil and gas production fields. The UWIR must identify the quantity of water produced during the production of gas and oil, the potential impact of the groundwater extraction on the groundwater systems and identified environmental values, the existing or proposed groundwater monitoring necessary to manage impact based on a groundwater monitoring strategy. Amongst environmental values of potential concerns, impact to private bores and impact to springs are specifically required to be addressed. This document covers the Amend and Resubmit notice issued to Santos Ltd in addressing requested updates and amendments.

Santos Production Licences in SWQ cover an area of over 8,160 km<sup>2</sup>. The development of petroleum fields in SWQ started in the early 1970s. Santos currently produces conventional gas and oil out of 191 gas wells and 230 oil wells in SWQ. The Cooper Basin underlies but is separate from the Eromanga Basin, which is the largest sub-basin within the Great Artesian Basin. ("GAB"). With a couple of localised exceptions, gas is produced from formations within the Cooper Basin, at depths exceeding 2000m, while oil is mainly produced from formations within the Eromanga Basin.

Santos's Production Licences in SWQ cover an area of over 8,160 km<sup>2</sup>. The development of petroleum fields in SWQ started in the early 1970s. Santos currently produces conventional gas and oil out of 191 gas wells and 230 oil wells in SWQ. The Cooper Basin underlies but is separate from the Eromanga Basin, which is the largest sub-basin within the Great Artesian Basin. ("GAB"). With a couple of localised exceptions, gas is produced from formations within the Cooper Basin, at depths exceeding 2000m, while oil is mainly produced from formations within the Eromanga Basin.

#### **Environmental Values**

A review of environmental values was performed including a review of groundwater dependant ecosystems (GDEs), groundwater users and social and cultural environmental values. Within Santos tenements, there are no recognised endangered regional ecosystems, the closest national park and listed wetland, the Currawinya Lakes National Park lies more than 240 km east of Santos tenements. Similarly, no GAB springs were found over the tenements or in the study area, the closest GAB discharge spring being 90 km south east of the tenements. The environmental values of potential concern are those groundwater users accessing groundwater resources in the Hooray Sandstone at depth exceeding 600 m.

#### **Petroleum Target Formations & Produced Water**

The petroleum target formations are:

- For oil production (all formations are within the Eromanga Basin unless otherwise stated):
  - The Murta Formation and the Namur Sandstone of the Hooray Sandstone
  - The Birkhead Formation
  - The Hutton Sandstone
  - Minor oil reservoirs are found in the Wyandra Sandstone Member (Cadna-Owie Formation), Westbourne Formation and the Adori Sandstone
  - The Tirrawarra Sandstone and basal Patchawarra Formation (within the Cooper Basin)
- For gas production (all formations are within the Cooper Basin unless otherwise stated):
  - The Toolachee Formation;
  - The Epsilon Formation;





- The Patchawarra Formation;
- Likely future production from the Paning Member and Doonmulla Member; and
- Minor gas production from the Hutton Sandstone (Eromanga Basin)

Over the whole period of production, groundwater extractions associated to oil production is estimated to date at 155 GL with 133 GL originating from the Hutton Sandstone. The production of gas generates a much smaller volume of water, oil production accounting for the larger volume of produced water.

In the last five years, an average of 150 ML/yr of groundwater has been produced from gas extraction (within 191 currently active wells) and 5,176 ML/yr has been produced from oil extraction (within 230 currently active wells) in SWQ.

#### **Groundwater Impact Estimation**

The groundwater impact estimation was conducted using an analytical solution called AnAqSim. The groundwater impact to the Eromanga Basin and the Cooper Basin were calculated in two separate calculation exercises as it was anticipated that the impact from groundwater extraction in the Cooper Basin would be quite limited due to the small volume of produced water during gas production and the thickness of low permeability layers overlying the target beds. The calculations are run in steady state conditions (i.e. not time varying) to investigate the *worst case scenario* for the groundwater impact estimation.

The results indicated that:

- Immediate affected area from produced water extraction from the Cooper Basin is less than 12 m calculated at the top of the Cooper Basin stratigraphy.
- The maximum immediate and long term affected area drawdown in the Eromanga Basin in the Tertiary and Quaternary strata (this includes the Glendower and Winton Formations where confined) is 2 m in steady state conditions. The Glendower and the Winton Formations are the most frequently targeted aquifers for water supply by the local community.
- A maximum pressure decline of 12 m was modelled in the long term affected area for Layer 3 of the model (containing the Mackunda Formation, Allura Mudstone, Toolebuc and Wallumbilla Formations). The affected area does not extend significantly beyond the Santos tenement boundaries, however a single private bore potentially targeting these stratum has been identified. It is recommended that this bore be visited to confirm the status and target aquifer(s).
- A maximum pressure decline of approximately 58 m head is estimated for model Layer 4 containing the Cadna-Owie Formation and Hooray Sandstone. The calculated 5 m contour line does not significantly extend outside of the tenements and four private bore targeting the Cadna-Owie Formation and Hooray Sandstone have been identified within these 5 m drawdown zones. It is recommended that these four bores be visited to confirm the targeted aquifers.
- A maximum pressure decline of approximately 115 m is estimated for model Layer 5 comprising the Westbourne Formation, Adori Sandstone, Birkhead Formation, Hutton Sandstone and Poolowanna Formation of the Eromanga Basin. The calculated 5 m drawdown contour line does not significantly extend outside of the tenements and no private bores target those formations within the affected area.

#### **Risk Assessment and Vulnerability**

Risk to groundwater systems arising from oil and gas activities have been assessed through a systematic process of risk analysis. The principal issues of concern with respect to potential risks to groundwater availability and quality arising from oil and gas activities have been identified as:

Reduced access to groundwater resources supplying stock, domestic and other licensed uses; and





Potential impacts to groundwater quality (especially to shallow groundwater resources) associated with an uncontrolled release of produced water or hydrocarbons.

Santos has adopted a number of preventive actions and management options to reduce the risk and likelihood of adverse impact occurring and to mitigate those risks.

Vulnerability has been evaluated from a combined assessment of the groundwater impact estimation, local settings, groundwater use and risk assessment outcomes, documented in this report. It can be concluded that:

- Santos current activities are not expected to have any material impact on GAB discharge springs and other GDEs.
- Santos current activities are expected to have an insignificant material impact on groundwater resources used by the community with the possible exception of localised impacts to two bores screened within the Hooray Sandstone aquifer located within areas of oil production. It is noted that the target aquifer formation data from these bores is from the WES database; the reliability of this data should be assessed during the upcoming private bore assessment program.
- Santos current activities in SWQ are expected to pose a negligible risk to the integrity of the GAB.





# **Table of Contents**

| 1.0 | INTRO  | DUCTION                                                | 1  |
|-----|--------|--------------------------------------------------------|----|
|     | 1.1    | Cooper Basin Oil and Gas Fields Operations Description | 1  |
|     | 1.2    | Previous Groundwater Studies                           | 8  |
| 2.0 | LEGIS  | LATIVE FRAMEWORK                                       | 9  |
|     | 2.1    | Petroleum and Gas (Production and Safety) Act 2004     | 9  |
|     | 2.2    | Water Act 2000, Queensland                             | 9  |
|     | 2.2.1  | Underground Water Impact Report (UWIR)                 | 9  |
|     | 2.2.2  | Drawdown Trigger Thresholds                            | 11 |
|     | 2.3    | Other Applicable Water Regulations                     | 11 |
| 3.0 | METH   | ODOLOGY FOR THIS UWIR                                  | 13 |
|     | 3.1    | Sources of Data                                        | 13 |
|     | 3.2    | Data Collation and Review                              | 14 |
|     | 3.3    | Geology and Stratigraphy                               | 14 |
|     | 3.4    | Groundwater Level and Quality                          | 14 |
|     | 3.5    | Bore Construction                                      | 15 |
|     | 3.6    | Meta Data Summaries                                    | 15 |
|     | 3.7    | Development of the Hydrogeological Conceptual Model    | 18 |
|     | 3.8    | Impact Estimation                                      | 19 |
| 4.0 | SITE D | DESCRIPTION                                            | 20 |
|     | 4.1    | Topography and Drainage                                | 20 |
|     | 4.2    | Climate                                                | 23 |
|     | 4.3    | Geology                                                | 24 |
|     | 4.3.1  | Regional Settings                                      | 24 |
|     | 4.3.2  | Depositional Configuration                             | 24 |
|     | 4.3.3  | Tectonic Setting and Basin Stress Regime               |    |
|     | 4.3.4  | Summary of the Cooper Basin Geology                    | 29 |
|     | 4.3.5  | Summary of the Eromanga Basin Geology                  | 30 |
|     | 4.3.6  | Conceptual Geological Cross Sections                   | 34 |
|     | 4.3.7  | Tectonics Controls and Trapping Mechanisms             | 37 |
|     | 4.4    | Environmental Values                                   | 39 |
|     | 4.4.1  | Groundwater Dependant Ecosystems (Incl. springs)       | 39 |





|     | 4.4.2    | Drinking Water and Groundwater Users                                     |    |
|-----|----------|--------------------------------------------------------------------------|----|
|     | 4.4.3    | Sandstone Aquifers of the Great Artesian Basin                           |    |
|     | 4.5      | Local Community Recreational, Aesthetical, Cultural and Spiritual Values |    |
| 5.0 | HYDRO    | DGEOLOGICAL CONCEPTUAL MODEL                                             |    |
|     | 5.1      | Hydrogeological Setting                                                  |    |
|     | 5.2      | Hydrostratigraphy                                                        |    |
|     | 5.2.1    | Quaternary and Tertiary Alluvium                                         |    |
|     | 5.2.2    | Winton Formation                                                         |    |
|     | 5.2.3    | Cadna-Owie Formation                                                     |    |
|     | 5.2.4    | Hooray Sandstone                                                         |    |
|     | 5.2.5    | Westbourne Formation, Adori Sandstone and Birkhead Formation             |    |
|     | 5.2.6    | Hutton Sandstone                                                         |    |
|     | 5.2.7    | Poolowanna Formation                                                     |    |
|     | 5.3      | Observed Reservoir Pressure Data                                         |    |
|     | 5.4      | Structural Influence on Groundwater Flow                                 |    |
|     | 5.5      | Hydraulic Parameters                                                     | 55 |
|     | 5.6      | Groundwater Level Variations                                             | 56 |
|     | 5.7      | Aquifer Recharge and Discharge                                           | 60 |
|     | 5.8      | Groundwater Quality                                                      |    |
|     | 5.8.1    | Data Quality Assessment                                                  | 62 |
|     | 5.8.2    | Water Quality Description                                                | 62 |
|     | 5.8.2.1  | Physical Parameters                                                      | 62 |
|     | 5.8.2.2  | Major Ion Chemistry                                                      | 63 |
|     | 5.8.2.2. | 1 Piper Diagram                                                          | 63 |
|     | 5.8.2.2. | 2 Wilcox Diagram                                                         | 63 |
|     | 5.8.3    | Groundwater Quality in the Study Area                                    | 64 |
|     | 5.8.3.1  | Available Data                                                           | 64 |
|     | 5.8.3.2  | Water Types of the Study Area Formations                                 | 65 |
|     | 5.8.4    | Comparison of Groundwater Quality to Regulatory Guidelines               |    |
|     | 5.8.4.1  | Public Supplies and Domestic Use                                         |    |
|     | 5.8.4.2  | Agricultural Use                                                         |    |
|     | 5.9      | Groundwater Use (other than Produced Water)                              |    |
| 6.0 | SANTO    | S OPERATIONS                                                             | 73 |





|     | 6.1   | Gas and Oil Production Occurrence and Processes        | 73  |
|-----|-------|--------------------------------------------------------|-----|
|     | 6.2   | Gas Extraction                                         | 74  |
|     | 6.2.1 | Areas of Production and Target Beds                    | 74  |
|     | 6.2.2 | Activities and Infrastructures                         | 77  |
|     | 6.3   | Oil Production                                         |     |
|     | 6.3.1 | Areas of Production and Target Beds                    |     |
|     | 6.3.2 | Activities and Infrastructures                         | 81  |
|     | 6.3.3 | Water Flooding                                         |     |
|     | 6.3.4 | Summary of Oil and Gas Production Wells                | 85  |
|     | 6.4   | Hydraulic Fracturing                                   | 85  |
|     | 6.4.1 | Produced Water Production                              | 88  |
|     | 6.4.2 | Produced Water Monitoring Methodology                  | 88  |
|     | 6.4.3 | Methodology for Predicting Three Year Water Extraction | 88  |
|     | 6.5   | Management of Produced Water                           |     |
| 7.0 | GROU  | NDWATER IMPACT ESTIMATION                              |     |
|     | 7.1   | Approach and Limitations                               |     |
|     | 7.1.1 | Analytical Approach                                    |     |
|     | 7.1.2 | AnAqSim Analytical Software                            |     |
|     | 7.1.3 | Assumptions and Limitations                            |     |
|     | 7.2   | Groundwater Impact Calculation Input Parameters        |     |
|     | 7.2.1 | Extent of Calculation and Boundary Conditions          |     |
|     | 7.2.2 | Water Production Volumes Used for the Calculation      | 97  |
|     | 7.2.3 | Justification for the Layering in AnAqSim              | 100 |
|     | 7.2.4 | Assigning Abstraction in the Calculation               | 101 |
|     | 7.2.5 | Observed Groundwater levels and Calibration Targets    | 102 |
|     | 7.3   | Calculated Impact of in the Eromanga Basin             | 104 |
|     | 7.4   | Calculated Impact on the Cooper Basin                  | 115 |
|     | 7.5   | Summary of Key Points from Analytical Calculations     | 123 |
|     | 7.6   | Sensitivity Analysis                                   | 123 |
|     | 7.6.1 | Hydraulic Parameter Sensitivity Analysis               | 124 |
|     | 7.6.2 | Extraction Sensitivity Analysis                        | 124 |
|     | 7.6.3 | Sensitivity Analysis Steady State Calibration          | 124 |
|     | 7.6.4 | Results of Sensitivity Analysis Modelling              | 125 |





|      | 7.7    | Summary of Key Points from Analytical Calculations         | 133 |
|------|--------|------------------------------------------------------------|-----|
| 8.0  | POTEN  | ITIAL IMPACTS                                              | 134 |
|      | 8.1    | Risk Assessment Process                                    | 134 |
|      | 8.2    | Identification of Risk to Environmental Values             | 136 |
|      | 8.2.1  | Drilling, Well Installation and Well Integrity             | 136 |
|      | 8.2.2  | Hydraulic Fracturing                                       | 137 |
|      | 8.2.3  | Groundwater Extraction                                     | 138 |
|      | 8.2.4  | Water flooding                                             | 138 |
|      | 8.2.5  | Gathering and Water Disposal Systems                       | 139 |
|      | 8.2.6  | Project Infrastructure                                     | 139 |
|      | 8.3    | Assessment and Results of the Risk Analysis                | 140 |
|      | 8.3.1  | Drilling, Well Installation and Well Integrity             | 140 |
|      | 8.3.2  | Hydraulic Fracturing                                       | 141 |
|      | 8.3.3  | Groundwater Extraction                                     | 141 |
|      | 8.3.4  | Water Flooding                                             | 142 |
|      | 8.3.5  | Gathering and Water Disposal Systems                       | 143 |
|      | 8.3.6  | Project Infrastructures                                    | 143 |
|      | 8.4    | Risk Control and Mitigation to Reduce/Manage Impact Levels | 143 |
|      | 8.4.1  | Drilling, Well Installation and Well Integrity             | 143 |
|      | 8.4.2  | Hydraulic Fracturing                                       | 144 |
|      | 8.4.3  | Water flooding                                             | 144 |
|      | 8.4.4  | Pond and Dam Construction                                  | 145 |
| 9.0  | VULNE  | RABILITY ASSESSMENT OF THE ENVIRONMENTAL VALUES            | 149 |
|      | 9.1    | Vulnerability of GDEs                                      | 149 |
|      | 9.2    | Vulnerability of Drinking Water and Groundwater Users      | 149 |
|      | 9.3    | Vulnerability of GAB Aquifers                              | 152 |
| 10.0 | GROU   | NDWATER MONITORING                                         | 153 |
|      | 10.1   | Existing Monitoring                                        | 153 |
|      | 10.2   | Groundwater Monitoring Strategy                            | 153 |
|      | 10.2.1 | Rationale of Monitoring                                    | 153 |
|      | 10.2.2 | Development of Standard Monitoring Suites                  | 154 |
|      | 10.2.3 | Groundwater Monitoring Infrastructures                     | 157 |
|      | 10.3   | Groundwater Monitoring Program                             | 157 |

|      | 10.3.1    | Shallow Groundwater Monitoring              | 157 |
|------|-----------|---------------------------------------------|-----|
|      | 10.3.2    | Hydraulic Fracturing Groundwater Monitoring | 157 |
|      | 10.3.3    | Regional Groundwater Monitoring             | 157 |
|      | 10.3.4    | Monitoring Reporting                        | 158 |
| 11.0 | UWIR REV  | IEW SCHEDULE AND REPORTING PROTOCOL         | 159 |
| 12.0 | CONCLUS   | ION                                         | 160 |
| 13.0 | STANDARI  | D DEFINITIONS                               | 162 |
| 14.0 | REFERENC  | CES                                         | 170 |
| 15.0 | LIMITATIO | NS OF THIS REPORT                           | 173 |

#### TABLES

| Table 1: Responses to the Amend and Modify Notice within this Updated UWIR                                 | 1  |
|------------------------------------------------------------------------------------------------------------|----|
| Table 2: Additional Legislative Requirements Related to Groundwater                                        | 11 |
| Table 3: List of Available Data                                                                            | 13 |
| Table 4: Metadata Assessment Card                                                                          | 16 |
| Table 5: Metadata Summary                                                                                  | 17 |
| Table 6: Mean Climate Characteristics within the Cooper Basin Operations Area - Windorah Station           | 23 |
| Table 7: Geological Abbreviations for Stratigraphical markers of the Eromanga and Cooper Basins Formations | 34 |
| Table 8: Significant Sites of Cultural Heritage (Aboriginal and European) (Santos 2011)                    | 43 |
| Table 9: Hydrostratigraphy of the Study Area                                                               | 46 |
| Table 10: Hydraulic Parameters                                                                             | 55 |
| Table 11: DERM GAB Monitoring Network - Target Aquifers                                                    | 56 |
| Table 12: Groundwater pH                                                                                   | 62 |
| Table 13: Groundwater classification based on TDS concentrations                                           | 62 |
| Table 14: Salinity hazard classes                                                                          | 63 |
| Table 15: Sodium hazard classes                                                                            | 64 |
| Table 16: Comparison of ground-water-quality samples with standards for drinking water (ADWG, 2004)        | 67 |
| Table 17: Groundwater hardness                                                                             | 68 |
| Table 18: Tolerances of Livestock to TDS in Drinking Water (ANZECC & ARMCANZ, 2000)                        | 68 |
| Table 19: Estimated Water Extraction from Bores in the Study Area                                          | 71 |
| Table 20: List of Gas Fields                                                                               | 76 |
| Table 21: List of Oil Fields                                                                               | 80 |
| Table 23: Produced Water Production                                                                        | 90 |
| Table 24: Summary of Water Management Ponds                                                                | 92 |
| Table 25: Eromanga Basin Analytical Calculation Parameters                                                 | 96 |
|                                                                                                            |    |



| Table 26: Cooper Basin Analytical Calculation Parameters                                 |     |
|------------------------------------------------------------------------------------------|-----|
| Table 27: Eromanga Basin: Observed verses Modelled Groundwater Level                     | 103 |
| Table 28: Cooper Basin: Tabulated Observed verses Modelled Groundwater Level             | 104 |
| Table 29: Calculated maximum drawdown along lines of section                             | 115 |
| Table 30: Cooper Basin: Calculated maximum pressure decline along lines of section       | 121 |
| Table 31: Sensitivity Analysis Calibration Results                                       | 124 |
| Table 32: Sensitivity Analysis Maximum Drawdown along lines of section                   | 133 |
| Table 33: Summary of Predictive and Sensitivity Analysis Drawdown for the Eromanga Basin | 133 |
| Table 34: Summary of Predictive and Sensitivity Analysis Drawdown for the Cooper Basin   | 133 |
| Table 35: Risk Assessment Definitions (Santos)                                           | 135 |
| Table 36: Santos Risk Matrix and Risk Tolerance Definition                               | 135 |
| Table 37: Risk Assessment Results                                                        | 147 |
| Table 38: Monitoring Priority Ranking                                                    | 154 |
| Table 39: Monitoring Suites Analytes                                                     | 155 |

#### FIGURES

| Figure 1: Santos Cooper Basin Oil and Gas Operations Location                                                              | 5  |
|----------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2: Santos Cooper Basin Oil and Gas Fields Location                                                                  | 6  |
| Figure 3: Hydrocarbon 'Traps' Geological Settings                                                                          | 7  |
| Figure 4: Study Area during Floods (2010)                                                                                  | 21 |
| Figure 5: Topography and Drainage of the Study Area                                                                        | 22 |
| Figure 6: Rainfall and Temperature Diagram - Monthly Averages from 1931-2012 for Windorah Station (BOM, 2012)              | 23 |
| Figure 7: GAB Structural Geology of the Study Area                                                                         | 25 |
| Figure 8: Chronology and stratigraphy of the Cooper and Eromanga Basins (Queensland and South Australia)<br>(Draper, 2002) | 26 |
| Figure 9: Surface Geology                                                                                                  | 27 |
| Figure 10: Stratigraphy Sequence in the Study Area                                                                         | 33 |
| Figure 11: Geological Schematic Cross Section across the GAB Eromanga Basin                                                | 35 |
| Figure 12: Geological Conceptual Cross Section across the Study Area                                                       | 36 |
| Figure 13: Petroleum Reservoirs Trapping Mechanisms of the Cooper and Eromanga Basins (from SA DPI, 1998)                  | 38 |
| Figure 14: Summary of Regional Major Faults (Santos 2004)                                                                  | 38 |
| Figure 15: Groundwater Dependant Ecosystems in the Study Area                                                              | 41 |
| Figure 16: Groundwater Management Area for the Study Area                                                                  | 45 |
| Figure 17: Observed Tickalara Oil Field Pressure with Depth Plots                                                          | 50 |
| Figure 18: Observed Iliad Field Pressure with Depth Plots                                                                  | 51 |
| Figure 19: Hydrogeological Map - Tertiary Formations                                                                       | 52 |

| Figure 20: Hydrogeological Map – Winton Formation                                                             | 53    |
|---------------------------------------------------------------------------------------------------------------|-------|
| Figure 21: Hydrogeological Map - Hooray Sandstone                                                             | 54    |
| Figure 23: GAB Groundwater Monitoring Network over the Study Area                                             | 59    |
| Figure 24: GAB Regional Groundwater Flow and Recharge Intake Beds (BRS, 2000)                                 | 61    |
| Figure 25: Classification of Hydrochemical Facies using Piper Plot                                            | 63    |
| Figure 26: Piper Diagram                                                                                      | 65    |
| Figure 27: Piper Diagrams of Individual Formations                                                            | 66    |
| Figure 28: Wilcox Plot Showing Salinity and Sodicity Hazard Classes.                                          | 69    |
| Figure 29: Target Groundwater Sources for Groundwater Usage in the Study Area                                 | 70    |
| Figure 30: Geographical Distribution of Groundwater Use                                                       | 72    |
| Figure 31: Gas Reservoirs Stratigraphical Distribution                                                        | 75    |
| Figure 32: Oil Reservoirs Stratigraphical Distribution                                                        | 79    |
| Figure 33: Location of Water Flooding Activities                                                              | 84    |
| Figure 34: Historical Number of Hydraulically Stimulations in SWQ                                             | 85    |
| Figure 35: Hydraulic Fracturing Locations in SWQ                                                              | 87    |
| Figure 36: Variation over time of produced Water in Santos SWQ Oil and Gas Fields                             | 89    |
| Figure 37: Average Annual Water Rate in Central and Warrego West (note: graphs scales are different)          | 91    |
| Figure 38: Extent of the Eromanga Basin Calculation                                                           | 98    |
| Figure 39: Extent of the Cooper Basin Calculation                                                             | 99    |
| Figure 40: Eromanga Basin Model Initial Conditions: Observed verses Modelled Groundwater Level                | . 103 |
| Figure 41: Cooper Basin Model Initial Conditions: Observed verses Modelled Groundwater Level                  | 104   |
| Figure 42: Immediately Affected Area - Eromanga Basin Modelled Drawdown: Groundwater Contours in Layer 2      | . 105 |
| Figure 43: Immediately Affected Area Eromanga Basin Modelled Drawdown: Groundwater Contours in Layer 3        | . 106 |
| Figure 44: Immediately Affected Area - Eromanga Basin Modelled Drawdown: Groundwater Contours in Layer 4      | . 107 |
| Figure 45: Immediately Affected Area - Eromanga Basin Modelled Drawdown: Groundwater Contours in Layer 5      | . 108 |
| Figure 46: Long Term Affected Area - Eromanga Basin Modelled Drawdown: Groundwater Contours in Layer 2        | . 109 |
| Figure 47: Long Term Affected Area -Eromanga Basin Modelled Drawdown: Groundwater Contours in Layer 3         | . 110 |
| Figure 48: Long Term Affected Area - Eromanga Basin Modelled Drawdown: Groundwater Contours in Layer 4        | 111   |
| Figure 49: Long Term Affected Area - Eromanga Basin Modelled Drawdown: Groundwater Contours in Layer 5        | . 112 |
| Figure 50: Eromanga Basin: Calculated Groundwater Levels in Immediately Affected Ares (Section A-A' and B-B') | . 113 |
| Figure 51: Eromanga Basin: Calculated Groundwater Levels in Long Term Affected Ares (Section A-A' and B-B')   | . 115 |
| Figure 52: Immediately Affected Area - Cooper Basin Modelled Drawdown: Groundwater Contours in Layer 2        | . 116 |
| Figure 53: Immediately Affected Area - Cooper Basin Modelled Drawdown: Groundwater Contours in Layer 3        | . 117 |
| Figure 54: Long Term Affected Area - Cooper Basin Modelled Drawdown: Groundwater Contours in Layer 2          | . 118 |
| Figure 55: Long Term Affected Area - Cooper Basin Modelled Drawdown: Groundwater Contours in Layer 3          | . 119 |
| Figure 56: Cooper Basin: Modelled Immediate Affected Area Groundwater Levels in Cross Section C-C'            | 120   |



| Figure 57: Cooper Basin: Modelled Long Term Affected Area Groundwater Levels in Cross Section C-C'               | 121 |
|------------------------------------------------------------------------------------------------------------------|-----|
| Figure 58: Plot of Sensitivity Analysis Steady State Calibration                                                 | 125 |
| Figure 59: Eromanga Basin HPSA1: Modelled Groundwater Drawdown Contours in all Layers                            | 126 |
| Figure 60: Cooper Basin HPSA2: Modelled Groundwater Drawdown Contours in Layer 2                                 | 127 |
| Figure 61: Long Term Affected Area – Eromanga Basin ESA1: Modelled Groundwater Drawdown Contours in Layer 5      | 128 |
| Figure 62: HPSA1: Immediately Affected Groundwater Cross Section A-A' and B-B'                                   | 129 |
| Figure 63: HPSA1: Long Term Affected Groundwater Cross Section A-A' and B-B'                                     | 130 |
| Figure 64: HPSA2: Immediately and Long Term Affected Groundwater Cross Section C-C'                              | 131 |
| Figure 65: ESA1: Immediately and Long Term Affected Groundwater Cross Section A-A'                               | 132 |
| Figure 66: Hierarchy of Risk Tolerance (Santos EHSMS)                                                            | 136 |
| Figure 67: Typical Gas Well Construction Design (from Santos)                                                    | 141 |
| Figure 68: Typical Water Flood Well Design                                                                       | 145 |
| Figure 69: Vulnerability of Groundwater Sources of the Hooray Sandstone                                          | 150 |
| Figure 70: Long Term Affected Area - Eromanga Basin Modelled Groundwater Drawdown in Layer 1 showing GAB Springs | 151 |

#### APPENDICES

APPENDIX A DERM: Amend or Modify Notice

APPENDIX B Bore Metadata

APPENDIX C Geological Contour Maps

APPENDIX D Pond Register

APPENDIX E Produced Water and Well Oil/Gas Field Data

### APPENDIX F

**Risk Analysis** 

**APPENDIX G** Santos Extraction Bores in the Cooper and Eromanga Basins

#### APPENDIX H

Groundwater Monitoring Program

#### APPENDIX I

Maps Indicating the 0.2m Drawdown Trigger Threshold for Model Layers 3 and 4  $\,$ 



### **1.0 INTRODUCTION**

### 1.1 Cooper Basin Oil and Gas Fields Operations Description

Santos currently operates conventional gas and oil fields within the Cooper Basin of South Western Queensland (SWQ) (Figure 1). The area occupied by the Production Licences within which these petroleum fields lie encompasses in excess of 8,160 km<sup>2</sup> of largely semi-arid agricultural land and was developed for petroleum operations in the early 1970s. Santos petroleum tenements contain approximately 191 producing gas wells and 230 producing oil wells (Figure 2) over SWQ. Santos Cooper Basin petroleum fields produce both conventional gas and oil:


- Conventional gas production is undertaken from porous sandstone formations and as such does not require the depressurisation of the target beds (with respect to groundwater, and the need to remove groundwater to release the gas). Some water is produced as a by-product however the volumes are quite limited (discussed in Section 6.2). In the study area, the majority of gas production is from the deep formations of the Cooper Basin (underlying the GAB system).
- Conventional oil is produced primarily from the formations of the Eromanga Basin (a sub-basin with the GAB formations) with some additional production from the Tirrawarra Formation and basal Patchawarra Formation (both of which lie within the deeper Cooper Basin)). There are several types of oil reservoirs resulting from the process of "trapping" of the oil. These are shown in Figure 3 and discussed further in Section 4.3.

Note: "Santos" refers to Santos and its various companies who operate the oil and gas tenements on behalf of the various joint venture parties.

The UWIR (11763010-3000-Rev1, December, 2011) for the Cooper Basin Oil and Gas Field South West Queensland (SWQ) was submitted to the Queensland Department of Environment and Resource Management (DERM, now <u>Department of Environment and Heritage Protection</u> (DEHP); ref: 489261) for consideration. An *Amend and Resubmit* (AaR) Notice was issued by DEHP on 8 May 2012 in response to the submission. This UWIR update is written to address the items raised in this amend and resubmit notice. A copy of the AaR Notice is provided in APPENDIX A. Responses to individual items within the AaR Notice incorporated into this updated UWIR are included in sections as shown in Table 1

| AaR Item<br>Number | DERM Amend or Modify request                                                                                      | Location of<br>Response in<br>this Report | Summary of Response                                                                                                                                                                                                                                                                                                                                               |
|--------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                  | Discuss methodology for<br>extraction monitoring and<br>its reliability                                           | Section 6.4.2                             | The volumes of produced water associated<br>with the extraction of gas are estimated as a<br>percentage of the volume of produced gas.<br>Similarly for oil, water content is estimated by<br>dividing the total extraction at a monitoring<br>location and extrapolated between wells<br>based on production. This is likely to provide<br>reasonable estimates. |
| 2                  | Discuss methodology for<br>assigning target formations<br>and source of three year<br>extraction rate predictions | Section 6.4.3<br>and 7.2.4                | No complete record of target formations for<br>each well was available. The target<br>formations within the model were simplified to<br>allow extraction from a single layer. This was<br>considered representative as the model was<br>an equivalent porous medium model.                                                                                        |
| 3a                 | Discuss the methodology to<br>determine predicted<br>extraction rates over the<br>next three years                | Section 6.4.3,<br>Table 23                | No predictions for extraction are routinely<br>made. As the total extraction is generally in<br>decline, it was considered conservative to<br>extrapolate the previous years extraction for                                                                                                                                                                       |

#### Table 1: Responses to the Amend and Modify Notice within this Updated UWIR



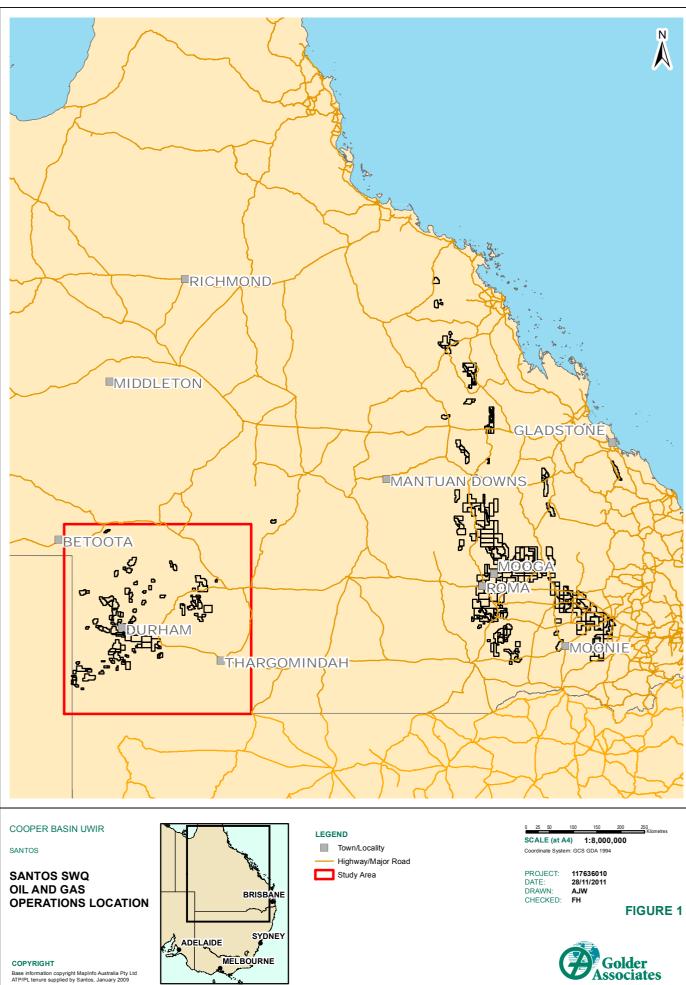




| AaR Item<br>Number | DERM Amend or Modify request                                                                | Location of<br>Response in<br>this Report | Summary of Response                                                                                                                                                                                                                                          |  |
|--------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                    |                                                                                             |                                           | the next 3 years.                                                                                                                                                                                                                                            |  |
| 3b                 | Santos extraction well database                                                             | Section 7.2.1<br>and APPENDIX<br>G        | Clarification of the number and locations of the wells has been provided                                                                                                                                                                                     |  |
| 3c                 | Santos extraction well<br>locations by tenure                                               | Section 6.3.4                             | Clarification of the number and locations of the wells has been provided                                                                                                                                                                                     |  |
| 3d                 | Data clarification                                                                          | Figure 41, Table 27 and Table 28          | Clarification of the source of the data for these tables and figures has been provided                                                                                                                                                                       |  |
| 4a                 | Discuss the influence of<br>faults on the regional<br>hydrogeology                          | Section 5.4                               | The general compressional tectonic regime would suggest faults generally form barriers to groundwater flow.                                                                                                                                                  |  |
| 4b                 | Use of reservoir pressure<br>data for groundwater level<br>observations                     | Section 5.3                               | Reservoir data, where available, suggests a<br>hydraulic barrier exists above the target<br>formations. The proposed collation and<br>interrogation of Santos' historical pressure<br>data will be evaluated as part of the update<br>schedule of this UWIR. |  |
| 4c                 | Clarification of data and figure symbology                                                  | Figure 30                                 | Symbology has been updated in Figure 29.                                                                                                                                                                                                                     |  |
| 4d                 | Bore locations by tenure                                                                    | APPENDIX G                                | Clarification of the number and locations of the wells has been provided                                                                                                                                                                                     |  |
| 4e                 | Discussion of estimated<br>groundwater extraction by<br>other users                         | Section 4.4.2                             | An estimate and discussion on other groundwater users has been provided.                                                                                                                                                                                     |  |
| 4f                 | Clarification of monitoring data                                                            | Table 11                                  | Clarification of the monitoring bores has been provided in Table 11.                                                                                                                                                                                         |  |
| 4g                 | Discussion of monitoring data from artesian wells                                           | Section 5.6                               | Available data from DERM monitoring bores including artesian bores discussed in Section 5.6                                                                                                                                                                  |  |
| 4h                 | Clarification of extent of<br>available data when<br>discussing groundwater<br>level trends | Section 5.6 and<br>Section 7.2.5          | Long term trends were analysed and provided the basis for starting heads in each of the model scenarios.                                                                                                                                                     |  |
| 8 a and b          | Additional figures showing<br>predicted groundwater<br>declines                             | Section 7.3 and 7.4                       | Clarification of the immediate and long term affected area provided with additional maps                                                                                                                                                                     |  |
| 9                  | Additional figures at a smaller scale to define impacts                                     | Section 7.3 and 7.4                       | Clarification of the immediate and long term affected area provided with additional maps                                                                                                                                                                     |  |
| 10                 | Clarification of well locations in predicted affected areas                                 | Section 7.3 and 7.4                       | Clarification of the immediate and long term affected area provided with additional maps                                                                                                                                                                     |  |
| 11a                | Discussion on selection of<br>hydraulic parameters                                          | Section 7.2                               | The source of input data to the model is<br>discussed with reference to its source. It is<br>acknowledged that there is limited data for<br>some strata, in particular low permeability<br>strata at depth in each basin.                                    |  |
| 11b                | Justification of applying<br>target formations to<br>extraction                             | Table 26 and Section 7.2.4                | The simplification required by the software has been justified along with the methodology employed to simplify the model                                                                                                                                     |  |





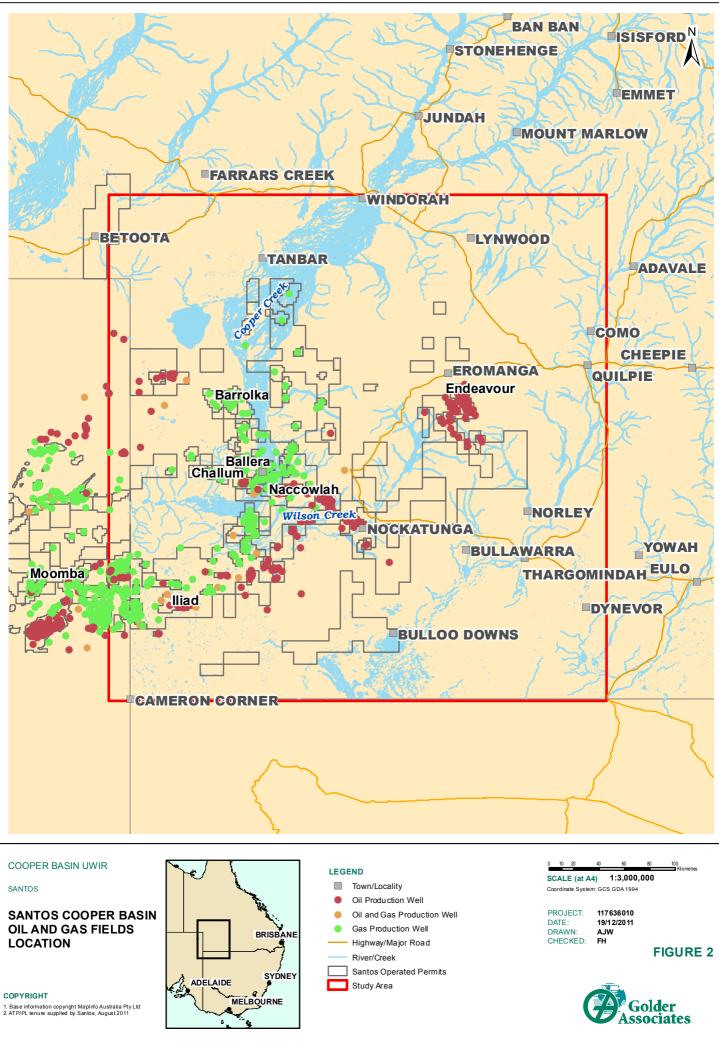

| AaR Item<br>Number | DERM Amend or Modify request                                                                                                                                          | Location of<br>Response in<br>this Report | Summary of Response                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                       |                                           | as an equivalent porous medium model<br>where adjacent stratum is grouped together<br>and assigned a single representative<br>hydraulic parameter. It is therefore necessary<br>to also group the extraction in stratum that is<br>grouped for modelling purposes.                                                                                                                                                                                            |
| 11c                | Clarification of modelled<br>verses observed<br>groundwater data                                                                                                      | Table 28                                  | Clarification and additional tables and plots<br>provided for clarification of the source of the<br>calibration statistics.                                                                                                                                                                                                                                                                                                                                   |
| 11d                | Model sensitivity analysis                                                                                                                                            | Section 7.6                               | Three sets of model sensitivity analysis was<br>undertaken: vertical hydraulic conductivity of<br>the aquitard overlying the target formations in<br>both the Cooper Basin and Eromanga Basin<br>Models (HPSA1 and HPSA2 respectively). In<br>addition, an investigation into the potential<br>impact from extraction in South Australia was<br>investigated. It was concluded that there is<br>minimal change in the results due to<br>sensitivity analysis. |
| 11e                | Discuss the use of<br>departmental groundwater<br>level monitoring in<br>modelling                                                                                    | Section 5.6 and 7.2.5                     | DERM observation bore data was discussed<br>and used in the initial conditions for all model<br>scenarios.                                                                                                                                                                                                                                                                                                                                                    |
| 11f (a)            | Estimate predictive<br>uncertainty considering<br>potential impact from<br>Santos' South Australian<br>operations                                                     | Section 7.6                               | A sensitivity run comparing predicted<br>drawdown in Queensland to predicted<br>drawdown in Queensland plus South<br>Australia was undertaken. It was concluded<br>that no significant additional drawdown was<br>observed in the model due to extraction in<br>South Australia.                                                                                                                                                                              |
| 11f (b)            | Estimate predictive<br>uncertainty considering<br>potential hydraulic<br>interaction between the<br>Cooper and Eromanga<br>Basins, particularly in South<br>Australia | Section 7.4                               | The Cooper Basin model was run to include<br>extraction in South Australia. With the given<br>hydraulic parameters in this model, no impact<br>was observed in the Eromanga Basin due to<br>extraction from the Cooper Basin in South<br>Australia.                                                                                                                                                                                                           |
| 12                 | Provide a program for review of the UWIR                                                                                                                              | Section 11.0                              | The review schedule for the UWIR will be<br>linked to the water monitoring plan. It is<br>intended that data obtained as part of the<br>water monitoring plan will be reviewed and<br>considered against the assumptions made in<br>this UWIR. Amendments will be considered<br>on a three yearly basis.                                                                                                                                                      |
| 13                 | Provide a protocol for providing the update to the chief executive                                                                                                    | Section 11.0                              | The protocol for reporting to the regulator will<br>be incorporated into the water monitoring<br>plan. This is currently being finalised by<br>Santos.                                                                                                                                                                                                                                                                                                        |
| 14                 | Discuss water monitoring network                                                                                                                                      | Section 11.0<br>and                       | The water monitoring plan is currently being finalised by Santos.                                                                                                                                                                                                                                                                                                                                                                                             |
| 15                 | Clarification on monitoring                                                                                                                                           | Section 11.0                              | The water monitoring plan is currently being                                                                                                                                                                                                                                                                                                                                                                                                                  |





| AaR Item<br>Number | DERM Amend or Modify request                                                | Location of<br>Response in<br>this Report | Summary of Response                                                                                                                                                      |
|--------------------|-----------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | frequency                                                                   | and                                       | finalised by Santos.                                                                                                                                                     |
| 16                 | Provide a program for<br>reporting to the<br>Queensland Water<br>Commission | Section 11.0                              | The procedure for updating the regulator will<br>be incorporated into the water monitoring<br>plan. The water monitoring plan is currently<br>being finalised by Santos. |
| 17                 | Clarification of the impact in the vicinity of the identified springs       | Section 7.3 and 7.4                       | Clarification of the immediate and long term<br>affected area in the vicinity of the springs has<br>been provided with additional maps.                                  |

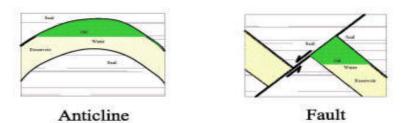




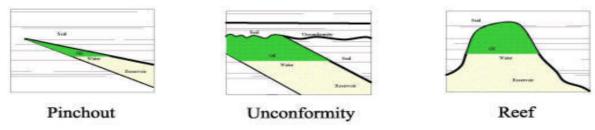

Jthyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE/GIS/Projects/117636010\_R\_F0001\_CooperBasinProjectLocation.m

L

Γ


٦




is drawing is the copyright of Golder Associates Py. Ltd. Unsurburked use or reproduction of this plan either wholly or in part without written permiss bn infinges copyright. @ Colder



## Structural Traps



## Stratigraphic Traps



J F Brown 2005

Figure 3: Hydrocarbon 'Traps' Geological Settings

Further information on Santos activities are provided in Section 6.0.



### **1.2 Previous Groundwater Studies**

Previous groundwater investigations or reports have been undertaken or prepared on parts of the Santos SWQ operations and include:

- Water Flooding Impact Assessment: Further Information to Support Assessment of Potential Impacts of Water Flooding in PL295, URS, 2010
- Response to DERM Re: Use of fracture fluids containing BTEX, Santos 2010

References for regional groundwater studies and regional groundwater related literature are included in Section 14.0 at the end of this report.





### 2.0 LEGISLATIVE FRAMEWORK

Legislation and regulation requires petroleum tenure holders to manage the access, use and disposal of produced water generated through oil and gas development activities in an environmentally sustainable manner. This section provides a summary of the key Queensland and National legislation requirements related to the extraction of groundwater from deep aquifers and management of produced water.

Santos activities in the Cooper Basin are subject to general QLD or commonwealth regulation, and to site and activities specific Environmental Authorities (EAs) determined by DERM under the *Environmental Protection Act 1994*.

The legislative texts discussed below provide the general driver for the regulation and how it applies to Santos activities.

### 2.1 Petroleum and Gas (Production and Safety) Act 2004

The Water and Other Legislation Amendment Act 2010, sanctioned on 1 December 2010, amends the Water Act 2000 (Water Act) and other relevant legislation with the aim of improving the management of impacts associated with groundwater extraction that form part of petroleum activities. These amendments transfer the regulatory framework for underground water from the Petroleum Act 1923 and the Petroleum and Gas (Production and Safety) Act 2004 (P&G Act) to the Water Act.

The P&G Act originally provided all rights of water extraction to a petroleum activity. However through recent updates of the P&G Act and the Water Act (See Section 2.2), a petroleum tenure holder has an obligation to identify impact, establish baseline conditions and maintain groundwater supplies in private bores in the vicinity of petroleum operations. Where a bore owner can demonstrate reduced access to groundwater supplies, or a reduction in beneficial use class due to water quality changes, as a result of petroleum operations, "make good" provisions are available to address the loss incurred by an affected bore owner.

Under the P&G Act, the make good obligation for affected bores also applies to petroleum tenure obtained under the *Petroleum Act 1923* and are further defined in the Water Act.

### 2.2 Water Act 2000, Queensland

The Water Act 2000 (as amended 2010) regulates access to water resources. Under the Water Act, a water licence is required to take water for any use other than domestic and stock watering. When a water licence is required, there may be a requirement under Section 214(e) to carry out and report on a monitoring program. If water is to be provided to others as part of the activities, they are required to be registered as a Water Service Provider.

As mentioned previously, in 2010, groundwater management requirements that were previously regulated under the P&G Act and the *Petroleum Act 1923* were removed and included in an amendment to the *Water Act 2000.* Those requirements included the obligations to:

- Prepare UWIRs;
- Establish groundwater baseline conditions through baseline assessment of private bores; and
- Define make good provisions as a contingency to address losses incurred by private bore owners resulting from petroleum activities.

The Water Act also defines the drawdown thresholds which if reached will trigger investigations and make good actions.

#### 2.2.1 Underground Water Impact Report (UWIR)

The amendments to the Water Act support management and protection of water resources, by requiring operators to prepare periodic UWIR. Subsequent UWIR's are to be prepared every three years. The approved reports will be publicly notified by Santos and published on the Queensland Department of Environment and Resource Management (DERM) website.





The following requirements apply to the preparation of UWIR, along with the reference to the section(s) in this report where the requirement is addressed:

- a) for the area to which the report relates:
  - i) the quantity of water produced or taken from the area because of the exercise of any previous relevant underground water rights (Section 6.0)
  - ii) an estimate of the quantity of water to be produced or taken because of the exercise of the relevant underground water rights for a 3 year period starting on the consultation day for the report (Section 6.0).
- b) for each aquifer affected, or likely to be affected, by the exercise of the relevant underground water right:
  - i) a description of the aquifer (Section 5.0)
  - ii) an analysis of the movement of underground water to and from the aquifer, including how the aquifer interacts with other aquifers (Sections 5.0, 7.0 and 8.3.3)
  - iii) an analysis of the trends in water level change for the aquifer because of the exercise of the [extraction] rights (Sections 7.0 and 8.3.3)
  - iv) a map showing the area of the aquifer where the water level is predicted to decline, because of the taking of the quantities of water forecasted, by more than the bore trigger threshold within 3 years after the consultation day for the report (Section 7.3)
  - v) a map showing the area of the aquifer where the water level is predicted to decline, because of the exercise of relevant underground water rights, by more than the bore trigger threshold at any time
- c) a description of the methods and techniques used to obtain the information and modelled predictions (Section 7.0);
- d) a summary of information about all potentially impacted water bores in the area, including the number of bores, and the location and authorised use or purpose of each bore (Section 9.2)
- e) a program for:
  - i) conducting an annual review of the accuracy of each map
  - giving the chief executive a summary of the outcome of each review, including a statement of whether there has been a material change in the information or predictions used to prepare the maps;
- f) a water monitoring strategy (Section 10.0)
- g) a spring impact management strategy (Section 9.1)

The water monitoring strategy must include a strategy for monitoring water levels and water quality in aquifers in the area, and a strategy for monitoring the quantity of water produced from O&G wells. A timetable for the implementation and reporting program must also be completed.

The spring impact management strategy must include details as to the potentially affected springs, an assessment of the connectivity between the springs and the aquifers and an assessment of the impact of the predicted water level decline on ecosystem health and cultural values. The strategy should provide options to prevent or mitigate impacts. An implementation timetable and a monitoring and reporting program should be included.





### 2.2.2 Drawdown Trigger Thresholds

DERM has defined a new regime for drawdown trigger threshold new as follows:

- 5 m decline for consolidated aquifers such as sandstone;
- 2 m decline for shallow alluvial aquifers; and
- 0.2 m for active springs.

Under this amendment, Santos will be expected to investigate complaints from landowners within an *Immediately Affected Area* – an area defined where the water level is expected to exceed the trigger threshold within three years from the reporting day. If the investigation concludes that a material impact to water production will occur, then Santos and the affected groundwater user will negotiate an appropriate make-good arrangement.

### 2.3 Other Applicable Water Regulations

Table 2 summarises the additional legislative requirements applicable to the oil and gas production and the Study Area.

| Legislation/Section                                             | Driver                                                                                                                                                                                                                                                                                                                                                                                                         | Key Points as they Apply to the<br>Santos Operations                                                                                             |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Environmental Protection<br>Act 1994, Queensland                | Section 309Z can be imposed on a<br>petroleum activity and cause the<br>activity to prepare an<br>environmental report and/or<br>implement water management<br>plans.                                                                                                                                                                                                                                          | Conditions are issued through Environmental Authorities.                                                                                         |  |
|                                                                 | An environmental plan must be<br>developed and implemented for<br>water management, including<br>plans for managing stormwater,<br>sewage and trade waste for<br>protection of surface and<br>groundwater.                                                                                                                                                                                                     |                                                                                                                                                  |  |
| Environmental Protection<br>(Water) Policy, 2009,<br>Queensland | In the case of produced water<br>recycling, water releases on land,<br>water releases to surface water or<br>stormwater management, the<br>administrating authority must<br>consider the existing quality of<br>waters that may be affected, the<br>cumulative effect of the release in<br>question, the water quality<br>objectives for waters affected and<br>the maintenance of acceptable<br>health risks. | Contamination must be minimised or<br>prevented and any release, or<br>potential release, must be monitored<br>against site baseline conditions. |  |

Table 2: Additional Legislative Requirements Related to Groundwater





| Management of Water<br>Produced in Association<br>with Petroleum Activities<br>(produced water),<br>December 2007 | To promote the beneficial use of<br>produced water from petroleum<br>activities in Queensland, including<br>the promotion of beneficial use,<br>and re-injection.                                        | The management options chosen by<br>Santos must comply with the<br>conditions of the General Notice,<br>and they must have appropriate<br>facilities at the site where the water<br>is to be used. If Santos wishes to<br>use produced water for purposes<br>other than domestic or stock<br>purposes (such as irrigations), the<br>holder must obtain a water licence<br>under the <i>Water Act 2000</i> . |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Great Artesian Basin<br>Resource Operations<br>Plan 2006                                                          | Defines the maximum amount of<br>water that can sustainably be<br>extracted from the recognised<br>aquifers within each groundwater<br>management area.<br>Requires monitoring for all<br>licensed bores | Santos production wells are not<br>licensed for water extraction with<br>DERM as they are covered by the<br>Petroleum Legislation.                                                                                                                                                                                                                                                                          |
| Environmental Protection<br>and Biodiversity<br>Conservation (EPBC)<br>Act 1999                                   | Provides the regulatory framework<br>for Matter of National and<br>Environmental Significance<br>(MNES).                                                                                                 | The most significant groundwater related MNES in the GAB are GAB artesian discharge springs.                                                                                                                                                                                                                                                                                                                |
| Water Resource (Cooper<br>Creek) Plan 2000,<br>Queensland                                                         | The Plan applies to watercourses<br>and non-artesian groundwater<br>systems.                                                                                                                             | Defines water rights for accessing<br>non-GAB groundwater systems and<br>surface water                                                                                                                                                                                                                                                                                                                      |



## 3.0 METHODOLOGY FOR THIS UWIR

### 3.1 Sources of Data

#### Table 3: List of Available Data

| Data                                                                | Source               | Details & Comment                                                                                                                |  |
|---------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Bores names & locations, bore hydrogeological information           | DERM                 | Extraction from DERM groundwater database.                                                                                       |  |
| Bore use, licensing                                                 | DERM                 | Extraction from DERM Water Entitlements System (WES) database (previously WERD database)                                         |  |
| Oil and gas wells                                                   | Santos               | Location, date of installation, initial pressure, depth, target formations, status                                               |  |
|                                                                     | Santos               | Some conceptual geological cross sections provided in power point presentations and reference papers                             |  |
|                                                                     | Santos               | Stratigraphy tables, reports, reference papers                                                                                   |  |
| Geology                                                             | Santos               | Review of regional petroleum potential: regional mapping<br>of petroleum beds, geochemistry of oil and gas, migration<br>pathway |  |
|                                                                     | SA<br>Government     | Petroleum geology of southern Australia                                                                                          |  |
| Planning development                                                | Santos               | Petroleum Lease - Later Development Plan                                                                                         |  |
| Hydraulic parameters of oil and gas formations and other formations | Santos               | Estimates of the reservoirs permeability and porosity values of specific formations                                              |  |
|                                                                     | Literature<br>Review | Estimates of hydraulic conductivity for majority of formations                                                                   |  |
| Regulatory / Licences                                               | Santos               | Environmental Authority                                                                                                          |  |
|                                                                     | Santos               | Produced water volumes per field (for oil), produced oil volume also provided. Forecast volumes not provided.                    |  |
| Groundwater production                                              | DERM                 | Groundwater licence data (licence register only, no allocation provided by DERM)                                                 |  |
|                                                                     | Santos               | Initial reservoir pressures (prior to testing and production) available for a number of production wells.                        |  |
| Water levels / formation<br>pressures                               | DERM                 | Data available from groundwater database, no monitoring data available/provided                                                  |  |
|                                                                     | Santos               | Multi-levels formation pressure provided for Iliad oil field and Tickalara oil field                                             |  |
| Well field estimates for future production and pressures            | Santos               | Not provided                                                                                                                     |  |
| Well completions information                                        | Santos               | Not provided                                                                                                                     |  |
|                                                                     | DERM                 | Information available in groundwater database                                                                                    |  |
| Dam/ Ponds data                                                     | Santos               | Ponds register available                                                                                                         |  |
|                                                                     | Santos               | Santos Ponds water management engineering standards available                                                                    |  |
|                                                                     | Santos               | Ponds water quality results for hazard category assessment                                                                       |  |
| Environmental values                                                | Santos               | Environmental management plan for the south west Queensland                                                                      |  |
|                                                                     | DERM                 | GAB springs location (including discharge springs)                                                                               |  |





| Water quality data | Santos | Chemistry data for selected environmental monitoring and production wells |  |  |  |  |  |  |  |
|--------------------|--------|---------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                    | DERM   | Information within the DERM Groundwater database                          |  |  |  |  |  |  |  |
| Weather data       | вом    | Climate data obtained BOM website - http://<br>ww.bom.gov.au/             |  |  |  |  |  |  |  |

## 3.2 Data Collation and Review

An extensive data request was provided to Santos with a full day meeting with Santos geologist, reservoir engineer, environmental team members and GIS operators at the start of the study to discuss data requirements and the context of use of the data.

In parallel, data was collated from literature review, governmental databases and websites.

The bores and wells located within the study area were assessed. Data was received in different formats. In some instances, the accuracy of the data provided was questionable. Data quality was thoroughly checked, and data were excluded from further analysis if found to be of poor quality.

Typically, poor quality information was attributed to contradictory information, lack of units for measurements, or the absence of key hydraulic parameters for some formations. All coordinates were converted to Geographic Datum GDA94 (latitude & longitude). Corrections and/or conversions were made when required. All elevations in the report are provided in metres, in relation to the Australian Height Datum (m AHD).

A hydrogeological conceptual model of the Cooper Basin study area was developed utilising bore or well hydrogeological information.

Note: In this report, the term 'well' refers to infrastructure used to extract gas or oil and produced water from the subsurface. A 'bore' refers to the structure that is used to extract groundwater for domestic, stock, irrigation, industrial or commercial purposes. Although wells and bores are defined differently; they are similar engineering structures.

## 3.3 Geology and Stratigraphy

Santos SWQ oil and gas operations are located within the Eromanga Basin and the Cooper Basin. While in QLD, the regulation relative to management of groundwater in the GAB includes the upper formations of the Cooper Basin in the definition of the GAB, Santos considers the Cooper Basin and Eromanga Basin as two different basins separated by the Basal Jurassic Unconformity and with the Cooper Basin not belonging to the GAB.

The geology of both basins is documented in the literature, the focus of those references being most often the oil and gas reservoirs.

Santos geologists and engineers were consulted to provide site specific information and documentation and also confirm and identify geological characteristics and features in the local geology of the study area. Stratigraphic information, made available by Santos, focused on the stratigraphy of the oil and gas formations and the adjoining formations.

The geology is described in Section 4.3.

## 3.4 Groundwater Level and Quality

Groundwater level and quality data were obtained primarily from the DERM groundwater database. The data was extracted from the "water level" table.

Water levels were assigned to targeted aquifers using an automated database function by relating the open section details of the bore (open, screen or perforation depths) to the stratigraphy and aquifer tables through common features 'bore construction' and the 'formation tops and bottoms'. Where the automated query





returned an error message, the assignment of a target aquifer to the bore was performed manually. Note that in the following circumstances it is *not* possible to assign a target formation to a bore:

- Absent or incomplete bore construction, aquifers or stratigraphy information.
- Bore open through several formations, in which case water levels or water chemistry results cannot be used to characterise a specific formation.
- Contradictory information.

This exercise reduces significantly the number of bores contributing to the definition of the hydrogeological conceptual model.

Water quality data were extracted from various sources that included databases and excel spreadsheets. The analytes selected for the groundwater water quality assessment were pH, electrical conductivity (EC) and major ions. Available water quality information for each bore was identified and assessed. The water chemistry data were also linked to their targeted aquifer.

Santos data predominantly represented the oil and gas formations. Initial bore pressures were provided. Water quality data were provided for some of the wells and water management ponds.

## 3.5 Bore Construction

DERM requires that a water bore driller undertaking the drilling of water bores be registered. The main intention of this requirement is to prevent adverse impacts potentially arising from inter-aquifer leakage. Under the Petroleum Legislation, gas and oil wells may be drilled by non-registered water drillers.

Oil and gas well construction practices and well integrity are further developed in Section 6.0.

## 3.6 Meta Data Summaries

Metadata is "data about data". That is, information on the:

- data available;
- amount of data;
- coverage of data;
- quality of data; and
- source of the data.

As part of the data quality checking process, each bore of the study area from the DERM groundwater database was assigned a "data quality" score for each of the criteria presented in Table 3. The assessment card in Table 3 allows for the update of the metadata based on the results of the groundwater baseline assessment to be carried out from later this year.



| Information          | Score | Criteria                                                                                                                     |
|----------------------|-------|------------------------------------------------------------------------------------------------------------------------------|
|                      | 1     | Good stratigraphy information                                                                                                |
| Bore<br>Stratigraphy | 2     | Partial stratigraphy information available                                                                                   |
| olidigiaphy          | 3     | No information                                                                                                               |
|                      | 1     | Good bore construction practices                                                                                             |
| Bore<br>Construction | 2     | Bore construction practice in doubt                                                                                          |
| Contraction          | 3     | No information / bad bore construction                                                                                       |
|                      | 1     | Water level information and date of survey                                                                                   |
| Water Levels         | 2     | Water level but no date                                                                                                      |
|                      | 3     | No data                                                                                                                      |
|                      | 1     | EC and pH measurements and date of sampling                                                                                  |
| Bore Chemistry       | 2     | Partial information                                                                                                          |
|                      | 3     | No data                                                                                                                      |
|                      | 1     | Major ions chemistry available and date of sample                                                                            |
| Water Quality        | 2     | Partial information                                                                                                          |
|                      | 3     | No data                                                                                                                      |
|                      | 1     | Bore log (original hard copy available) <i>OR</i> DERM and Bore Inventory data* identical <i>OR</i> depth ground proofed.    |
| Bore Depth           | 2     | Depth available from DERM database only OR DERM database value when Bore Inventory depth and DERM bore depths are different. |
|                      | 3     | Depth from Bore Inventory only (oral information)                                                                            |
|                      | 4     | No data                                                                                                                      |

#### Table 4: Metadata Assessment Card

\*bore depth bore inventory data is not yet available; the metadata scoring will need to be reviewed after completion of the baseline assessment program.

The data from DERM were compiled together into one main "metadata table". The metadata table identifies the data available for each bore and when available, provides general information for each bore or well. Secondary tables providing the water levels and water chemistry data were also created to assist with the development of the hydrogeological conceptual model.

The bore depth and target formation information is not readily available in the DERM database and was compiled directly from the DERM database where possible using the casing, stratigraphy and aquifer tables. The cross-referencing was automated. Due to poor data entry format and poor data consistency in the database many bores cannot be related to a formation target directly, a number of correlations have been performed manually. In addition the WES (previously WERD) database, which gathers information on water licensing was used to complete some of the empty fields as bores are licensed to withdraw water from a specific aquifer. Conflicts between databases were solved on a case to case basis.





#### Table 5: Metadata Summary

| Field                       | Description                                                                                            |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| Bore Name                   | Unique name for each bore                                                                              |  |  |  |  |
| Facility type               | Represents the type of bore, for example sub-artesian, artesian - controlled flow                      |  |  |  |  |
| RN replaces                 | Identify bore replacement. Data from the DERM data base.                                               |  |  |  |  |
| Facility status             | Abandoned, suspended, producing, monitoring well, etc.                                                 |  |  |  |  |
| Target aquifer              | Geological formation                                                                                   |  |  |  |  |
| Source for Target Aquifer   | DERM or WES                                                                                            |  |  |  |  |
| WES database target aquifer | Geological formation                                                                                   |  |  |  |  |
| Bore Depth                  | Drilled depth (in metres)                                                                              |  |  |  |  |
| Bore depth - DERM Table     | Casing, strata log, stratigraphic table or no data                                                     |  |  |  |  |
| Source Bore Depth           | DERM (table source)                                                                                    |  |  |  |  |
| Driller name                | Driller name – where available                                                                         |  |  |  |  |
| Driller licence number      | Licence number – where available                                                                       |  |  |  |  |
| Shire code                  | Number – where available                                                                               |  |  |  |  |
| Parish                      | Number – where available                                                                               |  |  |  |  |
| Drilling company            | Drilling company – where available                                                                     |  |  |  |  |
| LOT                         | LOT number – where available                                                                           |  |  |  |  |
| PLAN                        | Number – where available                                                                               |  |  |  |  |
| Description                 | Address                                                                                                |  |  |  |  |
| County                      | Address                                                                                                |  |  |  |  |
| Property name               | Address                                                                                                |  |  |  |  |
| Original name number        | Address                                                                                                |  |  |  |  |
| Coordinates                 | Geographic Datum GDA94, latitude and longitude                                                         |  |  |  |  |
| Elevation                   | Of surface or wellhead or reference point, in m AHD                                                    |  |  |  |  |
| Source elevation - DERM     | Advanced Spaceborne Thermal Emission and Reflection Radiometer,<br>Global Positioning System or Survey |  |  |  |  |
| Equipment - DERM            | Windmill, Head work etc.                                                                               |  |  |  |  |



| Field                    | Description                        |
|--------------------------|------------------------------------|
| Bore Purpose (WES data)  | Domestic Supply, Stock etc.        |
| Interpreted stratigraphy | Score 1, 2 or 3 (refer to Table 3) |
| Construction details     | Score 1, 2 or 3 (refer to Table 3) |
| Water level              | Score 1, 2 or 3 (refer to Table 3) |
| Bore chemistry (Field)   | Score 1, 2 or 3 (refer to Table 3) |
| Water Quality            | Score 1, 2 or 3 (refer to Table 3) |
| Bore depth               | Score 1, 2, 3 or 4                 |

## 3.7 Development of the Hydrogeological Conceptual Model

A conceptual hydrogeological model (CHM) is a non-mathematical presentation of the hydrogeology of a region. The model provides information about the nature and extent of geological layers comprising the subsurface of:

- aquifers, aquitards and aquicludes their characteristics and interactions between each other;
- groundwater flow; and
- geological and man-made influences on the groundwater systems.

The purpose of the conceptual model is to provide a visualisation of the hydrogeological system. It may also be used to define the baseline groundwater conditions that can be used to assess potential future impacts. The conceptual hydrogeological model is based on geological cross section and contours maps of the local interpreted hydrostratigraphy. The section and maps identify the locations, depth and thickness of each formation where possible (in these case, sedimentary layers), areas of outcrop at the surface, salinity and the direction of groundwater flow.

The hydrogeology of the Eromanga Basin is generally well documented in the literature on a regional scale. This is not so true for the hydrogeology of the Cooper Basin formations.

Hydrogeological maps illustrating the hydraulic heads and salinity data were created for each major formation provided sufficient water heads and salinity data were available. The maps are a representation of the current system even though a lot of the data is not recent, a number of bores have water heads values and salinity measurements from the last ten years and from much earlier times, these values are observed to be similar, confirming that the map would generally be acceptable for a current representation of the system.

To generate the maps, data that did not have spatial attributes (coordinates or depth) were excluded. Individual data points were assessed, and in most cases removed if the value for that point was significantly different to those from the local area. Areas with no information (i.e. formation too deep for the completion of private bores) or where the aquifer was non-existent (i.e. beyond the outcrop region), were not included.





## 3.8 Impact Estimation

The recent amendments (June 2011) to the QLD Water Act 2000 (Reprinted in June 2011 and discussed in Section 2.0) and the P&G Act 2004 do not require the UWIR to estimate impact through the use of a groundwater numerical model. Section 258 of the P&G Act, now repealed, provided exemption to the need to development of a *groundwater flow model* when:

- Existing Water Act bores in an aquifer other than the source aquifer for the exercise of the rights—the source aquifer is *not* hydraulically connected to that aquifer;
- Any existing Water Act bore in the source aquifer is *sufficiently separated in distance* from the place where the rights are to be exercised.

As mention previously, the requirements for the UWIR (refer to Section 2.0) are now contained in the Water Act 2000. This requires a description of the methods and techniques used to obtain the information and predictions of the area of an aquifer where the water level is predicted to decline of more than the bore trigger threshold (S376) (Section 2.2).

A groundwater numerical model was not developed for the Santos Cooper Basin activities. The approach to estimate water variation impact is a combination of:

- Assessment of risk to existing groundwater bores and environmental values associated to the producing aquifer;
- An analytical solution approach (using analytical equations to calculate groundwater flow) which uses the hydrogeological data from the conceptual hydrogeological model to establish indicative estimated of the magnitude of potential drawdown in the target beds and neighbouring formations; and
- The field pressure data and formation stratigraphy demonstrating the absence of impacts between formations.





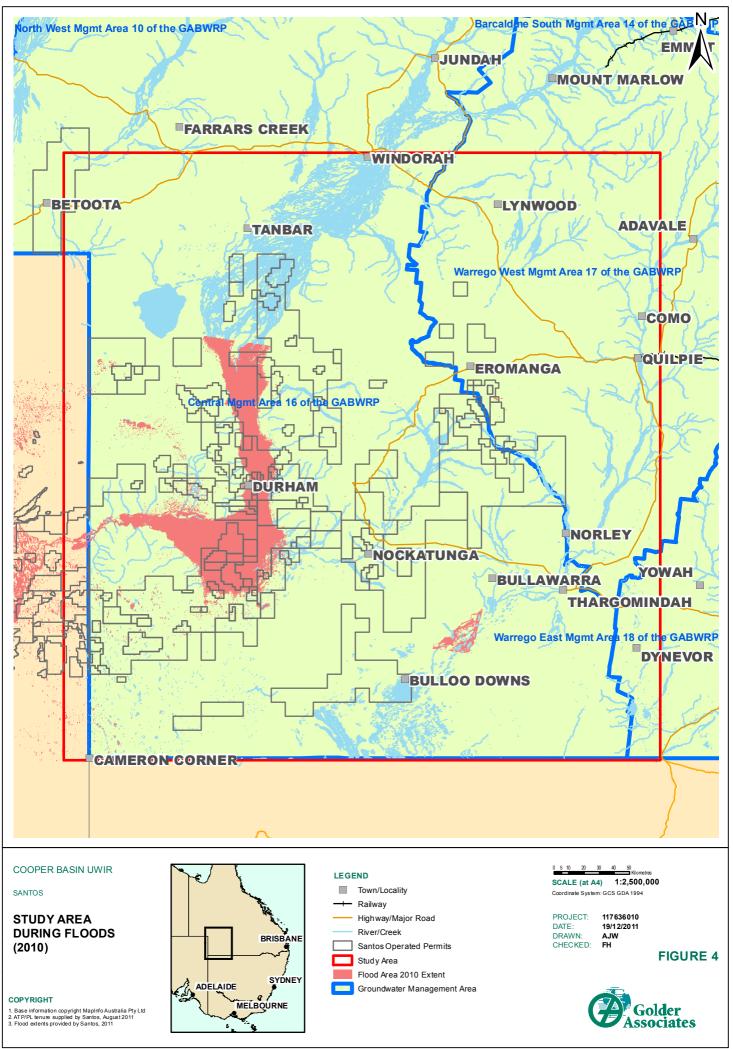
## 4.0 SITE DESCRIPTION

## 4.1 **Topography and Drainage**

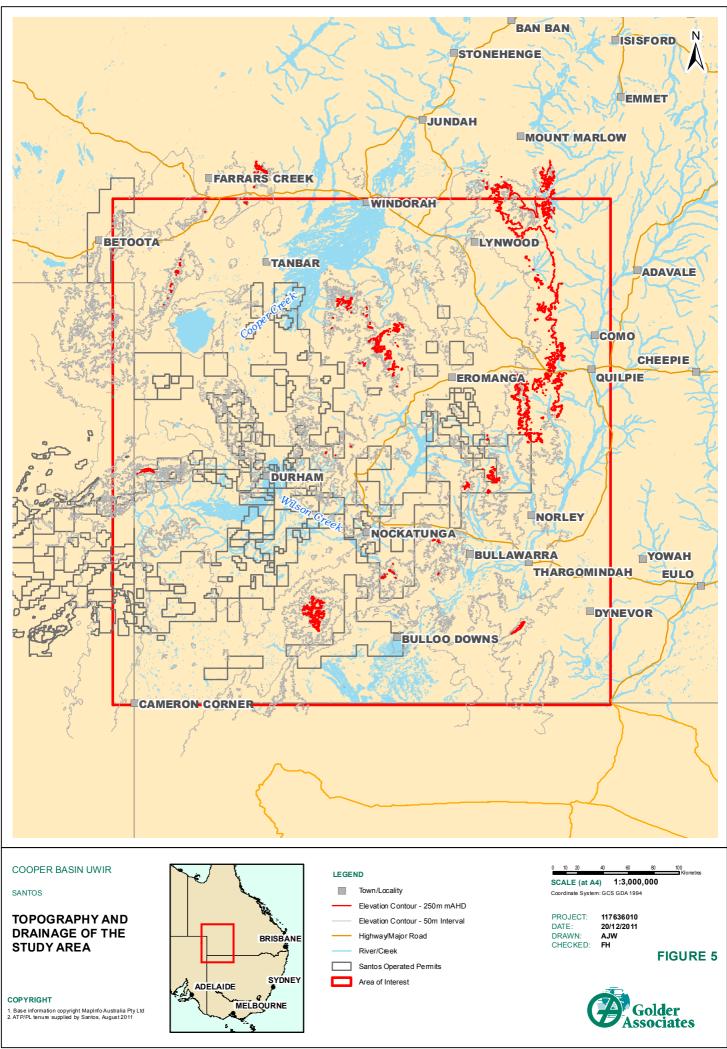
Santos Cooper Basin oil and gas field projects are situated across a very large generally flat drainage area of what is known as the Channel Country of far south-eastern Queensland (extending into South Australia).

Topography is limited to low undulating topography ('hills and ridges') between the drainage channel system. The Channel Country is characterised by vast flat lying braided, flood and alluvial plains of the Diamantina and Coopers Plains. Surrounding the floodplains are gravel or gibber plains, dunefields and low ranges. The low resistant hills and tablelands are remnants of the flat-lying Cretaceous (65-140 million years ago) sediments.

The drainage system is dominated by the Cooper Creek Basin and drains towards Lake Eyre (Figure 5). During period of high rainfall, the flat topography and drainage channel system becomes a very large flooded plain. The water flow bottlenecks where Cooper Creek crosses the Queensland-South Australia border.


The Cooper Creek is an internal river of 1,523 km length and covering a catchment area of 306,000 km<sup>2</sup>. Water flows vary greatly over time. In most of the creek reaches, the braided channels of Cooper Creek and its main tributary, the Wilson River, are dry and little more than a string of waterholes.

Generally, Cooper Creek stream flows are confined to the main channels, but every 3-4 years flows are sufficient to inundate parts of the Cooper floodplain, via a network of tributary channels. During extended periods of no flow, the Cooper contracts to a series of semi-permanent and permanent waterholes, which provide drought refuges for a variety of flora and fauna.


Within the study area (largely confined to the Cooper Creek catchment basin), there are also intermittent surface water flows following storm events that cause ponding of surface water on interdune clay pans, predominantly in the dunefield regions and other areas.

The latest large flood event was observed in January and February 2010.





cation: Jthyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE/GIS/Projects/117636010\_R\_F0031\_CooperBasinDuringFlood.mxd



le Location: Jthyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE/GIS/Projects/117636010\_R\_F0030\_CooperBasinTopography.mxd

## 4.2 Climate

As note previously, the Cooper Basin is located within South West Queensland, which is an arid to semi-arid region of central Australia where the average rainfall is low. The seasons are generally characterised by hot mild dry summers and dry winters. December to February are the wettest and hottest months where temperature exceed 35°C. The Bureau of Meteorology (BOM) provides monthly average data for temperature and rainfall for anywhere in Australia. For more detailed description please refer to http://www.bom.gov.au/.

Table 6 presents the average minimum and maximum monthly temperatures, the average monthly total rainfall for the study area collected from *Windorah Post Office* as closest station to Durham. These data are averages for number of years. Maximum values are in red and minimum values in blue. Annual average values for temperature and rainfall are also presented in Figure 6.

Table 6: Mean Climate Characteristics within the Cooper Basin Operations Area - Windorah Station Aug Jan Feb Mar Apr Mav Jun Jul Sep Oct Nov Dec Annual Years Mean

| Temp (°C) -<br>Min24.123.521.11611.37.66.68.112.116.519.922.515.81931-<br>2012Rainfall<br>(mm)42.949.243.319.718.816.515.09.810.617.722.330.7296.91887-<br>2012Evaporation<br>(mm)12119.57.24.83.63.75.27.49.611.312.58.21969-<br>2012                                                                                         | Temp (°C) -<br>Max | 38.1 | 36.6 | 34.5 | 30.2 | 25.3 | 21.7 | 21.4 | 24.1 | 28.4 | 32.5 | 35.4 | 37.8 | 30.5  | 1931-<br>2012 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|---------------|
| Raining (mm)       42.9       49.2       43.3       19.7       18.8       16.5       15.0       9.8       10.6       17.7       22.3       30.7       296.9       2012         Evaporation       12       14       0.5       7.2       4.9       2.6       2.7       5.2       7.4       0.6       14.2       19.5       1969- |                    | 24.1 | 23.5 | 21.1 | 16   | 11.3 | 7.6  | 6.6  | 8.1  | 12.1 | 16.5 | 19.9 | 22.5 | 15.8  |               |
| Evaporation 12 11 05 72 10 00 07 50 74 00 112 105 00 2010                                                                                                                                                                                                                                                                      |                    | 42.9 | 49.2 | 43.3 | 19.7 | 18.8 | 16.5 | 15.0 | 9.8  | 10.6 | 17.7 | 22.3 | 30.7 | 296.9 |               |
|                                                                                                                                                                                                                                                                                                                                |                    | 12   | 11   | 9.5  | 7.2  | 4.8  | 3.6  | 3.7  | 5.2  | 7.4  | 9.6  | 11.3 | 12.5 | 8.2   |               |

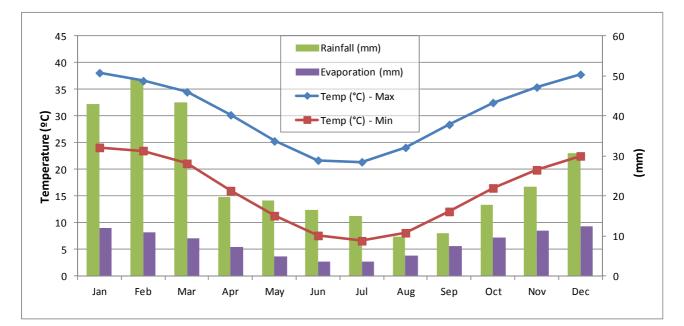



Figure 6: Rainfall and Temperature Diagram - Monthly Averages from 1931-2012 for Windorah Station (BOM, 2012)

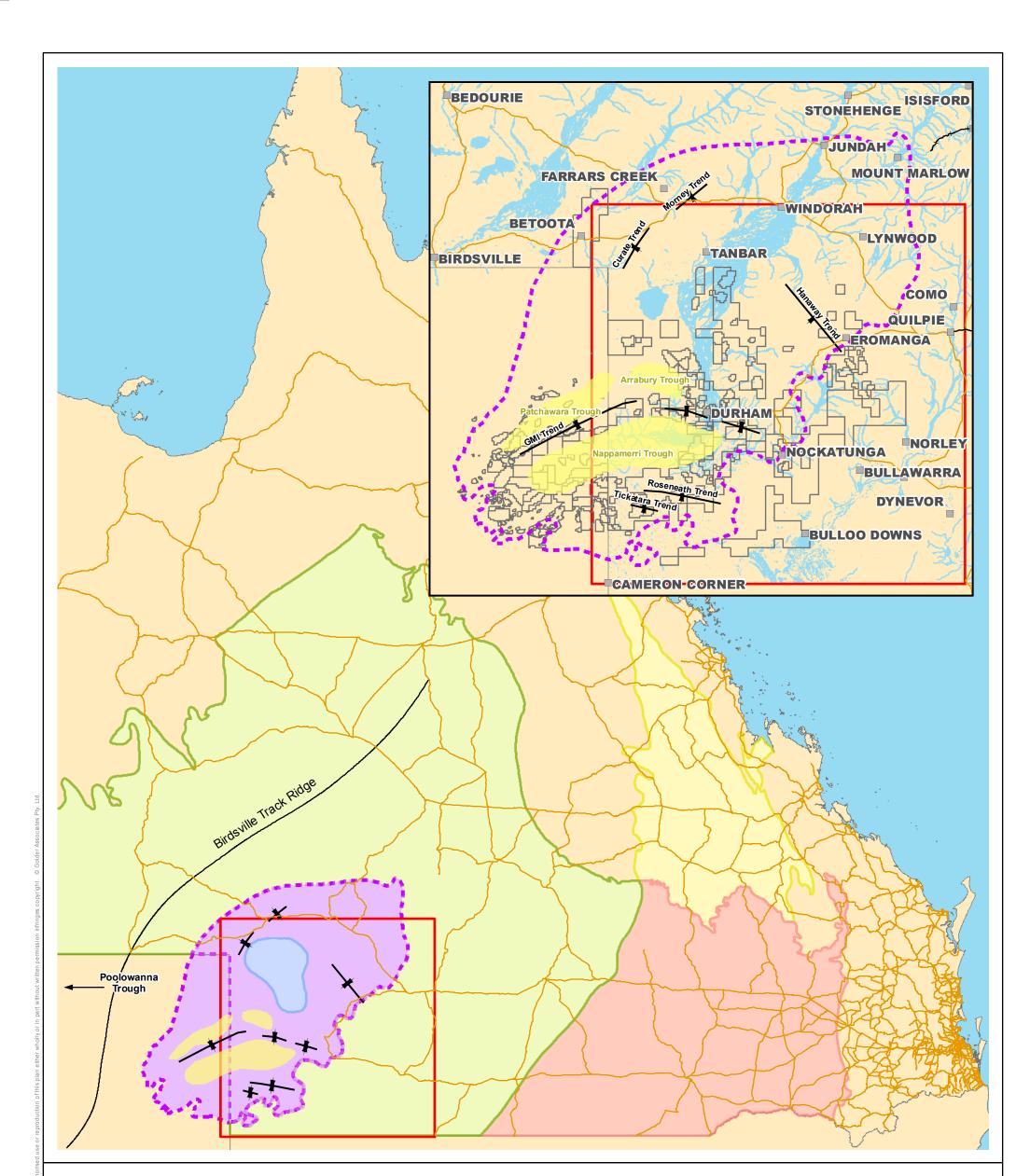


## 4.3 Geology

## 4.3.1 Regional Settings

This section defines the regional geological setting of the Study Area.

Santos SWQ oil and gas operations are located within the Eromanga Basin and the Cooper Basin. While in QLD, the regulation relative to management of groundwater in the GAB includes the upper formations of the Cooper Basin in the definition of the GAB, geologists consider the Cooper Basin and Eromanga Basin as two separate basins with the Cooper Basin not belonging to the GAB.


#### 4.3.2 Depositional Configuration

At Surface, the geology is dominated by Quaternary alluvium deposits (Figure 9) associated with the flood plains, with consolidated sediments of the Glendower Formation (Tertiary) or Winton Formation (Cretaceous) on the higher ground.

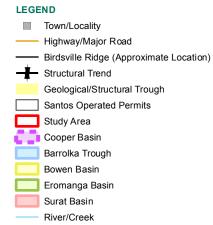
The Great Artesian basin ("GAB") underlies approximately one-fifth of the Australian continental area and extends beneath a large portion of Queensland, South Australia, New South Wales and the Northern Territory; stretching between the Great Dividing Range and the Lake Eyre depression (Figure 7). The Eromanga Basin is the largest *sub-basin* within the Great Artesian Basin, and it contains two major centres of basin subsidence: the Central Eromanga depositional centre and the Poolowanna Trough, separated by the Birdsville Track Ridge (Figure 7). Total sedimentary thicknesses range between 100 m and 3000 m.

The GAB is underlain by several older sedimentary basins, of which the Permian-age Cooper Basin is one example, with the Cooper Basin being entirely overlain by the Eromanga Basin. A major unconformity at the base of the Jurassic succession separates the Jurassic-Cretaceous Eromanga basin from the underlying Carboniferous-Triassic Cooper Basin.

Note that the names of the formations within the Cooper Basin and the GAB vary from one area to another. Habermehl (Habermehl, 1986) and others have tried to provide basin wide correlations between nomenclatures for the GAB. This section aims at using the geological nomenclature defined for SWQ by Draper (2002) and reported in Figure 8. Reference to "equivalent naming" will be required in order to link with the nomenclature used in the QLD GAB regulation






#### SANTOS

## GAB STRUCTURAL GEOLOGY OF THE STUDY AREA

#### COPYRIGHT

Base information copyright MapInfo Australia Pty Ltd
 ATP/PL tenure supplied by Santos, August 2011
 Structural geology of GAB, DERM
 Structural elements of the Cooper and Eromanga Basins digitised from Lowe Young et al 1997

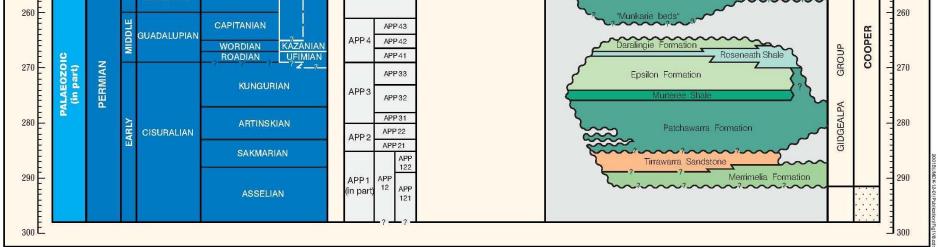




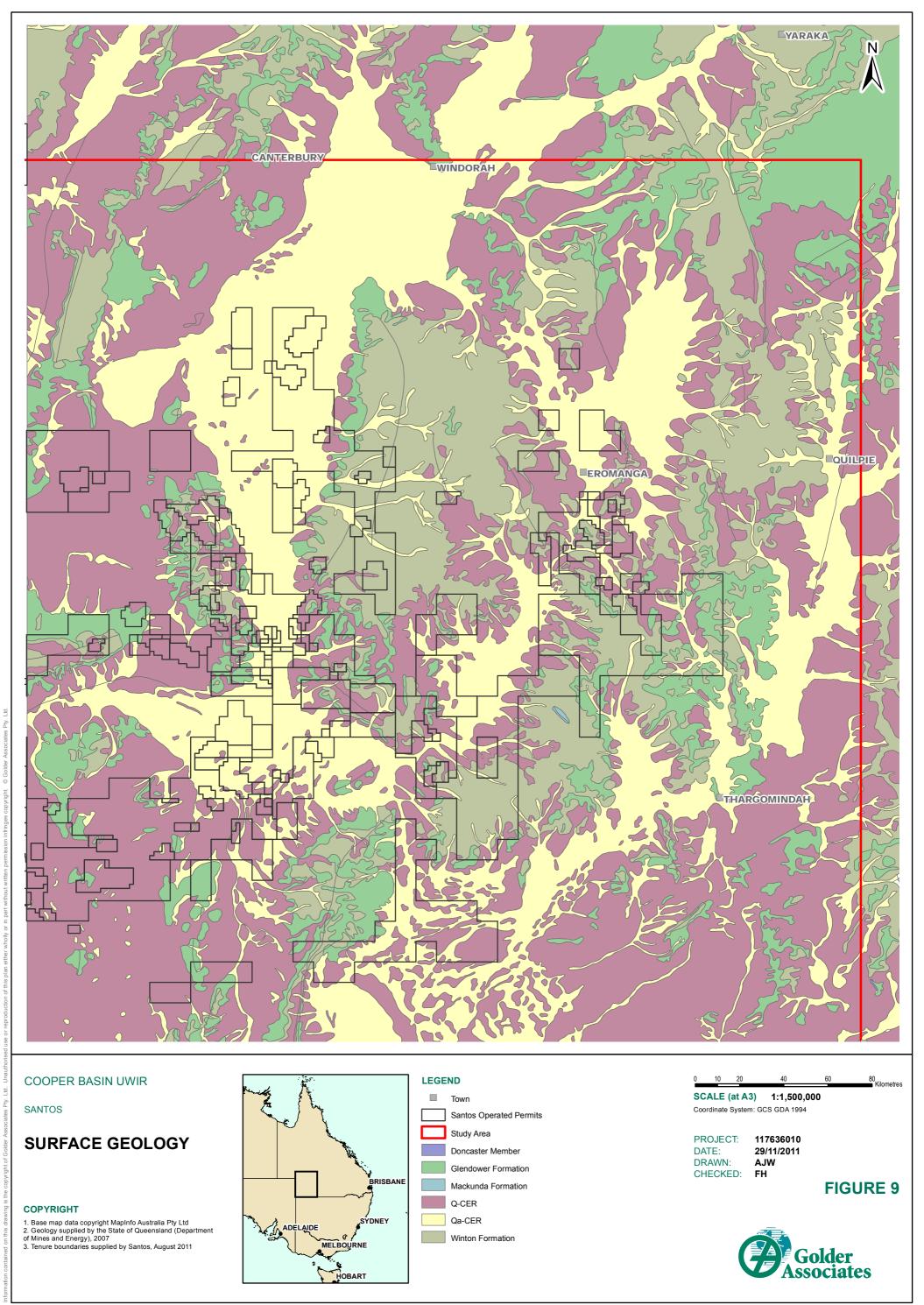


**SCALE (at A3)** 1:6,500,000 Coordinate System: GCS GDA 1994

| PROJECT: | 117636010  |
|----------|------------|
| DATE:    | 19/12/2011 |
| DRAWN:   | AJW        |
| CHECKED: | FH         |







File Location: J.hyd/20111117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0032\_CooperBasinStructuralElementsLoweYoung1997.mxd

|                        |                       |                         |           |                        | PALYNO                                                                               | OSTRATIGRAPHIC 2                                                                | ZONES                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                         |
|------------------------|-----------------------|-------------------------|-----------|------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|
| MERICAL<br>AGE<br>(Ma) | ERA                   | PERIOD                  | EPOCH     | STAGE (AGE)            | SPORE-POLLEN UNITS<br>Price & others,1985;<br>Filatoff & Price, 1988;<br>Price, 1997 | DINOCYST<br>Helby & others, 1987 <sup>1</sup> ;<br>Backhouse, 1988 <sup>2</sup> | UNITS<br>Price, 1997    | LITHOSTRATIGRAPHIC UNITS<br>SW NE<br>(STH AUST) (QLD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BASIN    | NUMERICA<br>Age<br>(Ma) |
| 90                     |                       |                         | LATE      |                        |                                                                                      |                                                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 90                      |
|                        |                       |                         | (in part) | CENOMANIAN             | APK7                                                                                 | ]                                                                               |                         | Winton Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                         |
| 100                    |                       |                         |           | ALDIAN                 | APK 6<br>APK 5 <u>APK 52</u><br>APK 51                                               | ??<br>P. ludbrookiae <sup>1</sup><br>C. denticulata <sup>1</sup>                | ???_<br>ADK22<br>ADK21  | Allaru Mudstone<br>Oodnadatta Formation<br>Toolebuc Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 100                     |
|                        |                       | S                       |           | ALBIAN                 | APK4                                                                                 | M. tetracantha <sup>1</sup>                                                     | ADK21<br>ADK19<br>ADK18 | Coorikiana Sandstone / Kallumbilla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                         |
|                        |                       | CRETACEOUS<br>(in part) |           | APTIAN                 | APK32                                                                                |                                                                                 |                         | Buildog Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 110                     |
| 120                    |                       | CRET<br>(jr             | EARLY     | BARREMIAN              | АРК3<br>АРК31                                                                        | O. operculata <sup>1</sup>                                                      | ADK17                   | Mt Anna-Trinity Well<br>Sandstone Wyandra Sandstone Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 120                     |
| Ē                      |                       |                         |           | HAUTERIVIAN            | АРК22<br>АРК2                                                                        |                                                                                 |                         | Sandstone<br>Members<br>Cadna-owie Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                         |
| 130 -                  |                       |                         |           | VALANGINIAN            | APK21                                                                                | 2 2 2<br>G mutabilis <sup>2</sup>                                               |                         | Alute Equation - Hooray Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 130                     |
| 140                    |                       |                         |           | BERRIASIAN             | APK12<br>APK1<br>APK11                                                               | G. mutabilis <sup>2</sup><br>(? = E. torynum')<br>?                             |                         | Auria Formation     Hooray     Sandstone       ?     ?     ?     ?       Namur     Namur     Namur     Y       Sandstone     ?     ?       ?     ?     ?       ?     ?     ?       ?     ?     ?       Namur     Sandstone     Y       Person     ?     ?       ?     ?     ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 140                     |
|                        |                       |                         |           | TITHONIAN              | APJ 622                                                                              | -                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | z        |                         |
| 150 E                  |                       |                         | LATE      | KIMMERIDGIAN           | APJ6 APJ621                                                                          | -                                                                               |                         | Sandstone Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BASIN    | 150                     |
|                        |                       |                         |           | OXFORDIAN              | APJ5                                                                                 |                                                                                 |                         | non particular and the second se |          |                         |
|                        | zoic<br>art)          |                         |           | CALLOVIAN              | APJ43                                                                                | -                                                                               |                         | Birkhead Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EROMANGA | 160                     |
| 170                    | MESOZOIC<br>(in part) | JURASSIC                | MIDDLE    | BATHONIAN              | APJ4 APJ42                                                                           | -                                                                               |                         | Hutton<br>Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERO      | 170                     |
| 180                    |                       | JUR                     |           | BAJOCIAN               | APJ41                                                                                |                                                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 180                     |
|                        |                       |                         |           | AALENIAN               | APJ 33<br>APJ 33<br>APJ 33<br>APJ 33                                                 |                                                                                 |                         | Evergreen Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |
| 190                    |                       |                         |           | PLIENSBACHIAN          | APJ 32<br>APJ 31<br>APJ APJ 223                                                      | 2                                                                               |                         | Poolowanna Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 190                     |
|                        |                       |                         | EARLY     | SINEMURIAN             | APJ 2 APJ 22 APJ 22<br>APJ 21                                                        | 1                                                                               |                         | Precipice<br>Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                         |
| 200                    |                       |                         |           | HETTANGIAN             | APJ 1                                                                                | 2                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 200                     |
| 210                    |                       |                         |           | RHAETIAN               | APT 52 APT 52                                                                        | 5                                                                               |                         | Cuddapan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 210                     |
|                        |                       |                         |           | NORIAN                 | APT51                                                                                | -                                                                               |                         | Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                         |
| 220                    |                       |                         | LATE      |                        | APT 4                                                                                |                                                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 220                     |
|                        |                       | TRIASSIC                |           | CARNIAN                | APT41                                                                                |                                                                                 |                         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                         |
| 230                    |                       | Ë                       |           | LADINIAN               | APT 34<br>APT 33                                                                     | -                                                                               |                         | Gilpeppee Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 230                     |
| 240                    |                       |                         | MIDDLE    | ANISIAN                | APT3 APT32<br>APT31                                                                  | -                                                                               |                         | Doonmulla Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 240                     |
|                        |                       |                         | EARLY     | SCYTHIAN               | APT2<br>APT2<br>APT21<br>APT1                                                        | -                                                                               |                         | Wimma Sandstone Member/<br>Paning Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                         |
| 250 E                  |                       |                         |           | CHANGHSINGIAN TATARIAN | APP6                                                                                 | 1                                                                               |                         | Callamurra Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | z        | 250                     |
|                        |                       |                         | LOPINGIAN |                        | APP5                                                                                 |                                                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BASIN    |                         |
| 260 -                  |                       |                         | _         |                        |                                                                                      |                                                                                 |                         | "Munkarie bede"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | - 260                   |

Figure 8: Chronology and stratigraphy of the Cooper and Eromanga Basins (Queensland and South Australia) (Draper, 2002)







File Location: J:/hyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0003\_CooperBasinSurfaceGeology.mxd



#### 4.3.3 Tectonic Setting and Basin Stress Regime

#### Introduction

The primary stresses within the Cooper-Eromanga basin are vertical overburden stress  $\sigma v$ , maximum horizontal stress  $\sigma H$ , and minimum horizontal stress  $\sigma h$ . The stress regime within the basins are characterised on the assumption that  $\sigma v$  is a principal stress and therefore,  $\sigma H$  and  $\sigma h$  are also principal stresses, where  $\sigma h$  is the least principal stress. This assumption is considered valid given the relatively flat topography across the basin.

#### General stress orientation

The maximum horizontal stresses,  $\sigma$ H, in the basin generally follow an east to west orientation, at approximately 101°, as indicated by stress data from borehole breakout testing (Hills et al, 1998; Reynolds et a;, 2004). The east-west trending nature of  $\sigma$ H predominates in the Nappamerri trough, however, regional variations across the basin have been observed. In the Patchawarra Trough  $\sigma$ H is oriented southeast to north-west; north-east of Gigealpa  $\sigma$ H was oriented west-northwest to east-southeast. This clockwise rotation of  $\sigma$ H from the Nappamerri Trough to the Patchawarra Trough is accepted to be part of the larger stress rotation observed across the Australian continent. The orientation of  $\sigma$ H does not exhibit significant variation with depth. (Reynolds et al, 2004).

The vertical overburden stress,  $\sigma_v$  is governed by overlying rock mass and the stress gradient does not exhibit significant variation with depth. The  $\sigma_v$  stress gradient is approx. 20.3 Mpa/km at 1,000m depth and approaches approximately 22.6 Mpa/km at 3,000m depth.

The magnitude of  $\sigma_h$  varies significantly across the basin; the  $\sigma_h$  stress gradient ranges from 13.6 Mpa/km to 22.6 MPa/km across the basin, with  $\sigma_h$  approaching  $\sigma_v$  in some local areas (Reynolds et al, 2004).  $\sigma_h$  decreases with depth up to approximately 1 km below the surface and then stabilises. At 1km to 4 km depth  $\sigma_h$  is between 0.6  $\sigma_v$  to 0.7  $\sigma_v$ , with  $\sigma_h$  generally approaching the higher end of this range (Hillis et al, 1998). At lower depths  $\sigma_h$  approaches, and may exceed,  $\sigma_v$  resulting in  $\sigma_v$  becoming the minimum principal stress. (Reynolds et al, 2004).

#### Stress Assumptions and principal stresses – general faulting regime

On the basis that  $\sigma_h$  is the minimum principal stress, the Cooper-Eromanga basin stress regime is primarily associated with strike-slip faulting  $\sigma_H > \sigma_V > \sigma_h$ , normal faulting  $\sigma_v > \sigma_H > \sigma_h$ , and transitional strike-slip/reverse faulting ( $\sigma_H > \sigma_h \approx \sigma_v$ ) at depth where  $\sigma_h \approx \sigma_v$ . Reverse faulting ( $\sigma_H > \sigma_h > \sigma_v$ ) is not associated with the stress regime in the basin however, at lower depths where  $\sigma_h > \sigma_v$  may occur some reverse faulting may exist. (Reynolds et al, 2004).

#### Hydrostatic stress

Pore pressures within the basin are generally hydrostatic. Overpressures are thought to occur in deeper shaller strata within the basin and have been observed in the Nappamerri Trough from depths of 2.7 km (Hillis et al, 1998). Local under-pressures have also been observed and are attributed to extensive production within the basin (Reynolds et al, 2004). This is of particular importance when considering the impact of depressurising formations through oil and gas extraction. The implication is that impact translation though the depositional sequences are minimised or negated completely. This is further discussed in the succeeding sections.

#### Seismic activity

Major earthquake events within the immediate region surrounding the basin, bounded by the Simpson Desert, NSW-QLD border, and the NT-QLD border, include:

- Tennant Creek, NT (6.7 Mb) in January 1988
- Simpson Desert, NT (5.6 Mb) in August 1972
- Simpson Desert, NT/QLD/SA (4.7 Mb) in November 1978.





This region has experienced intermittent earthquakes of low to moderate magnitude (0 - 3.5Mb) each year since the establishment of seismic records.

#### 4.3.4 Summary of the Cooper Basin Geology

The Cooper Basin comprises a thick late Carboniferous to Middle or late Triassic non-marine sedimentary pile within a broad basin shaped setting in the interior of central Australia.

Structurally, the Cooper Basin is one of a number of remnant Late Carboniferous to Early Permian depositional centres which lay in the Australian interior of the Gondwana Supercontinent. The Cooper Basin differs from these other depositional centres by containing an additional sequence which ranges in age from Late Permian to Middle Triassic and spans the Permo-Triassic boundary *without* a break in deposition. It also differs in being the only such basin with major oil and gas production (Petroleum Geology of South Australia, Volume 4 - Cooper Basin, PIRSA, 1998). Three major troughs (Patchawarra, Nappamerri and Tanapperra) are identified within the basin, each separated by structurally high ridges.

The Cooper Basin depositional episode was terminated by a period of gentle regional compressional deformation resulting in landmass uplift and sustained erosion within the basin. Sedimentary basin development re-initiated subsequently with the formation of the Eromanga Basin (Section 4.3.3) during the Early Jurassic to Late Cretaceous times.

The Cooper Basin contains a succession of fluvio-lacustrine sandstone, shales and coals to a thickness of up to 1,800 m to the south, in the north it is thinner (up to 600 m thick).

The description of the stratigraphy and lithology for the study area is provided in Figure 10. In addition, Figure 8 provides information on the lateral continuity of the various units and on discontinuities or major unconformities present in the stratigraphic sequence.

The Cooper Basin can be subdivided in two major geological groups: the late Carboniferous and Permian Gidgealpa Group and the Triassic Nappamerri group. The earliest sediments within the Cooper Basin were of glacial origin. The subsequent formations generally consist of a succession of interbedded sandstone and shale formations. The Tirrawarra Sandstone represents low sinuosity fluvial to proglacial outwash deposits overlain by peat swamp, floodplain and high sinuosity fluvial facies of the Patchawarra Formation. Two lacustrine shale units (Murteree and Roseneath Shales) with intervening fluvio-deltaic sediments (Epsilon and Daralingie Formations) were deposited during a phase of continued subsidence. Early Permian uplift led to erosion of the Daralingie Formation and underlying units from basement highs (SA DPI 1998).

The upper sequence of the Cooper Basin, the Gilpeppee Member of the Tinchoo Formation is dominated by siltstones and shales. Draper (2002) has mapped the thickness of shales of the Tinchoo Formation in SWQ. The mudstone (both shale and siltstone) thickness is 80 -160 m in the centre of the Cooper Basin with maximum thickness of 182 m.

The formations of interest for Santos are the Tirrawarra Sandstone, Patchawarra Formation, Epsilon Formation and Toolachee Formation, as these are the main hydrocarbon reservoirs within the Cooper Basin:

- The Tirrawarra Sandstone consists of fine to coarse-grained and pebbly sandstone with locally common interbeds of conglomerate and minor interbeds of carbonaceous siltstone, shale and coal. The Tirrawarra Sandstone is 30 to 40 m thick in average in SWQ.
- The Patchawarra Formation consists of interbedded variable size sandstone beds with siltstone, shale and coal beds, sandstone and mudrock beds being the dominant type of geology. The Patchawarra Formation is the thickest (up to 680 m in the Nappamerri Trough and up to 550 m in SWQ near the SA border Figure 7) and in QLD the second most widespread Permian unit after the Toolachee Formation generally extending to the limits of the Cooper Basin (Draper, 2002).
- The early Permian Epsilon Formation is defined as series of sandstones and siltstone and shales with minor coals. The formation is widespread across the Cooper Basin. The maximum thickness (156 m) is observed in the Nappamerri Trough, in QLD the thickness is mostly 30 to 40 m with thicker areas (up to 92 m) encountered in the QLD part of the Nappamerri Trough.





The late Permian Toolachee Formation consists of interbedded sandstones, siltstones and shale with thin coal seams and some conglomerates. It spreads unconformably over older formations across the whole Cooper Basin and is observed at its thickest in the Patchawarra and Nappamerri Troughs. In Queensland, the thickness is mostly 25 - 50 m with the exception of an area north of the Jackson–Naccowlah– Pepita Trend where the Toolachee Formation is 100 - 130 m thick (Draper, 2002).

Geological contour maps for the following formations can be found in Appendix B:

- Depth to Toolachee Formation
- Depth to Patchawarra Formation
- Thickness of Patchawarra Formation
- Thickness of Toolachee Formation
- Thickness of shale within the Nappamerri Group

The top pre-Permian faults provide the basin's overall fabric, whereas the younger faults from the basal Toolachee Formation and basal Eromanga unconformity are generally reactivated Permian faults (refer to Section 4.3.7).

The Tirrawarra Sandstone, Patchawarra Formation, Epsilon Formation and Toolachee Formation (Figure 10) are the main gas reservoirs within the Cooper Basin. Minor gas reservoirs are also present in the Tirrawarra Sandstone, the Wimma Sandstone Member of the Arraburry Formation and the Tinchoo Formation. Some oil reservoirs are present in the Paning Member of the Arraburry Formation.

#### 4.3.5 Summary of the Eromanga Basin Geology

The Jurassic – Cretaceous Eromanga Basin unconformably overlies the older Carboniferous - Permian Cooper Basin. The sedimentary sequences which comprise the Eromanga Basin reach a thickness of up to 2,500 m and were deposited during a period of subsidence subsequent to that which generated the Cooper Basin. There are two main sub-basin centres in the Eromanga Basin: the *Central Eromanga Depositional centre* and the *Poolowanna Trough* to the west separated by the Birdsville Track Ridge (Figure 7). The top of the Eromanga Basin is also delimited by an unconformity.

The study area for this UWIR is located in the Central Eromanga Basin.

The deposits of the Eromanga Basin follow three episodes (and three different origins) of deposition:

- Lower non-marine sediments from early Jurassic to Mid-Cretaceous corresponding to the Poolowanna Formation to the Cadna-Owie Formation. During that period the largest transgression over the Eromanga Basin was the "Birkhead Lake" transgression.
- Marine sediments from mid-cretaceous to late Cretaceous corresponding to the Wallumbilla Formation to the Mackunda Formation.
- Upper non marine sediments (fluviolacustrine) of the Winton Formation.

The formations of the Eromanga Basin are a succession of well identified sandstones and siltstones and mudstones with interbedded minor sandstones and occasional coal seams (Figure 10).

The formations of the Eromanga Basin often have their equivalent throughout the GAB (Figure 10), the nomenclature used in this section aims at using the SWQ nomenclature as illustrated on Figure 8.

The GAB is Australia's largest groundwater system with extended confined artesian or sub-artesian aquifers. However, some parts of the aquifers are also oil and/or gas reservoirs.





The major formations of the Eromanga Basin are (from top to bottom):

- The Winton Formation: The Winton Formation is composed of interbedded fine to coarse sandstone, shale, siltstone and coal seams deposited in fluvio-lacustrine environments. It directly underlies the quaternary and Tertiary sediments. The Winton Formation outcrops on higher relief surrounding the valleys and flood plains of the study area and show lateral facies changes from east to west.
- The Wallumbilla Formation or Rolling Downs Group: The confining beds of the Rolling Downs Group, and, in particular, the Lower Wallumbilla Formation and Upper Wallumbilla Formation, referred to as Doncaster and Coreena Members in other parts of the GAB, occur throughout the Eromanga Basin, Surat Basin and Carpentaria Basin. The fine-grained nature of the Rolling Downs Group sediments is reflected in the low to very low porosity and permeability of these units. The thickness is on average 500 m in the component basins but thins to less than 300 m over the Eulo-Nebine Ridge and Euroka Arch (Appendix B). Within the Eromanga Basin, the sequence attains a maximum thickness of 1,000 m (BRS, 2000).
- The Cadna-Owie and Hooray Formations: The Cadna-Owie and Hooray formations are thinnest (<50 m) on the existing erosional margins, and thickens toward the basin centre to reach a maximum interpreted thickness of 800 m in the Surat Basin (Appendix B). Aquifer thickness reaches a maximum of 350 m over the southwestern regions of the underlying Patchawarra, Nappamerri, Allunga and Tenappera Troughs within the Cooper Basin (BRS, 2000) described previously;
- The Westbourne Formation, Adori Sandstone and Birkhead Formation: This group is dominated by shale and mudstone beds which thicknesses up to 140 m for the Westbourne Formation and 110 m for the Birkhead Formation in SWQ. The Adori Sandstone contains the main sandstone beds of the group on thicknesses varying from 20 to 130 m in the Cooper region but limited to 55 m in SWQ, those sandstones are cemented in their lower section.
- The Hutton and Poolowanna Formations: these formations are major sandstone formations of the GAB and can reach just over 200 m in the Poolowanna Trough for the Poolowanna Formation and up to 360 m for the Hutton Sandstone in the Patchawarra Trough. In SWQ, the Hutton reaches 244 m and is typically 90 to 210 m thick, the Poolowanna Formation reaches 165 m thickness. The equivalent of the Poolowanna Formation in the eastern parts of the GAB is the Precipice Sandstone. In the study area, the Evergreen Formation which separates the two sandstone formations in the Surat Basin is absent.

Geological contour maps for the following formations can be found in Appendix B:

- Depth to Winton Formation
- Depth to Cadna-Owie Formation
- Depth to Hooray Sandstone
- Depth to the Hutton Formation
- Depth to the Poolowanna Formation;
- Thickness of the Cadna-Owie Formation
- Thickness of the Hooray Sandstone
- Thickness of the Hutton Sandstone
- Thickness of the Poolowanna Formation





Major faulting events and structural uplifts have occurred within the eastern part of the Eromanga Basin, however they did not structurally affect the part of the Eromanga Basin of covered by Santos tenements.

Within the study area, significant oil reservoirs are present with the Hutton Sandstone, the Birkhead Formation and the Murta Formation. The Wyandra Sandstone Member, McKinlay Member (which belongs to the Murta Formation) and Namur Sandstone, Westbourne Formation and Adori Sandstone and Lower Poolowanna hold minor oil reservoirs (Figure 10).

Golder

#### Figure 10: Stratigraphy Sequence in the Study Area

| WRP Mar<br>Central<br>GMA16 | nagement Units<br>Warrego West<br>GMA 17 |                  | Unit             | name                  | Sub-unit                                                         | Litho-<br>Equivalent<br>Formation in<br>other parts of the<br>GAB ** | stratigraphy<br>Deposits environment *                                                        | Lithology Description** ****                                                                                                                                                                                   | Geological Age                            | Thickness*****                                                                                                                                                                                | Santos Current<br>Production Reservoir<br>(oil&Gas)        | Hydrogeological<br>Chracteristics |
|-----------------------------|------------------------------------------|------------------|------------------|-----------------------|------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------|
|                             |                                          |                  |                  | Whitula Formation     |                                                                  |                                                                      | Fluvial to lacustrine                                                                         | Interbedded sandstone, siltstone, mudstone and<br>claystone                                                                                                                                                    |                                           | Maximum of 160 m, confined to downwarps                                                                                                                                                       | No                                                         |                                   |
|                             |                                          |                  |                  | Marion Formation      |                                                                  |                                                                      | Fluvial deposits                                                                              | Sandstone and quartz pebble conglomerate. Some clasts, silicification                                                                                                                                          | Tertiary                                  | About 8 m, limited geographical<br>extend                                                                                                                                                     | No                                                         |                                   |
|                             |                                          |                  | G                | Glendower Formation   |                                                                  |                                                                      | Fluvial deposits                                                                              | Sandstone, silty silstone, conglomerate and minor<br>mudstone                                                                                                                                                  |                                           | in QLD, 70 m in average,<br>maximimum 145 m ***                                                                                                                                               | No                                                         | Aquifer                           |
|                             |                                          |                  |                  | Winton Formation      |                                                                  |                                                                      | Terrestrial deposition<br>environment.<br>Fluviolacustrine.                                   | Interbedded fine to coarse-grained sandstone, shale,<br>siltstone and coal seams with intraclast<br>conglomerates.                                                                                             |                                           | Over 400 m in the Cooper region,<br>maximum thickness of 1100 m in<br>the northern Patchawarra Trough                                                                                         | No                                                         | Aquifer (possibly<br>limited)     |
|                             |                                          |                  | ı                | Mackunda Formation    |                                                                  |                                                                      | Marine environment                                                                            | Interbedded, partly calcareous very fine-grained<br>sandstone, siltstone and shale in the basin centre.                                                                                                        |                                           | 60–120 m thick in the Cooper<br>region                                                                                                                                                        | No                                                         | Aquifer                           |
|                             |                                          |                  |                  | Allaru Mudstone       |                                                                  |                                                                      | Low-energy, shallow                                                                           | Mudstone with thin calcareous siltstone and minor                                                                                                                                                              |                                           | From 100 to over 300 m thick,<br>generally being over 200 m in                                                                                                                                | No                                                         | Water bearing                     |
|                             |                                          |                  |                  | Toolebuc Formation    |                                                                  | Surat Silstone                                                       | marine environment<br>Marine environment                                                      | thin, very fine-grained sandstone interbeds<br>Mudstone                                                                                                                                                        |                                           | QLD, thinner in outcrop areas.<br>in QLD, 20-45 m thick                                                                                                                                       | No                                                         | Confining bed                     |
| Central 1                   | Warrego West 1                           |                  | v                | Vallumbilla Formation | Upper Wallumbilla<br>Lower Wallumbilla                           | Coreena Member<br>Doncaster<br>Member                                | Marine environment                                                                            | Mudstone and siltstone with minor interbeds of fine<br>grained sandstone                                                                                                                                       |                                           | in QLD, 200 to over 350 m thick                                                                                                                                                               | No                                                         | Aquifer                           |
|                             |                                          | E                |                  |                       | Upper Cadna-owie<br>including the<br>Wyandra Sandstone<br>Member | Cadna-owie                                                           | Lowstand system infilling<br>fluvial channels then<br>transgressive systems                   | Medium to coarse-grained, quartzose to labile<br>sandstone with scattered pebbles                                                                                                                              |                                           | Mainly 60-90 m in QLD. Wyandra<br>Sandstone Member from 3 to 18<br>m in Queensland. Lower Cadna-                                                                                              | Oil (not frequent)                                         | Aquifer                           |
| Central 2                   | Warrego West 2                           | r<br>o<br>m<br>a | с                | adna-owie Formation   | Lower Cadna-owie                                                 |                                                                      | Transition from terrestrial<br>to marine deposition<br>environment                            | Siltstone with very fine to fine-grained sandstone<br>interbeds and minor carbonaceous claystone . Pebbly<br>layers, diamictites and coarse breccia layers occur<br>around the basin margin.                   |                                           | owie Formation typically 10–20 m<br>thick around the basin margin,<br>increasing to 75–100 m in the<br>deeper parts of the basin.<br>Maximum thickness of >115 m in<br>the Nappamerri Trough. | No                                                         | Confining bed                     |
|                             |                                          | g<br>a           |                  |                       | Murta Formation<br>(including the<br>McKinlay Member)            | Hooray<br>Sandstone,<br>Mooga                                        | Meandering fluvial,<br>floodplain and lacustrine<br>environment                               | Thinly interbedded siltstone, shale, very fine to fine-<br>grained sandstone and minor medium and coarse-<br>grained sandstone. A basal siltstone is widespread in<br>the Cooper region.                       |                                           | in QLD, typically between 60-85<br>m thick                                                                                                                                                    | Oil, some gas (not<br>frequent)<br>Seal                    |                                   |
| Central 3                   | Warrego West 3                           | B<br>a<br>s      |                  | Hooray Sandstone      | Upper Namur<br>Sandstone                                         |                                                                      | Meandering braided<br>fluvial systems                                                         | Fine to coarse-grained sandstone with minor<br>interbedded siltstone and mudstone. The basal<br>Namur Sandstone, like the Adori Sandstone, has<br>been strongly cemented with diagenetic calcite in<br>places. |                                           | in QLD, 50 to 70 m thick in<br>average however can be less or<br>thicker.                                                                                                                     | Oil (not frequent)                                         | Aquifer                           |
|                             |                                          | i                | w                | /estbourne Formation  |                                                                  |                                                                      | Lacustrine deposits<br>(transgression)                                                        | Interbedded dark grey shale and siltstone with minor sandstone interbeds                                                                                                                                       |                                           | In QLD, 70 to 140 m thick in the<br>Cooper region                                                                                                                                             | Oil (not frequent)                                         | Confining bed                     |
| Central 4                   | Warrego West 4                           | n                |                  | Adori Sandstone       |                                                                  | Injune Creek                                                         | Amalgamated braided<br>fluvial sandstone                                                      | Well-sorted, subrounded, cross-bedded, fine to<br>coarse-grained sandstone. Calcite cemented zones<br>up to 45 m thick are developed locally in the basal<br>Adori and Namur Sandstones                        |                                           | 20 to 130 m thick in the Cooper<br>region (maximum 55 m in QLD)                                                                                                                               | Oil (not frequent)                                         | Aquifer                           |
|                             | 2                                        |                  |                  |                       | Upper Birkhead<br>Middle Birkhead<br>Lower Birkhead              | Group                                                                | Meandering to lacustral deposition. Birkhead                                                  | Interbedded siltstone, mudstone and fine to medium<br>grained sandstone with thin, lenticular coal seams                                                                                                       | Jurassic                                  | in QLD 40-100 m thick, maximum<br>of 110 m. A maximum thickness<br>of >150 m occurs in the<br>Patchawarra and Nappamerri<br>Troughs                                                           | oil - Basal Birkhead and<br>Middle Birkhead<br>(scattered) | Water bearing                     |
| Central 5                   | Warrego West 5                           |                  |                  | Hutton Sandstone      |                                                                  |                                                                      | Erosion then lowstand<br>system                                                               | Fine to coarse-grained quartzose sandstone with<br>minor siltstone interbeds                                                                                                                                   |                                           | in QLD, 90-210 m thick, maximum<br>of 244 m.                                                                                                                                                  | Oil, some gas (not<br>frequent) - moslty in<br>upper part  | Aquifer                           |
| Central 6                   | Warrego West 6                           |                  | P                | oolowanna Formation   | Upper Poolowanna<br>Lower Poolowanna                             | Precipice<br>Sandstone                                               | Transgression to highstand<br>systems<br>Lowstand (fluvial) and<br>early transgressive system | Interbedded siltstone, sandstone and rare coal<br>seams. Sandstone beds range from very fine to<br>medium grained, and contain minor pebbles and<br>granules of quartzite and reworked basement.               |                                           | in QLD, maximum of 165 m                                                                                                                                                                      | Oil (not frequent)                                         | Aquifer                           |
|                             |                                          |                  |                  | Cuddapan Formation    |                                                                  |                                                                      | High sinuosity fluvial and<br>coal swamp development                                          | Sublabile to quartzrose sandstone in lower part, with<br>interbedded siltston, mudstone and coal in upper<br>part<br>MAJOR UNCONFORMITY                                                                        | Triassic                                  | in QLD, mainly 20 m to over 50 m.<br>Restricted geographically.                                                                                                                               |                                                            |                                   |
|                             | NCONFORMITY                              |                  |                  |                       | Gilpeppee Member                                                 |                                                                      |                                                                                               | Interbedded dense siltstones and light grey                                                                                                                                                                    |                                           | in QLD, from 125 - 200 m thick,                                                                                                                                                               |                                                            |                                   |
|                             |                                          |                  | dn               | Tinchoo Formation     | Doonmulla Member                                                 | Moolayember<br>Formation                                             |                                                                                               | sandstone<br>Uniform dense siltstone, with minor coal seams                                                                                                                                                    |                                           | maximum of 260 m. The<br>Gilpeppee Member is generally                                                                                                                                        | Gas (not frequent)                                         | Confining bed                     |
| Central 7                   | Warrego West 7                           |                  | Nappamerri Group |                       | Wimma Sandstone<br>Member                                        | Clematis<br>Sandstone                                                |                                                                                               | (Gilpeppee Member) and intraclast conglomerate<br>Fine to medium-grained quartzose sandstone with<br>minor interbeds of siltstone and mudstone.<br>Upward-fining cycles of fine to medium-grained              | Triassic                                  | 45 to 90 m thick.<br>Maximum total thickness of 400<br>m in the Patchawarra Trough.                                                                                                           | Gas (not frequent)                                         | Aquifer                           |
|                             |                                          | C<br>o           | Napp             | Arradurry Formation   | Paning Member<br>Callamurra Member                               | Rewan Formation                                                      |                                                                                               | sandstone grading into siliceous mudstone and<br>siltstone units.<br>Siltstone and mudstone, minor sandstone interbeds<br>(Early Triassic).Siderite and cements have formed in                                 |                                           | Callamura Member: up to 150 m<br>and more. Panning Member : up<br>to 200 m and more. Wimma<br>Sandstone : 115 m maximum                                                                       | Oil (not frequent)                                         | Confining bed<br>Confining bed    |
|                             |                                          | o<br>p           |                  | Toolachee Formation   |                                                                  |                                                                      | Channels deposits                                                                             | siltstone and sandstone beds.<br>Interbedded fine to coarse-grained sandstone,<br>siltstone and carbonaceous shale, sometimes with                                                                             |                                           | Up to 190 m                                                                                                                                                                                   | Gas                                                        | Aquifer                           |
|                             |                                          | e<br>r           |                  | Daralingie Formation  |                                                                  |                                                                      | Deltaic deposits                                                                              | thin coal seams (<3 m thick), and conglomerates.<br>Siltstone and mudstone with interbedded fine to<br>very fine-grained sandstone. Minor coal seams and<br>carbonaceous partings and streaks occur.           |                                           | in QLD, mostly 15-30 m thick, up<br>to 96 m in Nappamerri Trough                                                                                                                              |                                                            | Confining bed                     |
|                             |                                          | в                |                  | Roseneath Shale       |                                                                  |                                                                      | Lacustrine deposits                                                                           | Siltstone, mudstone and minor sandstone.                                                                                                                                                                       | Permian                                   | Up to 100 m, generally 50-80 m                                                                                                                                                                |                                                            | Confining bed                     |
|                             |                                          | a<br>s<br>i      | a Group          | Epsilon Formation     |                                                                  |                                                                      | Deltaic deposits                                                                              | Thinly bedded, fine to medium-grained sandstone                                                                                                                                                                |                                           | thick in QLD<br>Maximum thickness of 156 m in<br>the Nappamerri Trough. In<br>Nappamerri Trough, over 60 m<br>thicl, elase msolty 30-40 m thick.                                              | Gas                                                        | Aquifer                           |
|                             |                                          | n                | Gilgealpa        | Murteree Shale        |                                                                  |                                                                      | Mainly lacustrine                                                                             | Argillaceous siltstone and fine-grained sandstone.                                                                                                                                                             |                                           | In QLD, mosIty less than 50 m<br>thick.                                                                                                                                                       |                                                            | Confining bed                     |
|                             |                                          |                  | Gil              | Patchawarra Formation |                                                                  |                                                                      | Individual and stacked<br>channels                                                            | Interbedded fine to medium-grained, locally coarse-<br>grained and pebbly sandstone, siltstone, shale and<br>coal .                                                                                            |                                           | tnick.<br>50 to 150 m with up to 550 m in<br>QLD                                                                                                                                              | Gas                                                        | Aquifer                           |
|                             |                                          |                  |                  | Tirrawarra Sandstone  |                                                                  |                                                                      | Braided channel deposits                                                                      | Fine to coarse-grained and pebbly sandstone with<br>locally common interbeds of conglomerate and minor<br>interbeds of carbonaceous siltstone, shale and coal.                                                 |                                           | 30-40 m range in QLD, maximum<br>75 m total thickness                                                                                                                                         | Gas (not frequent)                                         | Aquifer                           |
|                             |                                          |                  |                  | Merrimelia Formation  |                                                                  |                                                                      | Glacial sediments<br>deposits, deep glacio-<br>lacustrine sediments                           | Conglomerate, sandstone, conglomeratic mudstone, siltstone and shale                                                                                                                                           | Late<br>Carboniferous<br>to Early Permian | Maximum 84 m in QLD                                                                                                                                                                           |                                                            | Water bearing                     |

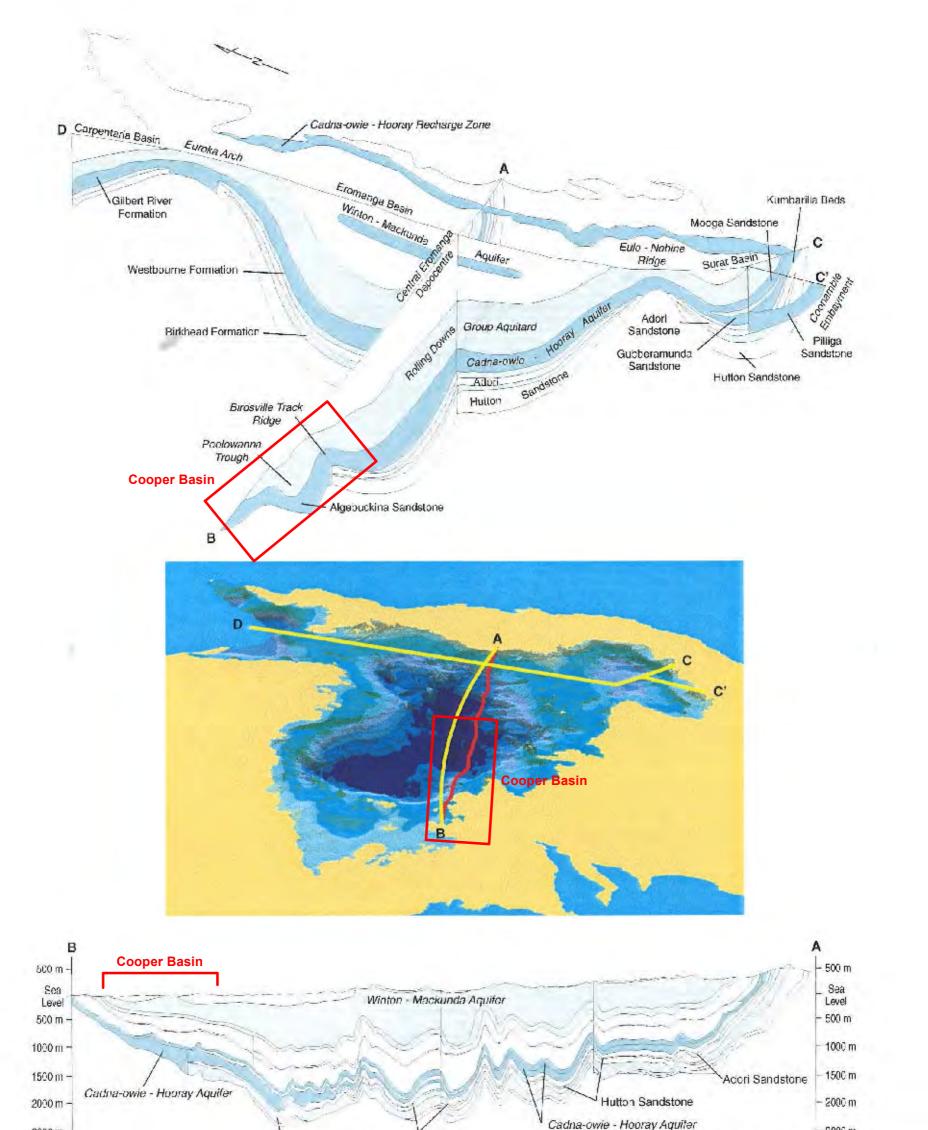
Data sources: \* : Petroleum Geology of South Australia, Volume 2 and 4, http://www.pir.sa.gov.au/petroleum/access\_to\_data/petroleum\_publications/petroleum\_geology\_of\_south\_australia \*\*: GAB WRP, 2007 \*\*\*: Australian Stratigraphy Database \*\*\*: Geology of the Cooper and Eromanga Basins, QLD, Draper,2002





## 4.3.6 Conceptual Geological Cross Sections

A schematic geological cross-section across the Eromanga Basin is presented in Figure 11. The "A-B" section cuts across the main depositional centre of the basin in SWQ. This corresponds generally to the location of the study area. As displayed, the upper formations of the Eromanga Basin (from Cadna-Owie and Hooray systems up) are continuous across the Basin. Older formations are restricted to areas within sub-basins (these formations or their equivalent may be present in several basins).


Abbreviations commonly used by Santos as stratigraphy markers or reservoir markers, and used in some of the geological figures are summarised in Table 7.

## Table 7: Geological Abbreviations for Stratigraphical markers of the Eromanga and Cooper Basins Formations

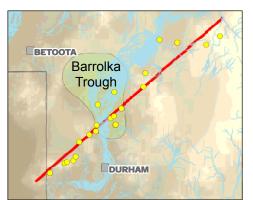
| Name of Marker   | Definition                                                            |
|------------------|-----------------------------------------------------------------------|
| 'C' Horizon      | Top Cadna-Owie                                                        |
| 'E' Horizon      | Top Birkhead Formation                                                |
| 'H' Horizon      | Top Hutton Sandstone                                                  |
| 'L*' Horizon     | Basal Eromanga Unconformity                                           |
| 'PC00' Horizon   | Top Toolachee Formation (chrono-marker)                               |
| 'PU-70' Horizon  | Basal Toolachee Formation (chrono-marker and Daralingie Unconformity) |
| 'VC00' Horizon   | Top Patchawarra Formation (chrono-marker)                             |
| 'VC50' Horizon   | Lower Patchawarra Formation (chrono-marker)                           |
| 'VCxx' - Horizon | Chrono-stratigraphic marker within the Patchawarra Formation          |
| 'ZU00' Horizon   | Top Pre-Permian (Basement)                                            |

A geological conceptual cross section across both the Cooper and Eromanga Basins has been generated in a SW to NE axis across the study area passing through the Barrolka fields (Barrolka Trough). The conceptual geological cross-section is presented in Figure 12.





| 3000 m 🖵                                                                                                                                                              | Hutton Sandstone | Adori Sandstone | atter Habermet             | – 3000 m<br>N & Lau (1997) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------------------|----------------------------|
| COOPER BASIN UWIR<br>SANTOS                                                                                                                                           |                  |                 |                            |                            |
| GEOLOGICAL SCHEMATIC<br>CROSS SECTION ACROSS<br>THE GAB EROMANGA BASIN                                                                                                |                  |                 | PRO<br>DATE<br>DRA<br>CHEC | 28/11/2011                 |
| <b>COPYRIGHT</b><br>1. Figure taken from Hydrochemistry and implied<br>hydrodynamics of the Cadna-owie-Hooray<br>Aquifer Great Artesian Basin - B.M. Radke et al 2000 |                  |                 |                            | Golder                     |


File Location: J:hyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0027\_GAB\_Aquifers.mxd

400 km SW NE QLD/SA Border Barrolka Trough Tertiary 0-Winton Formation Metres Cadna-Owie Hooray Formation Sandstone Birkhead Formation Hutton Sandstone -2000-Nappaneri Group T Ł Gilgealpa Group -4000-100000 200000 300000



#### COOPER BASIN UWIR SANTOS

## GEOLOGICAL CONCEPTUAL CROSS SECTION ACROSS THE STUDY AREA



#### Legend

| - 0           |                  | Litho-stratigrap      | hv                        |      |  |  |
|---------------|------------------|-----------------------|---------------------------|------|--|--|
|               | Unit             | name                  | Sub-unit                  |      |  |  |
| -             | 5                | Tertiary sediments    | unit unit                 |      |  |  |
|               |                  | Winton Formation      |                           |      |  |  |
|               | n                | Mackunda Formation    |                           |      |  |  |
|               |                  | Allaru Mudstone       |                           |      |  |  |
| -             |                  | Toolebuc Formation    |                           |      |  |  |
| E             |                  |                       | Coreena Member            |      |  |  |
| r             | w                | allumbilla Formation  | Doncaster Member          |      |  |  |
| 0             |                  |                       | Wyandra Sandstone         |      |  |  |
| m             | C                | adna-Owie Formation   | member                    |      |  |  |
| а             |                  |                       | Lower Cadna-Owie          |      |  |  |
| g             |                  |                       | Murta Formation           |      |  |  |
| а             |                  | Hooray Sandstone      | McKinlay Member           |      |  |  |
|               |                  |                       | Namur Sandstone           |      |  |  |
| в             | w                | estbourne Formation   |                           |      |  |  |
| a             |                  | Adori Sandstone       |                           |      |  |  |
|               |                  |                       | Upper Birkhead            |      |  |  |
| s             |                  | Birkhead Formation    | Middle Birkhead           |      |  |  |
| i             |                  |                       | Lower Birkhead            |      |  |  |
| n             |                  | Hutton Sandstone      |                           |      |  |  |
|               | Po               | polowanna Formation   | Upper Poolowanna          |      |  |  |
|               |                  |                       | Lower Poolowanna          |      |  |  |
|               | _                |                       |                           |      |  |  |
| С             | dno              | Tinchoo Formation     | Gilpepee Shale            |      |  |  |
| 0             | ig               |                       | Doonmulla Member          |      |  |  |
| 0             | Jappamerri Group | Arraburry Formation   | Wimma Sandstone<br>Member |      |  |  |
| р             | par              |                       | Panning Member            |      |  |  |
| е             | Naj              |                       | Callamurra Member         |      |  |  |
| r             |                  | Toolachee Formation   |                           |      |  |  |
|               |                  | Daralingie Formation  |                           |      |  |  |
| в             | dno              | Roseneath Shale       |                           |      |  |  |
| а             | a<br>D           | Epsilon Formation     |                           |      |  |  |
| s             | Gilgealpa Group  | Murteree Shale        |                           |      |  |  |
| i             | Gilg             | Patchawarra Formation |                           |      |  |  |
|               |                  | Tirrawarra Sandstone  |                           |      |  |  |
| n             |                  | Merrimelia Formation  |                           |      |  |  |
|               | – Ge             | eological Contact     |                           |      |  |  |
|               | ● Ma             | jor Unconformity      |                           |      |  |  |
|               | Fre              | omaga Basin           |                           |      |  |  |
|               | _                | -                     |                           |      |  |  |
|               | Co               | oper Basin            |                           |      |  |  |
|               | Ba               | sement                |                           |      |  |  |
|               |                  |                       |                           |      |  |  |
|               |                  |                       | Kilomet                   | res  |  |  |
| 0 10 20 40 60 |                  |                       |                           |      |  |  |
| /ert          | tical            | Exaggeration 1        | :50                       |      |  |  |
|               | DJE              |                       |                           |      |  |  |
| DAT           |                  | 28/11/201             | -                         |      |  |  |
|               |                  |                       | 1                         |      |  |  |
|               | AWN              |                       | FICU                      |      |  |  |
| CHE           | ECK              | ED: FH                | rigu                      |      |  |  |
| CHE           | ECK              | ED: FH                | FIGU                      | KE 1 |  |  |





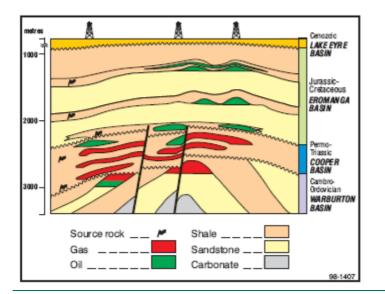
## 4.3.7 Tectonics Controls and Trapping Mechanisms

#### **Faults**

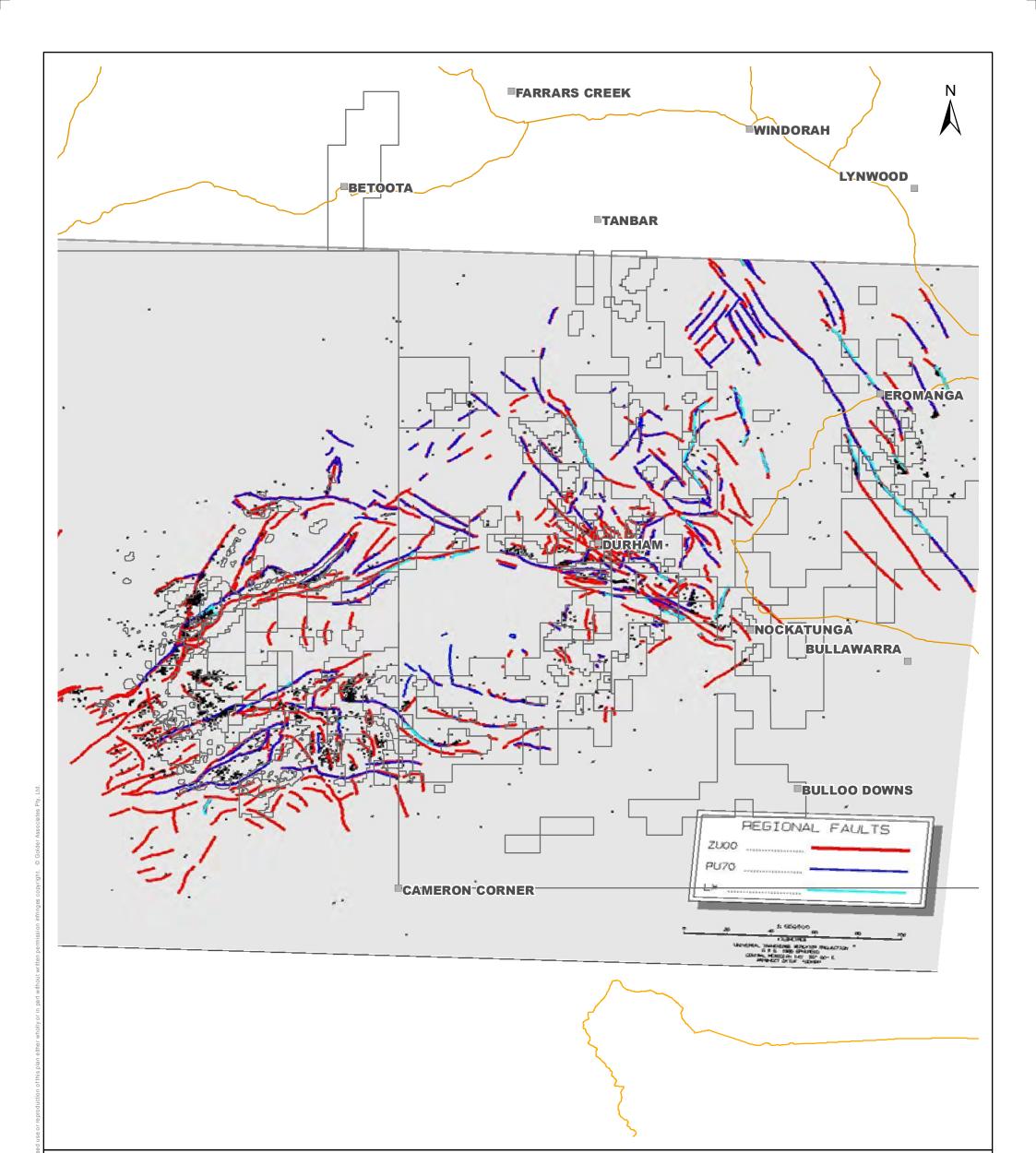
The structural framework of the Cooper Basin, particularly with regard to faulting is complex in the study area. Santos has, however, undertaken an exercise of mapping (Santos, 2004) to simplify the tectonic features within the area. The primary purpose of this mapping was to identify likely fault conduits (likely to enhance vertical migration of petroleum fluids) and fault baffles (likely to prevent lateral migration of **petroleum fluid**).

Over the area of Santos SWQ activities, the major episodic faults occurred in the top pre-Permian (basement), the basal Toolachee Formation and the basal Eromanga unconformity (Figure 14). The top pre-Permian faults provide the basin's overall fabric, whereas the younger faults from the basal Toolachee Formation and basal Eromanga unconformity are generally reactivated Permian faults.

In the Eromanga Basin formations, very few regional faults are observed as very little fault movement occurred during deposition of Eromanga Basin sediments. Subsidence and compaction dominated the structural geology (PIRSA, 2006).


#### Hydrocarbon Trapping Mechanisms

#### **Eromanga Basin**


Trapping mechanisms are dominantly structural with a stratigraphic component (e.g. Hutton–Birkhead transition, Poolowanna facies, McKinlay Member and Murta Formation). Seals consist of intraformational siltstones and shales of the Poolowanna, Birkhead and Murta Formations. Where these units are absent, potential seals higher in the sequence include the Bulldog Shale and Wallumbilla Formation (SA DPI, 1998).

#### **Cooper Basin**

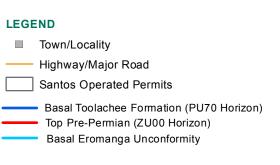
Anticlinal and faulted anticlinal traps have been relied on as proven exploration targets but potential remains high for discoveries in stratigraphic and sub-unconformity traps, especially where the Permian sediments are truncated by the overlying Eromanga Basin succession. Minor amounts of hydrocarbons are reservoired in sands of the Nappamerri Group, but its mud-prone nature means that it also acts as regional seal to the Cooper Basin. The uppermost major sandstone reservoirs in the Cooper Basin are in the Toolachee Formation. Beneath the Daralingie Unconformity, which marks the base of the Toolachee, are two important early Permian regional seals - the Roseneath and Murteree Shales. The Roseneath Shale is the regional top seal for the reservoir sands in the Epsilon Formation and the Murteree Shale seals the Patchawarra Formation. The Toolachee and Patchawarra Formations, in particular, consist of a series of interbedded sands, shales and coals, and the shales and coals often act as intraformational seals.







#### COOPER BASIN UWIR


#### SANTOS

## SUMMARY OF REGIONAL MAJOR FAULTS (SANTOS 2004)

#### COPYRIGHT

1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011 3. Faults map supplied by Santos (2004)







Coordinate System: GCS GDA 1994

| PROJECT: | 117636010  |
|----------|------------|
| DATE:    | 19/12/2011 |
| DRAWN:   | AJW        |
| CHECKED: | FH         |

**FIGURE 14** 



File Location: J:hydl2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0038\_CooperBasinRegionalMajorFaults.mxd

#### **Tectonics and Uplifts**

Tectonics and uplifts are discussed in the PIRSA reports on the Eromanga and Cooper Basins geology (PIRSA, 1998; see also Section 4.3.3).

Carboniferous-to-Triassic deposition within the Cooper Basin was terminated at the end of the Early Triassic by regional uplift, tilting and erosion.

Deposition in the Eromanga Basin commenced during the Early Jurassic and was controlled by the topography of the unconformity surface. No major depositional breaks occur in the Eromanga Basin, indicating a period of relative tectonic quiescence. With the large scale Early Cretaceous marine inundation of the Australian continent a rapid period of subsidence took place in the Eromanga Basin.

## 4.4 Environmental Values

The environmental values defined here are those of the surface water or groundwater resource within the study area and are defined as "those qualities of the waterway that make it suitable to support particular aquatic ecosystems or human use" (Environmental Protection (Water) Policy, 2009, referred to as EPP Water, 2009). The EPP 2009 provides guidelines on determining the environmental value that should be considered for a particular project site or area, which follow the framework set out in *Appendix H* of the *Queensland Water Quality Guidelines 2006* (QWQG 2006).

There are a number of environmental values associated to surface water bodies, however, these may/may not be related to groundwater systems. Environmental ecosystems depending on groundwater are referred to as Groundwater Dependant Ecosystems (GDE). Environmental values depending relevant to groundwater resources in the study area are:

- Groundwater Dependant Ecosystems (Incl. wetlands and springs);
- Drinking Water;
- Sandstone Aquifers of the Great Artesian Basin; and
- Groundwater Users.

The hydrogeology of the study area is described in Section 5.0.

#### 4.4.1 Groundwater Dependant Ecosystems (Incl. springs)

Groundwater dependent ecosystems (GDEs) can be defined as those ecosystems whose ecological processes and biodiversity are wholly or partially reliant on groundwater. The extent of GDE dependency on groundwater can range from being marginally or episodically dependent to being entirely dependent on groundwater (SKM, 2001).

Examples of GDEs include:

- Terrestrial vegetation supported by shallow groundwater.
- Aquatic ecosystems in rivers and streams that receive groundwater baseflow. Baseflow typically accounts for a significant fraction of total flow volume in major rivers and streams. Baseflow can sustain streamflow volumes long after rainfall events, or throughout dry seasons, and is therefore critical to the maintenance of aquatic ecosystems in rivers and streams in many Australian environments. Baseflow can occur as springs discharging into a river or stream, or as diffuse influx of groundwater through banks and bed sediments.
- Wetlands, which are often established in areas of groundwater discharge.
- Springs and associated aquatic ecosystems in spring-fed pools.
- Aquifers and caves, where stygofauna (groundwater-inhabiting organisms) reside.





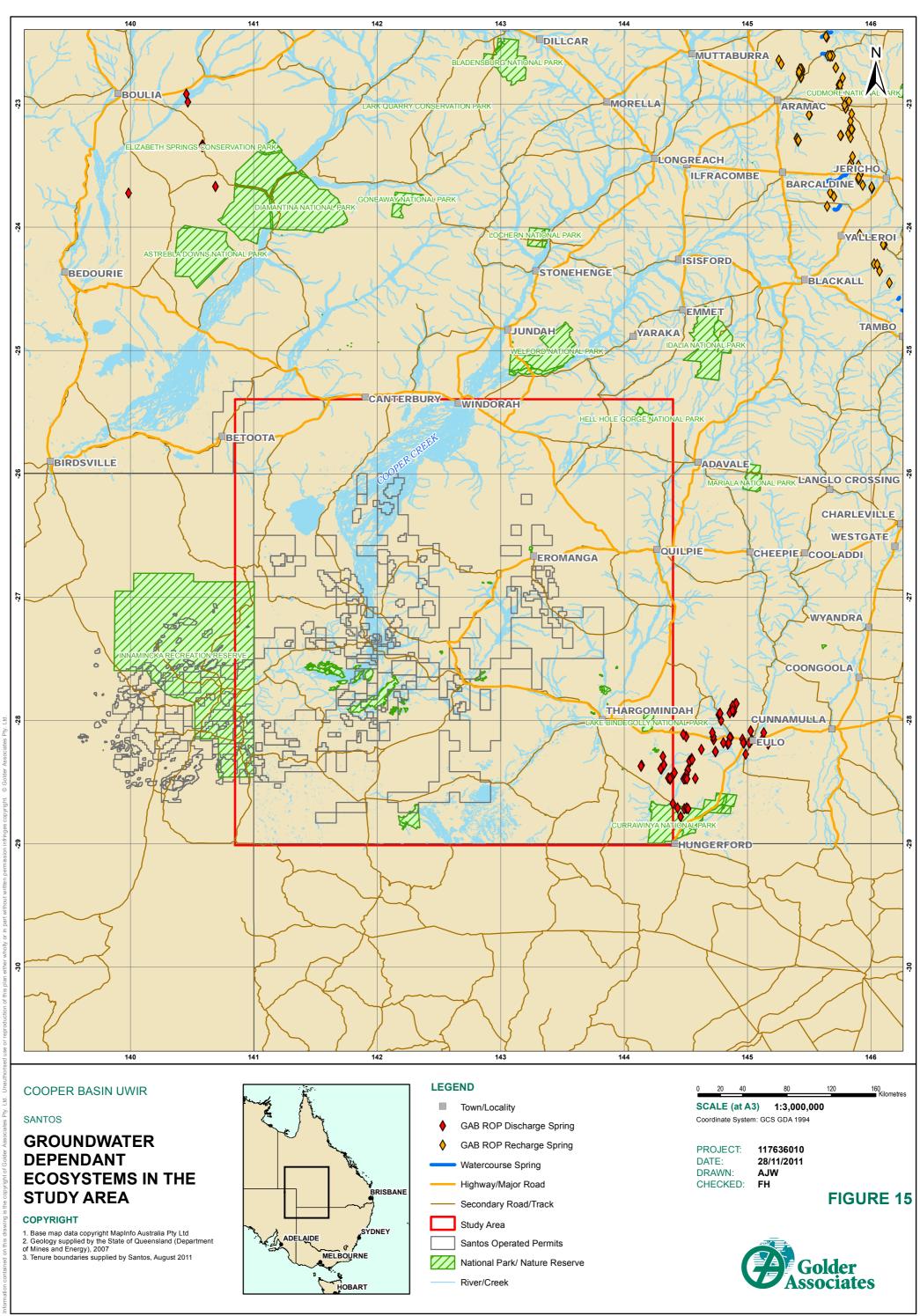
Potential GDEs in the Study Area are illustrated on Figure 15.

The nearest GAB spring is located at 95 km from Santos tenements.

Cooper Creek Basin has been announced as wild river area, the basin is the largest catchment in the Lake Eyre Basin region.

Note: DERM defines *wild river areas* some river ecosystems rare which are relatively untouched by development and are therefore in near natural condition, with all, or almost all, of their natural values intact. These areas may include threatened plants, birds and marine and estuarine species.

The Cooper Creek has been recognised as one of the Australia's most iconic inland rivers and largely intact natural values. The *Cooper Creek Basin Wild River Area Summary: Natural Values Assessment* (DERM, 2010) concludes that "the persistence of waterholes in the Cooper Creek is largely influenced by surface water flows and evaporation, with little inputs from groundwater". As a consequence the Cooper Creek system is not classified as a GDE.


As mentioned earlier, the study area lies within the Channel Country regional ecosystem. Within this region, there are no recognised endangered regional ecosystems (EREs) (Santos, 2011).

Within the study area, the only *wetland* listed of international significance under the EPBC Act Protected Matters database (Ramsar sites) is the Currawinya Lakes National Park located at the very south eastern corner of the study area. It consists of a mosaic of low dunefields, lakes, clay and saltpans, dissected tablelands and low hills and contains one of the richest and most diverse samples of wetlands in inland Australia. The Currawinya Lakes National Park lies more than 240 km east of the closest Santos Cooepr Basin activities petroleum lease in the study area. The wetland is underlain by the Eromanga Basin but not by the Cooper Basin.

Other nearby national parks include the Lake Bindegolly National Park, west of the town of Thargomindah and the large Innamincka Recreation Reserve in SA.

In summary, there are no known GDEs over the study area.





File Location: J:hyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0004\_CooperBasinGWDependantEcosystems.mxd



## 4.4.2 Drinking Water and Groundwater Users

Groundwater is a common drinking water source for many inland areas of Australia, especially where aquifers of good quality and yield are present at reasonably shallow depths.

Municipal water supply accounts for about all large licensed groundwater allocation across the study area. Licensed municipal water supply may represent approximately 5 -10% of the number of groundwater licences across the study area. This is consistent with the likelihood of numerous individual stock and domestic water supply bores of limited groundwater use. Municipal water supply bores found in the WES database are licensed in the Hooray Sandstone.

In addition to municipal water, individual properties in those remote arid areas are likely to access groundwater for water supply. These water supplies are not required to be licensed.

Groundwater as a drinking water supply and water resource for the rural community is considered to be an important environmental value in the study area.

It should be noted that groundwater use by the local communities is limited to the formations of the Eromanga Basin and overlying sediments and more generally, the shallower formations. A large proportion of the water supply bores target the Winton Formation aquifer (according to information from the DERM groundwater database).

Groundwater use is further discussed in Section 5.9.

#### 4.4.3 Sandstone Aquifers of the Great Artesian Basin

The main GAB aquifers (i.e. in the Eromanga Basin stratigraphy) over the study area are the Winton Formation, Cadna-Owie Formation, Hooray Sandstone, Hutton Sandstone and Poolowanna Formation (Precipice Sandstone equivalent) within the Eromanga Basin.

The aquifers of the Cooper Basin (pre-GAB) are not considered by the regulator within the defined *"sandstone aquifers of the GAB"*. Nevertheless, the major aquifers are presumed to be the Wimma Sandstone, Toolachee Formation, Epsilon Formation, Patchawarra Formation and Tirrawarra Formation.

The aquifers of the Eromanga Basin are considered highly productive aquifers over most of the GAB.

In the study area, only the upper aquifers within the stratigraphy sequence are of interest to the local community due to the significant depth of the deeper aquifers. As such, the Hutton and Poolowanna Sandstone aquifers are not used by the community (at the possible exception of a couple of exploration bores converted as groundwater bore).

# 4.5 Local Community Recreational, Aesthetical, Cultural and Spiritual Values

A number of stakeholders' values in the study area are related to the channel country flood area. Permanent water holes and floods have ensured the viability of aboriginal communities and non-aboriginal people. Aboriginal trade routes are found along Cooper Creek crossing the continent from north to south.

Santos draft *Environmental Management Plans* (EMP) discusses the cultural and spiritual values of the study area.

The EMPs identify ten sites of cultural heritage significance within or in close proximity to the study area. These sites are either listed in the Register of the National Estate (RNE) and/or the Queensland Heritage Register and are shown in Table 8.





| Table 6. Olgimeant Ones of Outdrait Heritag                    | je (/ lieenginane       |                          |      | ••••                     |
|----------------------------------------------------------------|-------------------------|--------------------------|------|--------------------------|
| Historic site                                                  | Aboriginal significance | European<br>significance | RNE* | Qld Heritage<br>Register |
| Dig Tree Reserve (Nappamerry Station via<br>Thargomindah, Qld) | V                       | V                        | ~    | -                        |
| Cunnavalla Creek Area (Qld)                                    | ~                       | -                        | ~    | -                        |
| Durham Downs Area (Qld)                                        | ~                       | -                        | ~    | -                        |
| Johnson Channel Area (Qld)                                     | ~                       | -                        | ~    | -                        |
| Nappa Merrie Archaeological Area (Qld)                         | ~                       | -                        | ~    | -                        |
| Nappapethera Waterhole Sites (Qld)                             | ~                       | -                        | ~    | -                        |
| Orientos Area (Qld)                                            | ✓                       | -                        | ~    | -                        |
| Noccundra Hotel                                                | -                       | ~                        | ~    | ✓                        |
| Thargominda Historic House                                     | -                       | 1                        | ~    | -                        |
| Dr Ludwig Becker's Grave                                       | -                       | ~                        | -    | ✓                        |

#### Table 8: Significant Sites of Cultural Heritage (Aboriginal and European) (Santos 2011)

\* Register of the National Estate

There are also currently three native title claims over various portions of the study area (Boonthamurra People, Wongkumara People and Kullilli People).

The most populated regions within the study area are Eromanga (approx 80 inhabitants) and Thargomindah (approx. 250 inhabitants). Transient populations are growing with the development of tourism and the increase of caravan parks.





## 5.0 HYDROGEOLOGICAL CONCEPTUAL MODEL

## 5.1 Hydrogeological Setting

The Cooper and Eromanga basins are two chronologically successive stacked basins. The Cooper Basin is often considered by geologists as not being part of the GAB, however the upper formations of the Cooper Basin are included into the QLD GAB regulation (GAB ROP, GAB WRP). The Eromanga Basin is one of the main basins of the GAB, it is widely spread and covers the whole of the Cooper Basin. The connection between the two basins is geologically marked by a major discontinuity.

Both the Cooper Basin and Eromanga Basin are multi-layered systems comprising alternating layers of sandstone, shales, mudstones and siltstones formations (Section 4.3). The sandstone formations of the Eromanga Basin correspond generally to water bearing formations and aquifer formations, they may yield significant quantities of groundwater to water bores and springs.

The siltstones, shales and mudstones formations are generally low permeability rocks and generally do not qualify as aquifers. However, sandstone beds can be found amongst the mudstones and siltstones, some of them forming limited groundwater sources and able to supply low yield bores.

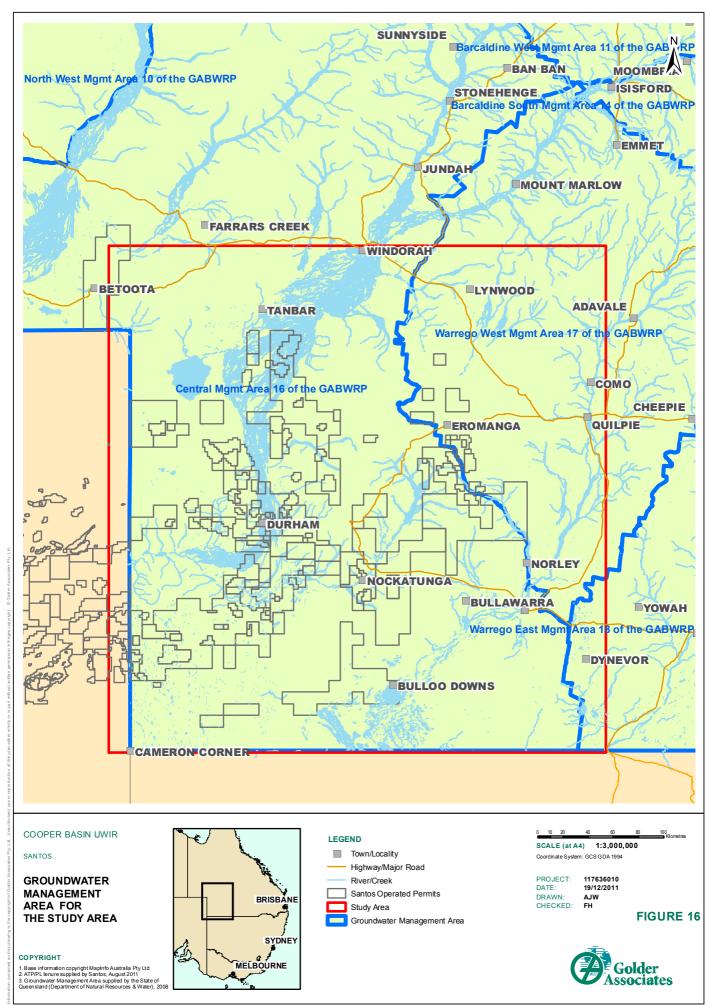
The formations may be expected to be laterally continuous and hydraulically connected however this may not always necessary be the case due to the variability in the nature of the deposits.

For management purposes, the GAB is subdivided in Groundwater Management Area (GMA) as defined in the *GAB Hydrogeological Framework for the GAB WRP Area* (DERM, 2005) [Section 2.0]. Each area is further divided in Groundwater Management Units (GMU) as represented on Figure 10. GMU groupings follow stratigraphy and hydrogeological characteristics as presented on Figure 10. The identification of GMUs allows for administration of access to water and water entitlements.

## 5.2 Hydrostratigraphy

Santos tenements are contained within the *Central Management Area* (GMA16) mostly, and the western part of *Warrego West Management Area* (GMA 17) as illustrated on Figure 16.

The main aquifer units and aquitard units are presented on Table 9. The main aquifer groupings, in term of production of groundwater, include:


- The aquifers of the Quaternary formations and Tertiary sediments;
- The GAB aquifers of the Eromanga Basin (water supply for agricultural and drinking water, and groundwater extraction associated with the production of oil);
- The older and deeper aquifers of the Cooper Basin (groundwater extraction associated with the production of gas).

The limitation of groundwater development to the main units from the Eromanga Basin is due to the access at shallower depths of suitable groundwater resources. The aquifers from the Cooper Basin are much deeper and are only accessed during the production of gas.

Hydrostratigraphy can only be thoroughly described for the formations of the Eromanga Basin - using information from the DERM database or from the literature. Insufficient information is available to provide a detailed description of the hydrostratigraphy of the Cooper Basin formations.

Note that the Quaternary and Tertiary sediment aquifers and the Winton Formation are not administered under the GAB Resource Operation Plan (GAB ROP, DERM 2007).





tion: J:/hyd/2011/1117636010 Santos\_Copper Basin O&G & Moonie OII - official folder in BRISBANE\GIS\Projects\117636010\_R\_F0033\_CooperBasinGMA.m

Γ



| Central 1 -<br>Warrego West 1<br>Central 2 -<br>Warrego West 2 |                         | Wint<br>Mac<br>Allu   | dower Formation<br>on Formation<br>kunda Formation |                                    |                                                                                         |  |
|----------------------------------------------------------------|-------------------------|-----------------------|----------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|--|
| Warrego West 1<br>Central 2 -                                  |                         | Mac<br>Allu           | kunda Formation                                    |                                    |                                                                                         |  |
| Warrego West 1<br>Central 2 -                                  |                         | Allu                  |                                                    |                                    |                                                                                         |  |
| Warrego West 1<br>Central 2 -                                  |                         |                       | <b></b>                                            |                                    |                                                                                         |  |
| Warrego West 1<br>Central 2 -                                  |                         | Tool                  | ru Mudstone                                        |                                    |                                                                                         |  |
| Warrego West 1<br>Central 2 -                                  |                         | Toolebuc Formation    |                                                    |                                    | Surat Siltstone                                                                         |  |
|                                                                |                         | Wallumbilla Formation |                                                    | Coreena Member<br>Doncaster Member | Wallumbilla Formation                                                                   |  |
| Walleyo West Z                                                 | ct 2                    |                       | na-Owie Formation                                  | Wyandra Sandstone<br>Member        | Cadna-Owie Formation,<br>Bungil formation, Gilbert<br>River Formation                   |  |
| <b>J</b>                                                       | sin                     |                       |                                                    | Lower Cadna-Owie                   |                                                                                         |  |
|                                                                | Basin                   |                       |                                                    | Murta Formation                    | Hooray Sandstone, Mooga<br>Sandstone, Orallo Formation<br>and Gubberamunda<br>Sandstone |  |
| Central 3 -<br>Warrego West 3                                  | Eromanga                | Ноо                   | ray Sandstone                                      | Namur Sandstone                    |                                                                                         |  |
| Central 4 -<br>Warrego West 4                                  | ы                       | Westbourne Formation  |                                                    |                                    |                                                                                         |  |
|                                                                |                         | Adori Sandstone       |                                                    |                                    |                                                                                         |  |
|                                                                |                         | Birkhead Formation    |                                                    | Upper Birkhead                     | Injune Creek Group                                                                      |  |
|                                                                |                         |                       |                                                    | Middle Birkhead                    |                                                                                         |  |
|                                                                |                         |                       |                                                    | Lower Birkhead                     |                                                                                         |  |
| Central 5 -                                                    |                         |                       |                                                    |                                    |                                                                                         |  |
| Warrego West 5                                                 |                         | Hutt                  | on Sandstone                                       |                                    |                                                                                         |  |
| Central 6 -                                                    |                         |                       |                                                    | Upper Poolowanna                   |                                                                                         |  |
| Warrego West 6                                                 |                         | Poolowanna Formation  |                                                    | Lower Poolowanna                   | Precipice Sandstone                                                                     |  |
| MAJOR UNCONFC                                                  | RMI                     | ГҮ                    |                                                    |                                    |                                                                                         |  |
|                                                                |                         | pamerri Group         |                                                    | Gilpepee Shale                     | Moolayember Formation                                                                   |  |
|                                                                |                         |                       | Tinchoo Formation                                  | Doonmulla Member                   |                                                                                         |  |
| Central 7 -<br>Warrego West 7                                  |                         | 'ri G                 |                                                    | Wimma Sandstone                    | Clematis Sandstone                                                                      |  |
|                                                                |                         | mer                   | <b>.</b> . <b>.</b>                                | Member                             |                                                                                         |  |
|                                                                |                         | рра                   | Arraburry Formation                                | Panning Member                     | Rewan Formation                                                                         |  |
|                                                                | <u>.</u>                | Napı                  |                                                    | Callamurra Member                  |                                                                                         |  |
| Cooper Basin                                                   | 3as                     |                       | Toolachee Formation                                |                                    |                                                                                         |  |
|                                                                | erE                     |                       | Daralingie Formation                               |                                    |                                                                                         |  |
|                                                                | Coop<br>Gilrealna Groun | dno                   | Roseneath Shale                                    |                                    |                                                                                         |  |
|                                                                |                         | G                     | Epsilon Formation                                  |                                    |                                                                                         |  |
|                                                                |                         | alpa                  | Murteree Shale                                     |                                    |                                                                                         |  |
|                                                                |                         | Gilgea                | Patchawarra Formation                              |                                    |                                                                                         |  |
|                                                                |                         |                       | Tirrawarra Sandstone                               |                                    |                                                                                         |  |
|                                                                |                         |                       |                                                    |                                    |                                                                                         |  |
|                                                                |                         |                       | Merrimelia Formation                               |                                    |                                                                                         |  |
|                                                                | -                       | or Aqu<br>er Bea      | lifer                                              |                                    |                                                                                         |  |
|                                                                |                         | ining                 | •                                                  |                                    |                                                                                         |  |

## Table 9: Hydrostratigraphy of the Study Area





## 5.2.1 Quaternary and Tertiary Alluvium

The Quaternary and Tertiary alluvium formations cover a large proportion of the study area, they are often associated to the very flat structures of the flood plains and are absent where the Winton Formation outcrops.

The Quaternary and Tertiary sediments are expected to be unconfined and form the water table aquifer where present. Insufficient water level information is available for the Quaternary formations to define further the level of connectivity.

The Glendower Formation is the main formation of the Tertiary for the study area. The Australian Stratigraphic Database identifies the Whitula Formation overlying the Glendower Formation, however the significance of the Whitula Formation in the study area is unknown.

The Glendower Formation consists of consolidated sediments comprising sandstones, sandy siltstones and minor conglomerate and mudstones (Australian Stratigraphic Database, geosciences Australia).

Groundwater flow follows the topographical profile with the limitations imposed by the fluvial nature and the presence of the sediments. As illustrated on the hydrogeological map, the hydraulic gradient is small (Figure 19).

The salinity of these aquifers is brackish, with electrical conductivities (EC) ranging from 3,000 to 7,000  $\mu$ S/cm (on the basis of data from the DERM database).

#### 5.2.2 Winton Formation

According to the DERM database, the Winton Formation is a significant aquifer for the local community because it supplies a number of stock and domestic bores. The depth to the Winton Formation and thickness of the Winton Formation (based on DERM groundwater database) are illustrated in the maps of APPENDIX B. The top of the Winton Formation is (according to the DERM groundwater database) found in the first 50 m below ground and the thickness can reach up to 970 m.

Santos' geology team however dispute the role of the Winton Formation as a significant aquifer in SWQ, at best it would be water bearing. It appears (Pers. Comm. N. Lemon, Santos, November 2011) that although in a large area of QLD the Winton Formation is a significant aquifer, the quality of the Winton Formation as an aquifer appears to diminish westward from central Queensland to SW Queensland and into SA and that the top and bottom of the Winton are so poorly defined in the subsurface that one cannot be sure that water production currently assigned to the Winton Formation does not come from the overlying Tertiary (Eyre Formation in South Australia) or underlying Mackunda Formation. This situation is supported in SA by the findings of Gravestock and al. (1995).

The Winton Formation directly underlies the Tertiary sediments, some levels of hydraulic conductivity are expected however no data is available to sustain this affirmation.

The water quality in the Winton Formation is brackish to saline. The water is fresh to brackish with ECs ranging from 900 to 13,000  $\mu$ S/cm. Water flows in this aquifer is generally to the south west (Figure 20).

#### 5.2.3 Cadna-Owie Formation

The Cadna-Owie Formation is considered a major GAB unit. Its upper section, the Wyandra Sandstone is an aquifer however its thickness is quite limited over SWQ, the Lower Cadna-Owie is considered an aquitard.

The few data points available in the groundwater database seem to indicate fresh to slightly brackish water quality with the Wyandra Sandstone. Insufficient water level information is available to describe water flows and water levels and to create a hydrogeological map.

Habermehl defines this unit as non artesian (1986, 1997), however the DERM groundwater database identifies a few artesian bores in the Cadna-Owie Formation.



The proportion of aquifer sandstone and siltstones in this unit is much lower than that in the Hooray Sandstone and the spatial variability even greater. The Wyandra Sandstone is recognised as the productive layer of the formation. It is a highly permeable shallow marine sandstone, mostly extensive in the eastern regions of the Formation (BRS, 2000).

## 5.2.4 Hooray Sandstone

The Hooray Sandstone system is a major GAB unit, in the study area it is a major aquifer. Oil reservoirs and minor gas reservoir are also contained with this unit. Two sub-units are identified in the Hooray Sandstone:

- The Murta Formation, equivalent in other GAB basins are the Mooga and Gubberamunda Sandstones, however in the study area it is rather considered to be a confining bed, the main confining unit being a siltstone bed located at the base of the Murta Formation and found widespread over the Cooper region. Oil and some gas reservoirs can be found in the Murta Formation. The McKinlay Member, which belongs to the Murta Formation, is not always present in SWQ and contains minor oil reservoirs.
- The Namur Sandstone is the major water bearing unit of the Hooray Sandstone. Oil can also be found in this unit.

The water quality in the Hooray Sandstone is generally fresh and may be slightly brackish as EC values (DERM database) range from 675 to 3,930  $\mu$ S/cm with a median value of 1,003  $\mu$ S/cm. A few bores have several salinity values measured over a 40 year period. For those bores, the latest values are observed to be similar to earlier values.

A number of bores within the Hooray Sandstone may be artesian. Groundwater bores for that unit seem to be concentrated to the south east of the study area (Figure 21). No water level and salinity data are available for the main part of the area (i.e. within Santos tenements).

Figure 21 indicates that the groundwater flow direction is directed to the south east (for the available dataset) and that the generally the water salinity is fresh to slightly brackish.

The Hooray Sandstone seems to be an aquifer of higher yield than the overlying aquifers, town water supply bores are completed with the Hooray Sandstone. An analysis of bore yields from the DERM database would need to be undertaken to confirm this statement.

## 5.2.5 Westbourne Formation, Adori Sandstone and Birkhead Formation

Little hydrogeological information is available on the Westbourne Formation, Adori Sandstone and Birkhead Formation.

The Westbourne Formation is generally considered to be a confining bed of homogeneous characteristics (lacustrine deposits associated with a large transgression), however in the south east section of the study area, a number of private bores are completed in the Westbourne Formation, possibly in some of the minor sandstone beds of the formation.

The Adori Sandstone is an aquifer in the study area, insufficient information is available to characterise it further.

The Birkhead formation is a succession of non-continuous confining beds and water bearing sandstone units.

Salinity levels cannot be commented upon as salinity data are not available for those formations in the DERM database nor were made available from Santos produced water extracted from this formation.





#### 5.2.6 Hutton Sandstone

The Hutton Sandstone is a significant GAB aquifer however its depth (about 2,000 m bgl – refer to Figure 12) in the study area prevents it from access other than for oil activities. The groundwater flow is expected to be to the south west i.e. consistent with the flow of the major GAB units as described in the literature.

Note: there is insufficient water level data in the Hutton Sandstone to characterise groundwater flow direction further.

Water quality of the Hutton Sandstone in the study area cannot be commented upon as no data was made available on produced water quality.

#### 5.2.7 **Poolowanna Formation**

Also referred to as the Basal Jurassic Formation (older name in the nomenclature), the Poolowanna Formation is the equivalent of the Precipice Sandstone (in SE QLD). As for the Hutton Sandstone, groundwater flow is expected to be to the south west i.e. consistent with the flow of the major GAB units as described in the literature.

## 5.3 Observed Reservoir Pressure Data

Formation pressure data is collected by Santos as drilling operations are conducted. Santos notes that (per. comm. Owen Davies and Nick Lemon; Santos, 2012):

"Typically the water pressure in a number of water-bearing stratum in each well is monitored during drilling by:

- Drill stem test (DST);
- Repeat formation tester (RFT); or
- Formation micro tester (FMT).

Pressure testing is undertaken to assess the likely thickness of the oil or gas column found at any particular level. This is done by comparing the pressure in the hydrocarbon-bearing zone with the expected water pressure, predicted by the water pressure-depth line (Figure 17 and Figure 18).

Models for predicting the influence of gas and oil, and associated water production at depth require input data on the pressure transmissibility of the strata that separates the target formations (referred to as seals). In the case of SWQ:

- Seals between the Glendower and Winton aquifers; and
- Seals between the Murta, Namur, (Hooray) and Hutton Sandstone, from which oil is produced.

Numerous Santos wells have undergone pressure measurements in the Cadna-Owie to establish water pressure-depth lines and this data can be re-assessed to see if depletion from underlying hydrocarbon production zones has influenced the aquifers utilised for water supply. If no depletion is seen in the Cadna-Owie Formation, then production is assumed not to have had an influence on the overlying aquifers.

Where groundwater has been abstracted from the same aquifers as those associated with hydrocarbon production, observed pressure data may provide a direct indication of the groundwater pressure in that aquifer and aquitard. The extrapolation of the water pressure gradient to the surface provides an indication of the level to which water will now rise compared to what it would have been in the past.

With suitable interrogation of this historical pressure data, an assessment of the potential reduction in groundwater level may be possible. It should be noted that this would be a combined result of water resource abstraction and cumulative impact from the hydrocarbon industries.

Santos has a library of water pressures in many of the water-bearing levels in the Eromanga Basin that could be used to define changes to groundwater. Ongoing drilling will continue to add to that data base, tracking





the changes into the future. Additional pressure points can be added to the scope of each well if needed to ensure the database is sufficient to cover the needs of water monitoring."

At the time of writing, this historical pressure data was not in a format suitable for analysis (per. comm. Owen Davies; Santos, 2012), Collation and analysis of this data will be an undertaking of the Water Monitoring Plan (APPENDIX H).

Two examples of this are available from Santos' existing data sets; those of Tickalara Field and Iliad Field in SWQ (Figure 17 and Figure 18).

These figures demonstrate how the pressure (plotted points from Tickalara 19, 20, 21 and 22 and Iliad 3, 4,5 and 6) are depleted below the predicted water pressure line (blue dashed line that increases in pressure with increasing depth) is confined within each target formation (shown as yellow layers) by the presence of an overlying aquitard (seal bed, shown as orange layers).

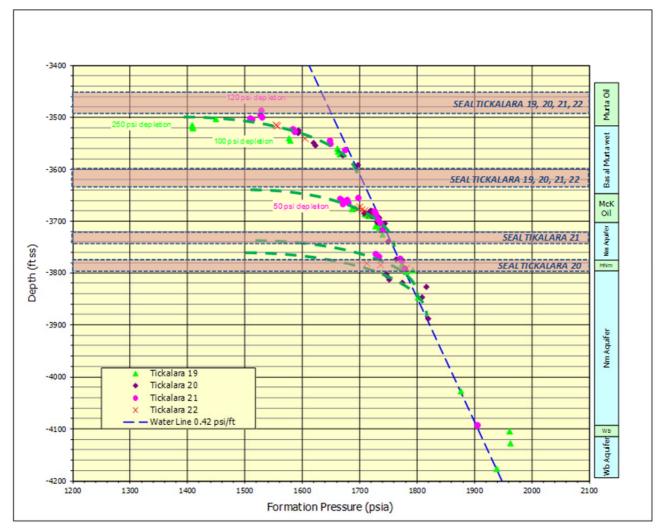



Figure 17: Observed Tickalara Oil Field Pressure with Depth Plots





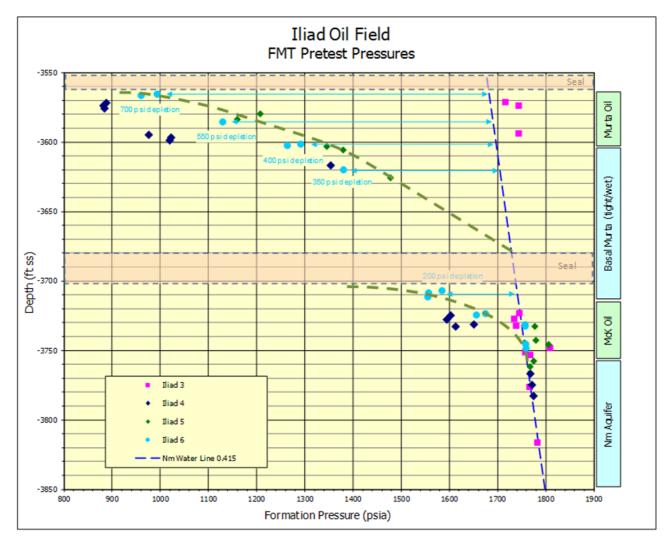
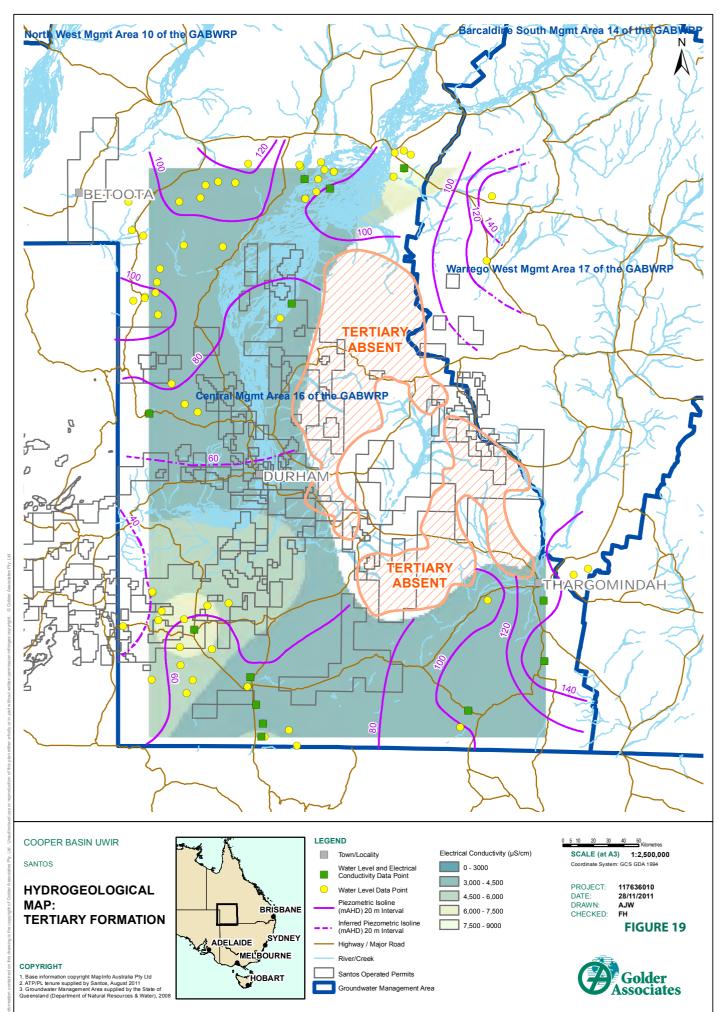
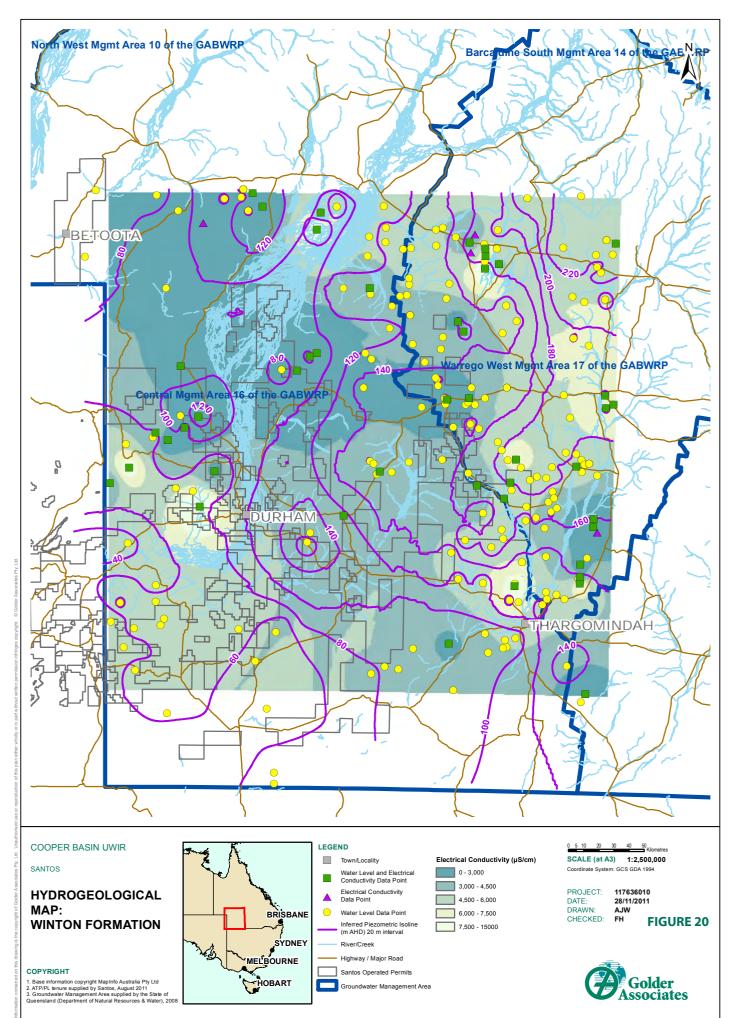



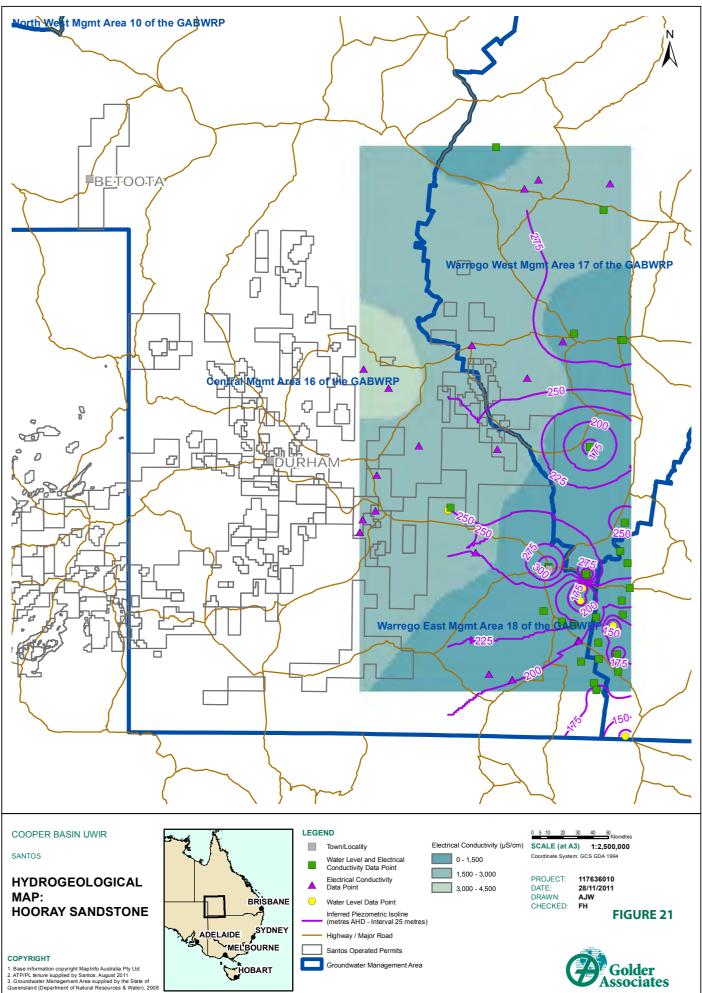

Figure 18: Observed Iliad Field Pressure with Depth Plots

## 5.4 Structural Influence on Groundwater Flow


Section 3.3.4 presented a narrative on the tectonic setting and basin stress regime within the Cooper-Eromanga Basins. The Cooper-Eromanga basin stress regime is primarily associated with strike-slip faulting, normal faulting, and transitional strike-slip/reverse faulting at depth. When taking the observed (and sustained) overpressures into account, this stress regime is predominantly more conducive to tight compressive (non-tensional) fault creation, and as such largely self-sealing fault systems. This would infer the faults are more likely not to readily form conduits for groundwater (or indeed, gas or oil) flow. This is supported by pressure measurement (and sustained overpressures) and profiles, such as are presented in Figures 17 and 18.






yd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE/GISIProjects/117636010\_R\_F0021\_CooperBasinHydrogeologicalMap\_Tertlary.mxd

Г



\hyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE\GISIProjects\117636010\_R\_F0022\_CooperBasinHydrogeologicalMap\_Winton.mxd

Г



cation: J\thyd/2011\1117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE/GISIProjects\117636010\_R\_F0024\_CooperBasinHydrogeologicalMap\_Hooray.mxd

L

Г



## 5.5 Hydraulic Parameters

A review of hydraulic parameters was undertaken for the strata in the vicinity of the site. This is summarised in Table 10.

|                   | Table 10: Hydraulic Parameters                                                       |                          |                          |                                     |  |  |
|-------------------|--------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------|--|--|
| Basin             | Formation                                                                            |                          | aulic<br>vity (m/d)      | Porosity<br>(fraction)              |  |  |
|                   |                                                                                      | Min                      | Мах                      | (fraction)                          |  |  |
|                   | Quaternary and Tertiary Alluvium                                                     | -                        | -                        | -                                   |  |  |
|                   | Winton Formation                                                                     | -                        | -                        | -                                   |  |  |
|                   | Mackunda Formation<br>Alluru Mudstone<br>Toolebuc Formation<br>Wallumbilla Formation | -                        | -                        | -                                   |  |  |
| Eromanga<br>Basin | Cana-Owie Formation                                                                  | -                        | -                        | -                                   |  |  |
|                   | Hooray Sandstone                                                                     | 4.3x10 <sup>-4</sup>     | 4.3x10 <sup>-1</sup>     | -                                   |  |  |
|                   | Westbourne Formation, Adori Sandstone and Birkhead Formation                         | 8.0x10 <sup>-7 [2]</sup> | 2.5x10 <sup>-4 [2]</sup> | 0.2 [2]                             |  |  |
|                   | Hutton Sandstone                                                                     | 3.5x10⁻¹                 | 9.8x10 <sup>-3</sup>     |                                     |  |  |
|                   | Poolowanna Formation                                                                 | 1x10 <sup>-7 [2]</sup>   | 3.7x10 <sup>-3 [2]</sup> | 0.18 <sup>[2]</sup>                 |  |  |
|                   | Tinchoo / Arrabury Formations                                                        |                          |                          |                                     |  |  |
| Cooper<br>Basin   | Toolachee Formation                                                                  | 2.0x10 <sup>-3 [1]</sup> | 4.3x10 <sup>-3</sup>     | 0.15<br>0.08 to 0.12 <sup>[3]</sup> |  |  |
|                   | Daralingie, Roseneath Shale, Epsilon and<br>Murteree Shale Formations                | -                        | -                        | -                                   |  |  |
|                   | Patchawarra Formation                                                                | 3.3x10 <sup>-4 [1]</sup> | 3.5x10 <sup>-3 [1]</sup> | 0.13<br>0.08 to 0.12 <sup>[3]</sup> |  |  |

#### Table 10: Hydraulic Parameters

[1] Gov. of South Australia, Primary Industries and Resources, SA. Petroleum and Geothermal in South Australia – Cooper Basin, 2009.

[2] Alexander, E.M., Reservoirs and Seals of the Eromanga Basin (undated).

[3] Recent information provided by Santos (Santos, 2011).



## 5.6 Groundwater Level Variations

A network of groundwater monitoring bores has been selected by DERM to monitor groundwater pressures over the whole of the GAB as illustrated on Figure 23. Twenty four groundwater monitoring locations are within the study area, most of those groundwater monitoring bores are targeting the main GAB aquifers of the Eromanga Basin (refer to metadata table). Although water level data is available from 1974 to 2011, all of the bores shown within the study area have very limited water level records. Hydrographs for representative bores are presented in Figure 22; these have been selected as the closest wells to site with the greatest number of available water level records available.

Santos does not have any regional groundwater monitoring bores across its well fields.

| RN      | LATITUDE     | LONGITUDE    | Formation*            |
|---------|--------------|--------------|-----------------------|
| 326     | -27.227627   | 144.3736947  | Coreena Member        |
| 358     | -26.6693889  | 143.2727374  | Hooray Sandstone      |
| 3770    | -25.845405   | 144.1222963  | Hooray Sandstone      |
| 5994    | -28.54135    | 144.33206    | Cadna-Owie Formation  |
| 12900   | -28.3065933  | 143.9151356  | Hooray Sandstone      |
| 13488   | -28.6094707  | 143.3081558  | Wallumbilla Formation |
| 15286   | -28.6813277  | 143.9381618  | Cadna-Owie Formation  |
| 16768   | -27.4510425  | 141.0574634  | Hutton Sandstone      |
| 17428   | -28.2743291  | 144.1420228  | Hooray Sandstone      |
| 18144   | -28.3921154  | 144.3032971  | Wallumbilla Formation |
| 22945   | -25.4831149  | 143.409366   | Hooray Sandstone      |
| 23233   | -25.7300197  | 143.5999248  | Hooray Sandstone      |
| 23349   | -27.9054058  | 143.3229819  | Hooray Sandstone      |
| 23569   | -27.7188708  | 142.5648591  | Hooray Sandstone      |
| 50503   | -27.2872927  | 143.4556593  | Hooray Sandstone      |
| 50623   | -27.274913   | 142.9318421  | Hooray Sandstone      |
| 8 bores | Refer to map | Refer to map | unknown               |

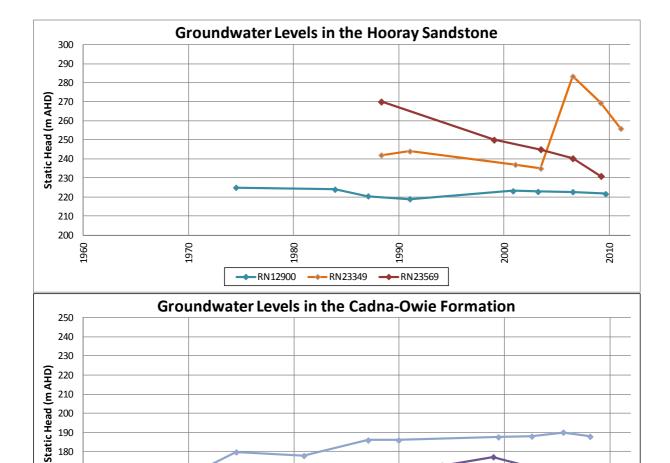
#### Table 11: DERM GAB Monitoring Network - Target Aquifers

\*Target formation either provided in the DERM database or inferred from the DERM database information.

The water levels presented on Figure 22 have been converted to m AHD from the reported units in the DERM database as calculated static head relative ("CAL\_STAT\_HD") to the natural surface (m above ground level). In most subartesian bores this is the standing water level. In artesian bores a more complex procedure is required to account for previous use from the bore and temperature variation inside the bore's water column to obtain the true static head or water level.

Groundwater levels for the Hutton and Hooray Sandstones, and Wallumbilla and Cadna-Owie Formations are shown in Figure 22. The recorded monitoring data is sporadic and seasonal trends cannot be interpreted.

The limited data for the Hutton Sandstone and Wallumbilla Formation are combined on one graph (Figure 22). There are only three available groundwater level measurements for the Hutton Sandstone (RN 16768), located within the Santos tenements, which is significantly deeper than the Wallumbilla Formation. The available data does not indicate significant water level variations between the first and most recent measurements in these formations.


The most recent measurements in the Cadna-Owie Sandstone indicate rising static head of up to 25 m for the available data set.



The Hooray Sandstone shows significant variations in water level since 1970, with measurements between 220 to 290 m AHD between three selected monitoring bores (Figure 22). The static head in bore RN23569 indicates a 40 m decline between 1988 and 2009; RN23349 static head shows an increase over time; whereas RN12900 does not show a trend.

Based on the available data set, it is possible the decrease in static head in RN23569 may the result of extraction from the deeper Birkhead Formation and Hutton Sandstone, particularly given the location of the well within the predicted radius of influence of the Cooper oil and gas field activities (Figure 44). Due to the lack of data since 2009, the extent of the effects of the long-term drought cycle ending by 2010 is not known. However, overall the available static head data for the Hutton Sandstone do not indicate a particular trend.





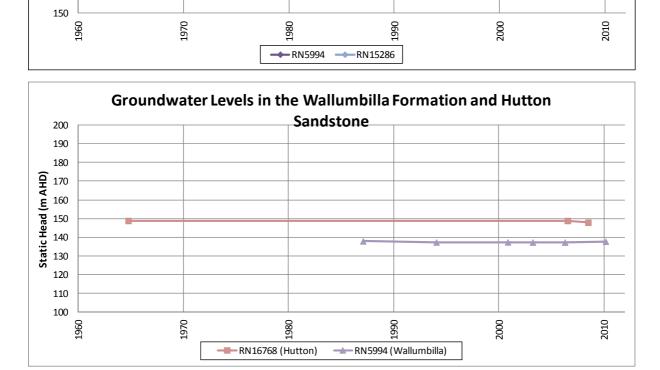
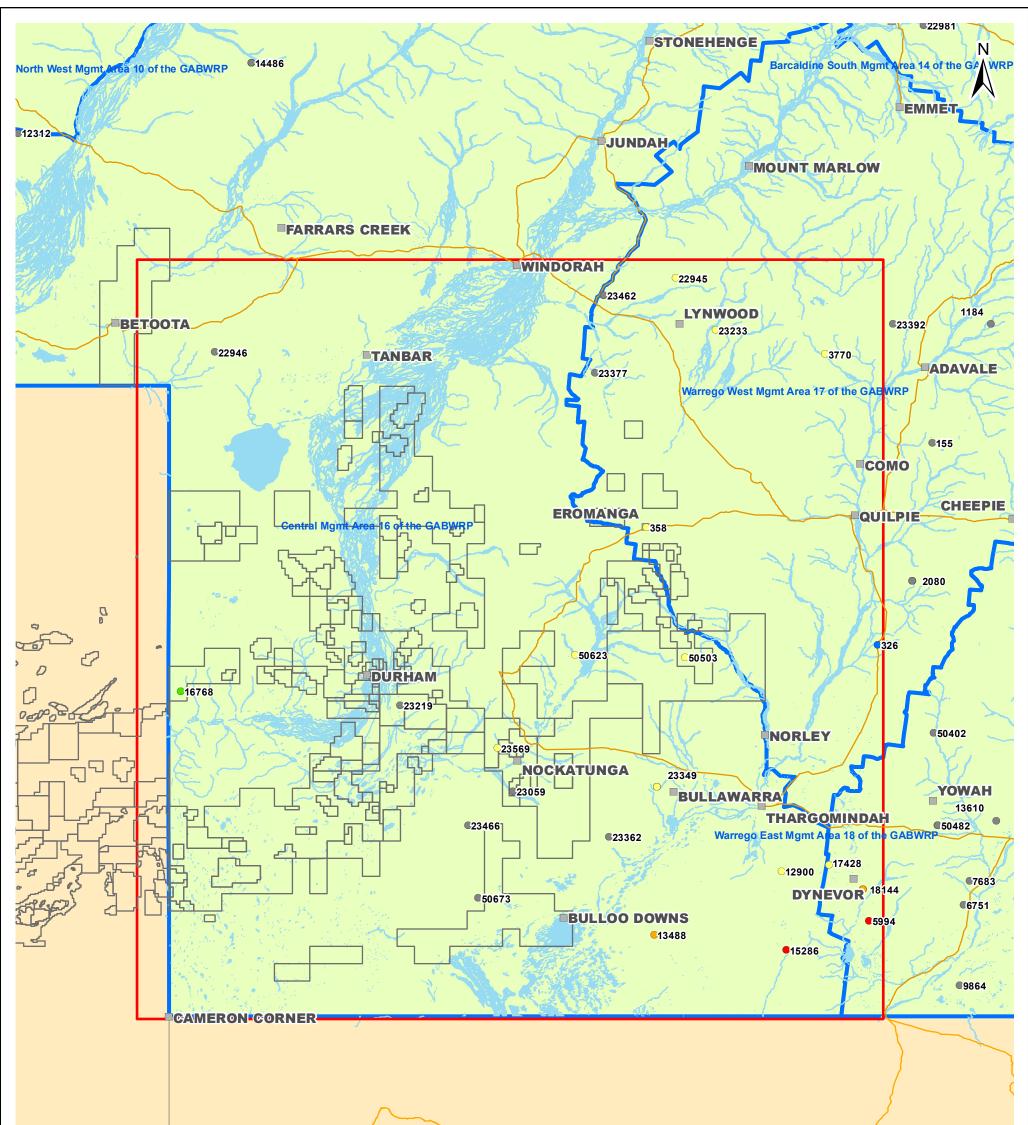
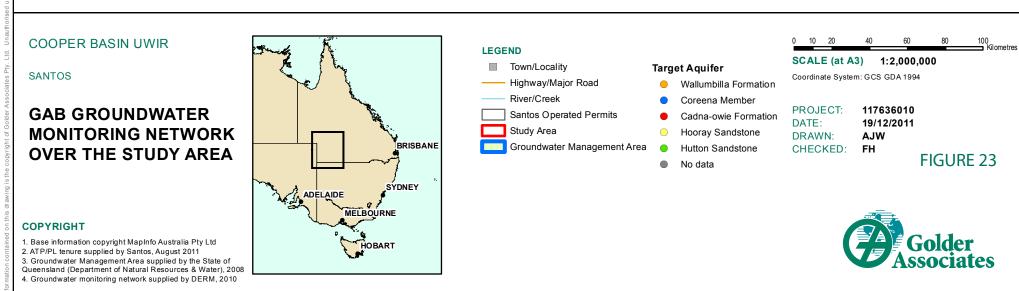





Figure 22: Available DERM Data for GAB Monitoring Bores







File Location: J/hyd/2011/117636010 Santos\_Copper Basin O&G & Moonie OII -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0036\_CooperBasinGABMonitoringNetwork.mxd



## 5.7 Aquifer Recharge and Discharge

Recharge of the GAB aquifers occurs near the GAB boundaries through the GAB intake beds mostly (Figure 24). Recharge via infiltration of groundwater through the overlying formations is a minor recharge mechanism and is limited to the upper GAB formations.

Groundwater flows in the GAB are predominantly westward, south-westward and southward from the eastern margin of the GAB and eastwards from the WA recharge beds (Figure 24).

Discharge areas in the GAB usually manifest as springs, supply by leakage to alluvium aquifers (Tertiary-Recent), and discharge to inland lakes and artesian bores. In the study area there are no identified GDEs (Section 4.4.1). The only discharge of water is through artesian bores.





## SANTOS - COOPER BASIN OIL&GAS FIELDS - UWIR

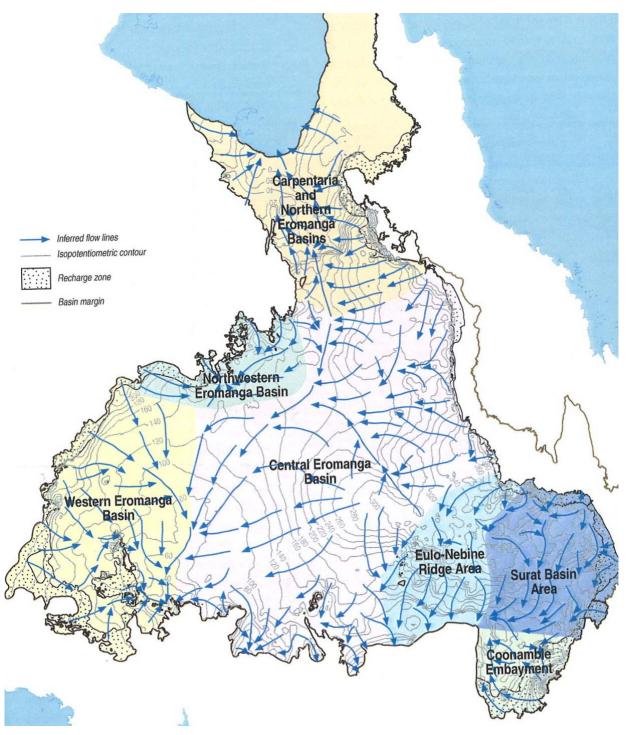



Figure 24: GAB Regional Groundwater Flow and Recharge Intake Beds (BRS, 2000)

In the study area, artificial discharge of the GAB aquifers occurs during oil and gas production as produced water production and during extraction by the local community. Artificial recharge of water only occurs where flooding techniques are used in association to oil production (Section 6.3.3).





## 5.8 **Groundwater Quality**

## 5.8.1 Data Quality Assessment

The groundwater chemistry data available within the study area was collected between 1950 and 2010 (DERM groundwater database). The quality of available data cannot be verified; however, data reliability and accuracy for major ions can be estimated from the electroneutrality of the ion balance, since positive and negative charges in the water should be equal. Ion balance error (IBE) is calculated as follows:

$$IBE(\%) = \frac{\sum Cations - \sum Anions}{\sum Cations + \sum Anions} \times 100$$

where cations and anions are expressed in milliequivalents per litre (meq/L). A milliequivalent is a measurement of the molar concentration of the ion divided (normalized) by the ionic charge of the ion. Approximately 90% (494 out of 546 samples) of the analytical data had IBE values within the  $\pm 20$  % range, indicating that the major ion analyses were of good quality. Fifty two samples with IBE over the  $\pm 20$  % range have been excluded from the assessment.

#### 5.8.2 Water Quality Description

#### 5.8.2.1 Physical Parameters

The groundwater quality assessment included analysis of pH, total dissolved solids (TDS) and major ion chemistry. Groundwater classification in terms of pH is presented in Table 12.

| Range    | Description       |
|----------|-------------------|
| pH < 5   | Acid              |
| pH 5 - 7 | Slightly Acid     |
| рН 7     | Neutral           |
| рН 7 - 9 | Slightly Alkaline |
| pH >9    | Alkaline          |

#### Table 12: Groundwater pH

TDS and electrical conductivity (EC) are measures of the dissolved salt content. TDS is reported as a concentration (in mg/L) and is either measured by evaporating a known volume of water and weighing the residual solids, or calculated by adding the major ion concentrations.

A range of salinity classifications (based on TDS concentration) have been published in literature. Classifications are generally based on beneficial use applications (irrigation or livestock watering) and do not define the full range of TDS found in natural waters (e.g. seawater or brines). The water salinity classification adopted for this study is presented in Table 13, as adopted from Fetter (1994), with a further division of brackish water into slightly brackish and brackish (USDA, 2007).

#### Table 13: Groundwater classification based on TDS concentrations

| Salinity Classes (modified from Fetter, 1994) |                   |  |  |
|-----------------------------------------------|-------------------|--|--|
| Water type                                    | TDS (mg/L)        |  |  |
| Fresh                                         | less than 1,000   |  |  |
| Slightly brackish                             | 1,000 to 3,000    |  |  |
| Brackish                                      | 3,000 to 10,000   |  |  |
| Saline                                        | 10,000 to 100,000 |  |  |
| Brine                                         | more than 100,000 |  |  |



EC is a measure of the conductance of a liquid and is reported in microSiemens per centimetre ( $\mu$ S/cm) at 25°C. There is a linear relationship between dissolved salt load and EC values for water samples.

## 5.8.2.2 Major Ion Chemistry

AQUACHEM software (Waterloo Hydrogeological Inc, 2003) was used for water quality assessment and graphical interpretations of the groundwater quality data, as follows:

#### 5.8.2.2.1 Piper Diagram

Cation and anion concentrations for each groundwater sample are converted to meq/L and plotted as percentages of their respective totals in two triangles of the Piper diagram (Figure 25). The cation and anion relative percentages in each triangle are then projected into a quadrilateral polygon that describes the water type. The Piper diagram therefore is a convenient tool to differentiate groundwater types based on the relative major ion composition.

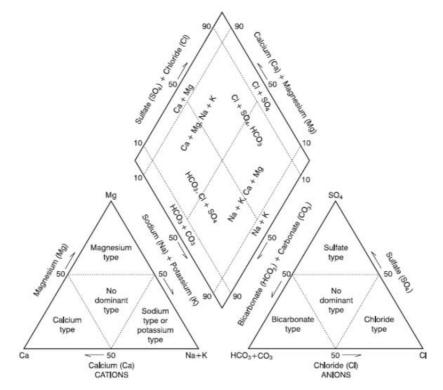



Figure 25: Classification of Hydrochemical Facies using Piper Plot

#### 5.8.2.2.2 Wilcox Diagram

The Wilcox plot is also known as the U.S. Department of Agriculture diagram (Waterloo Hydrogeological Inc, 2003). A Wilcox plot is used to determine the suitability of water for irrigation purposes. The Wilcox plot is a simple semi-log scatter plot of sodium hazard (sodium absorption ratio (SAR)) on the Y-axis versus salinity hazard (EC) on the X-axis. The salinity and sodium hazard classes are presented in Table 14 and Table 15 and in detail described in Section 5.8.4.2).

| Salinity Hazard Class Electrical Conductivity (µS/ |          | Characteristics                                                                                                                 |
|----------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------|
| C1 – Low                                           | 0-250    | Can be used for irrigation on most soil with minimal likelihood that soil salinity will develop                                 |
| C2 – Medium                                        | 251-750  | Can be used for irrigation if a moderate amount of drainage occurs                                                              |
| C3 – High                                          | 751-2250 | Not suitable for use on soil with restricted drainage; some soils with adequate drainage may require special management control |

#### Table 14: Salinity hazard classes



| Salinity Hazard Class Electrical Conductivity (µS/cm) |        | Characteristics                                     |  |
|-------------------------------------------------------|--------|-----------------------------------------------------|--|
|                                                       |        | for salinity                                        |  |
| C4 – Very High                                        | > 2250 | Not suitable for irrigation under normal conditions |  |

#### Table 15: Sodium hazard classes

| Sodium Hazard Class Sodium Adsorption Ratio (SAR) |       | Characteristics                                                                                   |  |  |
|---------------------------------------------------|-------|---------------------------------------------------------------------------------------------------|--|--|
| S1 – Low 0-10                                     |       | Suitable for irrigation on most soil with minimal danger of harmful levels of exchangeable sodium |  |  |
| S2 – Medium                                       | 10-18 | Appreciable sodium hazard in fine textured soil having high cation exchange capacity              |  |  |
| S3 – High                                         | 18-26 | Produces harmful levels of exchangeable sodium in most soils                                      |  |  |
| S4 – Very High                                    | >26   | Unsatisfactory for irrigation purposes                                                            |  |  |

## 5.8.3 Groundwater Quality in the Study Area

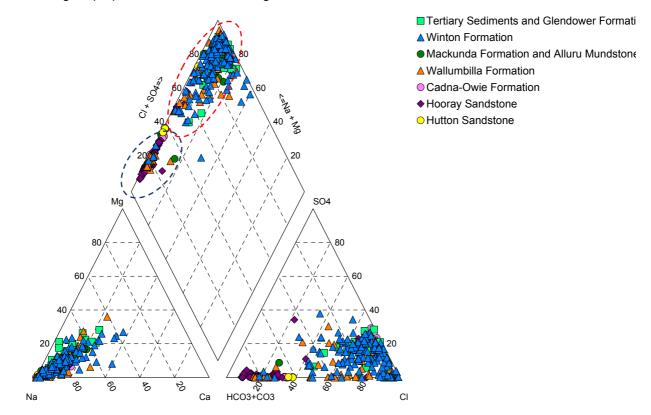
#### 5.8.3.1 Available Data

Water quality data extracted from the DERM database included 772 samples collected from groundwater bores located within the study area. However, only 494 samples collected from the different locations passed the quality control and could be assigned to a particular aquifer formation.

Groundwater quality data in the study area was available for the aquifers associated to the following formations:

- Tertiary sediments (10 samples),
- Glendower Formation (31 samples),
- Winton Formation (160 samples),
- Mackunda Formation (16 samples),
- Alluru Mudstone (7 samples),
- Wallumbilla Formation (97 samples),
- Cadna-Owie Formation (20 samples),
- Hooray Sandstone (147 samples),
- Adori Sandstone (1 sample), and
- Hutton Sandstone (5 samples).

Groundwater pH values in the study area ranged from 6.2 to 9.9. The slightly acidic pH (6.2) was associated with groundwater from the *Winton Formation* aquifer. The most alkaline sample was collected from the *Wallumbilla Formation*. In the majority of samples the pH ranged between 7.5 and 8.5.


Based on TDS concentrations the majority of groundwater is slightly brackish (TDS<3,000 mg/L). Some samples from Winton Formation, Wallumbilla Formation, Glendower Formation and Hutton Sandstone are classified as brackish with TDS concentrations in the range 3,000-10,000 mg/L. The most saline sample was collected from the *Winton Formation* aquifer.





## 5.8.3.2 Water Types of the Study Area Formations

As shown on Figure 26 and Figure 27 the dominant ions are sodium, bicarbonate and chloride, and water types are either sodium-bicarbonate or sodium-bicarbonate-chloride types. Groundwater from the Winton Formation, Wallumbilla Formation, Hooray Sandstone and Tertiary Sediments/Glendower Formation appear to have higher proportion of sodium and magnesium.



Note: the red grouping highlights a similar water type generally for the upper formations (late Cretaceous to Quaternary), whereas the blue grouping regroups the water samples for the deeper formations of the Eromanga Basin.

Figure 26: Piper Diagram



# SAN

## SANTOS - COOPER BASIN OIL&GAS FIELDS - UWIR

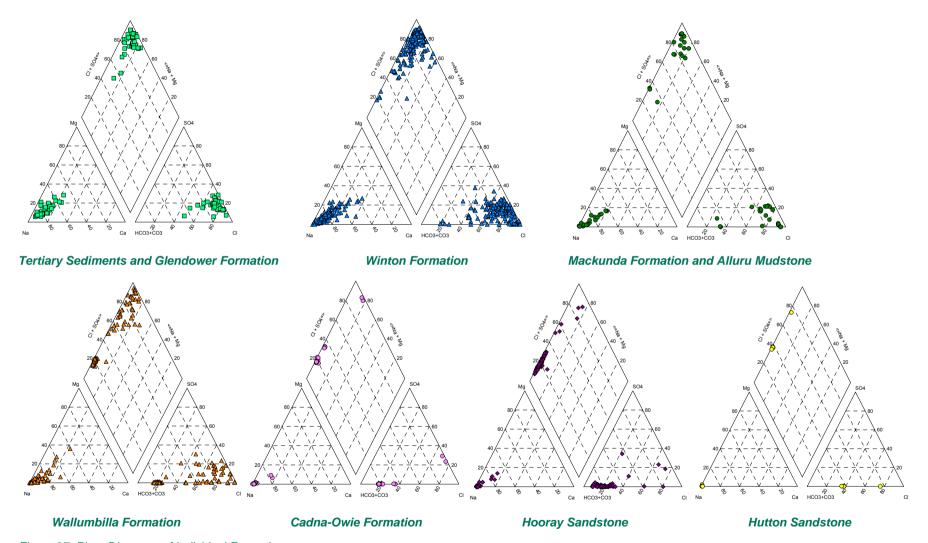



Figure 27: Piper Diagrams of Individual Formations





## 5.8.4 Comparison of Groundwater Quality to Regulatory Guidelines

#### 5.8.4.1 Public Supplies and Domestic Use

The Australian drinking water guidelines (ADWG, 2004) established drinking water regulations for public supplies of drinking water. The regulations specify:

- A health-related guideline value is the concentration that does not result in any significant risk to the health of the consumer over a lifetime of consumption; and
- An aesthetic guideline is the concentration associated with acceptability of water, based on appearance, taste and odour.

The assessment criteria for public supplies and domestic use are presented in Table 16.

Sodium and chloride appear to have the highest percentage of exceedances within the study area. Most of the analysed samples exceed the sodium drinking water standard. Fluoride concentrations exceed the drinking water criteria in 33% of samples where fluoride was included in the analytical suite. The pH standard was exceeded in 16% of samples, with samples being slightly alkaline to alkaline rather than acidic.

| Analyte          | Drinking water standard (mg/L;<br>except pH)                                                                                    | No of samples exceeding standard***                                                                                                                                                                                         |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН               | 6.5 - 8.5                                                                                                                       | 16% (66 out of 412 samples)                                                                                                                                                                                                 |
| Chloride         | 250**                                                                                                                           | 51% (253 out of 492 samples)                                                                                                                                                                                                |
| Sodium           | 180**                                                                                                                           | 95% (469 out of 492 samples)                                                                                                                                                                                                |
| Quila hata       | 250**                                                                                                                           | 15% (55 out of 372 samples)                                                                                                                                                                                                 |
| Sulphate         | 500*                                                                                                                            | 11% (41 out of 372 samples)                                                                                                                                                                                                 |
| TDS              | < 500 – good quality<br>500-1,000 – acceptable based on taste<br>>1,000 – excessive scaling, corrosion,<br>unsatisfactory taste | <ul> <li>11% (37 out of 334 samples) – good quality</li> <li>42% (139 out of 334 samples) – acceptable based on taste</li> <li>47% (158 out of 334 samples) – excessive scaling, corrosion, unsatisfactory taste</li> </ul> |
| Fluoride         | 1.5*                                                                                                                            | 33% (152 out of 465 samples)                                                                                                                                                                                                |
| Copper           | 0.08                                                                                                                            | 0% (0 out of 45 samples)                                                                                                                                                                                                    |
| Iron             | 0.3                                                                                                                             | 9% (13 out of 145 samples)                                                                                                                                                                                                  |
| Manganese        | 0.05                                                                                                                            | 14% (18 out of 130 samples)                                                                                                                                                                                                 |
| Zinc             | 3                                                                                                                               | 0% (0 out of 52 samples)                                                                                                                                                                                                    |
| Nitrate          | 11.29                                                                                                                           | 19% (28 out of 144 samples)                                                                                                                                                                                                 |
| * - health value | ; ** aesthetic value; na-not available; ***TDS                                                                                  | concentrations complying with standard                                                                                                                                                                                      |

Table 16: Comparison of ground-water-quality samples with standards for drinking water (ADWG,2004)

Total hardness is a commonly used measure to characterize the suitability of water for public-supply and domestic use. Total hardness can be characterized into four classes (Table 17; ADWG, 2004). Total hardness was calculated from the chemical composition and refers to the sum of calcium and magnesium





(expressed in mg/L of CaCO3). Approximately 49% of samples represent soft groundwater, 16% moderately hard, and approximately 15% of groundwater samples would cause scaling.

| Total Hardness<br>as CaCO3 (mg/L) | Hardness Classes                  | Percent of Samples           |  |
|-----------------------------------|-----------------------------------|------------------------------|--|
| <60                               | Soft, but possibly corrosive      | 49% (237 out of 485 samples) |  |
| 60-200                            | Good quality (moderately hard)    | 16% (79 out of 485 samples)  |  |
| 200-500                           | Increasing scaling problem (hard) | 19% (94 out of 485 samples)  |  |
| >500                              | Severe scaling (very hard)        | 15% (75 out of 485 samples)  |  |

#### Table 17: Groundwater hardness

Groundwater suitability for livestock watering is assessed on the basis of TDS concentrations and the concentration of specific ions, particularly calcium and sulphate. The trigger values for both calcium and sulphate are 1,000 mg/L. Sulphate and calcium concentrations did not exceed 1,000 mg/L in groundwater from the study area, except calcium concentration exceeded 1,000 mg/L in 2 samples (Winton Formation) out of 489 (0.4%) and sulphate concentration exceeded 1,000 mg/L in 10 samples (various locations) out of 372 (2.7%).

Recommended TDS concentrations in drinking water for livestock watering are summarised in Table 18. As groundwater from the study area is generally fresh and slightly brackish with the TDS concentrations less than 3,000 mg/L it is suitable for watering of the majority of the majority of livestock listed in Table 18. The exception is 45 out of 334 (13%) groundwater samples where TDS is ranging from 3,102 to 32,300 mg/L that would not be suitable for livestock watering.

|              | TDS (mg/L)                   |                                               |                                                                           |  |  |
|--------------|------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|--|--|
| Livestock    | No adverse effect on animals | Stock should adapt without loss of production | Stock may tolerate these levels for short periods if introduced gradually |  |  |
| Beef cattle  | < 4,000                      | 4,000 – 5,000                                 | 5,000 – 10,000                                                            |  |  |
| Dairy cattle | < 2,500                      | 2,500 - 4,000                                 | 4,000 – 7,000                                                             |  |  |
| Sheep        | < 5,000                      | 5,000 – 10,000                                | 10,000 – 13,000                                                           |  |  |
| Horses       | < 4,000                      | 4,000 - 6,000                                 | 6,000 – 7,000                                                             |  |  |
| Pigs         | < 4,000                      | 4,000 - 6,000                                 | 6,000 - 8,000                                                             |  |  |
| Poultry      | < 2,000                      | 2,000 – 3,000                                 | 3,000 - 4,000                                                             |  |  |

#### Table 18: Tolerances of Livestock to TDS in Drinking Water (ANZECC & ARMCANZ, 2000)

## 5.8.4.2 Agricultural Use

Agricultural use of groundwater includes irrigation (limited in the study area) and livestock watering (dominant). Irrigating with water that has a high content of dissolved salts and excess sodium can adversely impact the soil structure or adversely affect plant growth. This can depend on the amount of salt present in the water, the soil type being irrigated, the climate and the specific plant species and the growth stage.



The irrigation water quality classification system is based on two characteristics:

- salinity hazard; and
- sodium (alkali) hazard of the water.

Both salinity hazard and sodium hazard are each divided into four classes based on EC values and sodium absorption ratio (SAR). The SAR indicates the tendency of sodium to replace calcium and magnesium in soil and is calculated as follows:

$$SAR = \frac{Na}{\sqrt{\frac{(Ca + Mg)}{2}}} \times 100$$

The characteristics of the salinity and sodium hazard classes are presented in Table 14 and Table 15, respectively. Salinity hazard and sodium hazard are combined into a single plot to evaluate the suitability of water for irrigation (Figure 28).

Figure 28 indicates that groundwater from the study area plot within a wide range of both sodium and salinity hazard classes. The groundwater from all of the formations from SWQ aquifers fall into high sodium hazard (S2-S4) and very high salinity hazard class (C4). Based on this classification groundwater from the study area would not be suitable for irrigation.

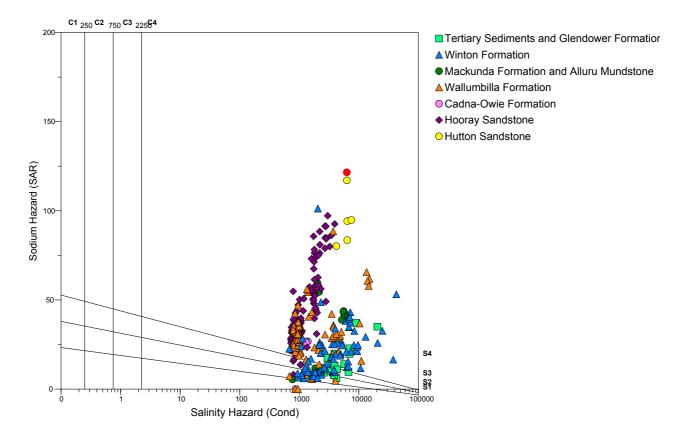
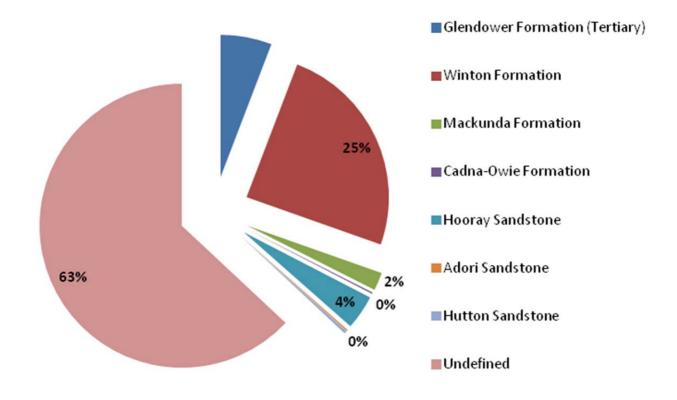



Figure 28: Wilcox Plot Showing Salinity and Sodicity Hazard Classes.






## 5.9 Groundwater Use (other than Produced Water)

Groundwater use is largely for stock and domestic purposes, town water supply is also sourced from groundwater.

There are no large groundwater users albeit for town water supply in the study area (on the basis of the DERM WES dataset). The bores for municipal supply licensed in the WES database are for the towns of Eromanga and Thargomindah.

No bores are registered for the facilities of Ballera and Jackson, however Santos own 104 water production bores.

Groundwater is primarily sourced from the Tertiary formations and the upper GAB formations of the Eromanga Basin. Figure 29 illustrates the distribution of groundwater sources over the study area. The geographical distribution of groundwater sources for private bores and Santos bores is provided on Figure 30 and tabulated in Table 19.



#### Figure 29: Target Groundwater Sources for Groundwater Usage in the Study Area

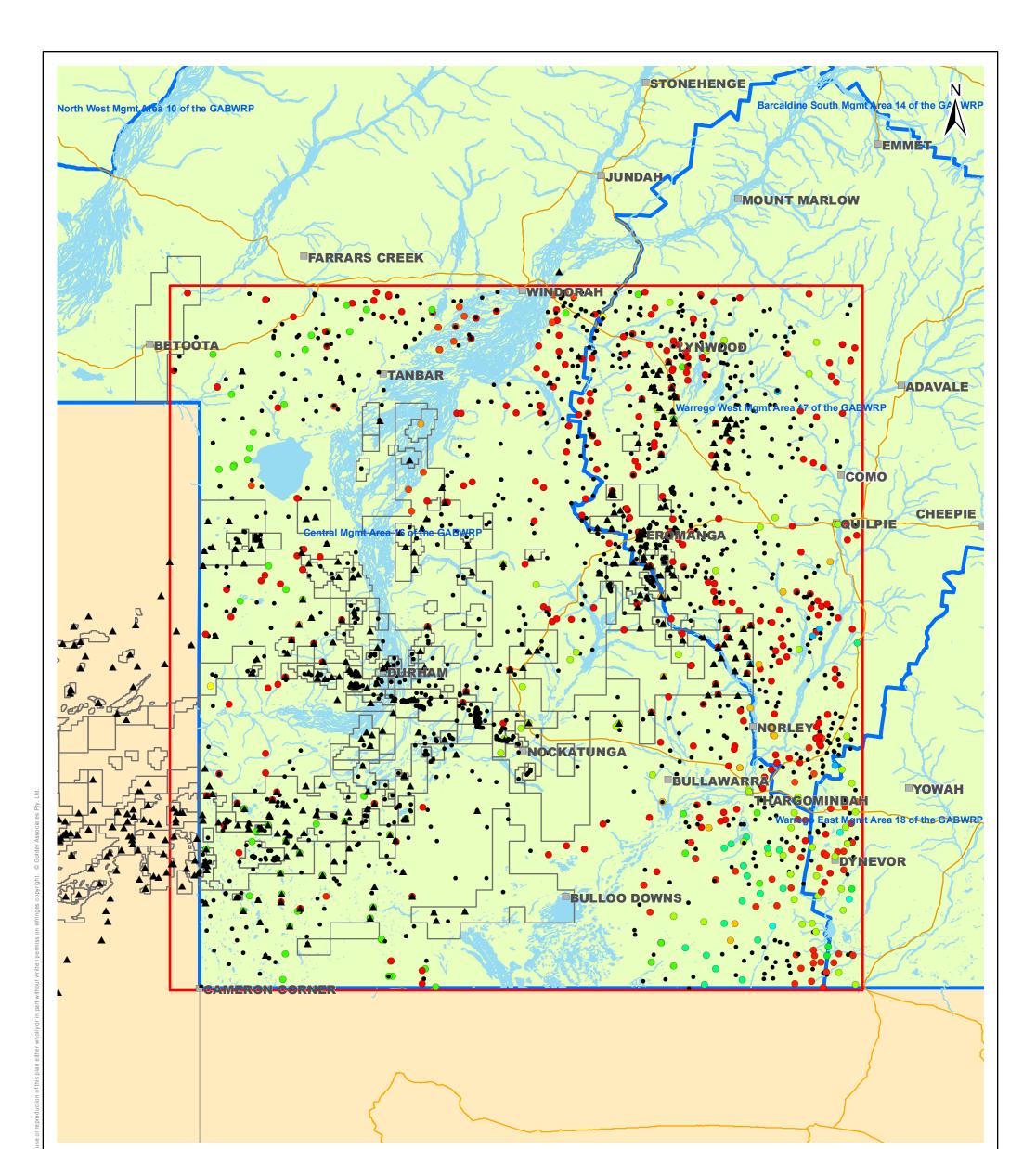
Note: the above chart (Figure 29) was drawn using the data from the metadata table. A total of 688 bores have information on the type of pump or are artesian bores and have been assumed used by the community for groundwater supply of various purposes. The data supplied in the DERM WES database only provides information for 138 licensed bores in the study area and assigns 63% of the bores to undefined aquifers.

Most properties are expected to have access to their own water supply through stock and domestic types of licences. Those licences are part of the basic landholder rights to access water, groundwater use is limited to domestic consumption and cattle farming (not including any industrial cattle operations). There is no groundwater entitlement associated to these licences however it is commonly assumed that those bores extract a maximum of 5 ML/year.



The total volumetric water entitlements in the study area is 2,390 ML/yr for urban and town supply from 7 bores; however four of the licensed bores totalling 900 ML were listed as "Lapsed/Never Constructed" and/or expired. The total nominal allowance for stock and domestic bores is 635 ML/yr for 127 bores. The total extraction volume for the 135 licensed bores listed in the DERM database is therefore 2,125 ML/yr (excluding lapsed/non-constructed bores entitlements; Table 19).

| RN                     | Bore Status                  | Entitlement<br>(ML/yr) | Purpose                             |
|------------------------|------------------------------|------------------------|-------------------------------------|
| Various<br>(127 Bores) | Installed                    | 635                    | Stock and Domestic<br>(5ML/yr each) |
| 358                    | Installed                    | 70                     | Stock, Urban                        |
| 390                    | Installed                    | 600                    | Urban                               |
| 390                    | Installed                    | 600                    | Urban                               |
| 50887                  | Installed                    | 220                    | Domestic Supply, Stock,<br>Urban    |
| 100219                 | Lapsed(Never<br>Constructed) | 100                    | Irrigation                          |
| 116117                 | Lapsed(Never<br>Constructed) | -                      | Urban                               |
| 116117                 | Lapsed(Never<br>Constructed) | 600                    | Urban                               |
| 116117                 | Lapsed(Never<br>Constructed) | 200                    | Town Water Supply                   |
| TOTAL                  |                              | 2125                   |                                     |


| Table 10, Estimated Water | Extraction | from Doroo   | in the Stud  |        |
|---------------------------|------------|--------------|--------------|--------|
| Table 19: Estimated Water | EXITACTION | ITOIII DOIES | in the Study | y Alea |

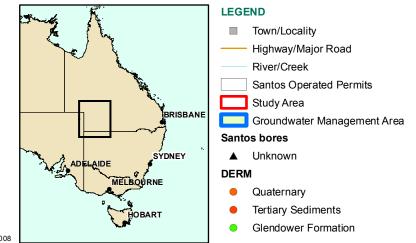
Note: Extraction data in italics have not been included in the total estimated water extraction for the study area (Lapsed/Never Constructed).

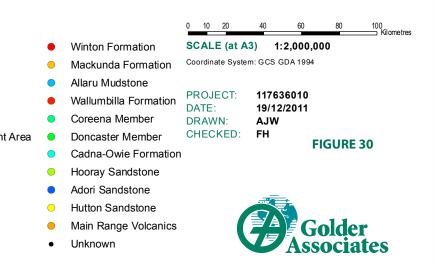
Santos water production associated to the oil and gas production as described in Section 6.5 is mostly from the Hutton Sandstone (82% of average annual production), the Birkhead Formation (7.8%) and the oil reservoirs of the Hooray Sandstone (8.6%).

Figure 30 shows the geographical distribution of all known bores in the study area. Bores with known target formations shown in Figure 30 are tabulated in APPENDIX E.









#### SANTOS

## GEOGRAPHICAL DISTRIBUTION OF GROUNDWATER USE

#### COPYRIGHT

 Base information copyright MapInfo Australia Pty Ltd
 AT P/PL tenure supplied by Santos, August 2011
 Groundwater Management Area supplied by the State of Queensland (Department of Natural Resources & Water), 2008





File Location: Jthyd/2011/11/17636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE/GIS/Projects/117636010\_R\_F0039\_CooperBasinGroundwaterSources.mxd



## 6.0 SANTOS OPERATIONS

Santos activities are described in the SWQ study areas Environmental Management Plans (Santos, 2011) sourced from draft Project Area Environmental Authorities. The summary information on activities and infrastructure reported below has been extracted from these environmental management plans.

## 6.1 Gas and Oil Production Occurrence and Processes

Santos Cooper Basin gas and oil operations cover a large area in SA and SWQ (32,000 km<sup>2</sup>). The operations are grouped in "processing satellites" or centres where Santos has developed all the facilities necessary to the operations of the fields.

As a summary, Santos has developed the following infrastructure:

- 33 Oil and Gas Processing Satellites, the main ones for SWQ are described in Sections 6.2.2 (gas) and 6.3.2 (oil);
- Approximately 820 gas producing wells, 400 oil producing wells; in SWQ there are 191 producing gas wells and 230 producing oil wells;
- Gas storage facilities at Moomba (SA) and Chookoo (QLD);
- Nine camps;
- 5600 km of pipelines, 2390 km roads.

In the Environmental Management Plans, Santos has divided the production fields into three Project areas:

- The Western Study Area comprising of following treatment plants and satellite facilities:
  - Ballera gas centre;
  - Jackson oil facility;
  - Chookoo, Naccowlah oil and gas;
  - Tickalara oil; and
  - Watson oil.
- The Central Study Area comprising the following Tarbat oil facilities and associated fields:
  - Tarbat Oil;
  - Ipunda/Ipunda Nth fields;
  - Endeavour/Monler fields;
  - Mulberry/Talgeberry/Chancett/Gimboola fields;
  - Tintaburra/Toobunyah fields;
  - Kooroopa/Kooroopa Nth/Takyah fields; and
  - Zenoni/Mugginullah/Aros fields.
- The Eastern Study Area comprising the Nockatunga oil facility and associated fields:
  - Nockatunga oil;
  - Winna/Koora/Kihee fields;



- Maxwell fields; and
- Muthero/Thungo/Dilkera/Currambar fields.

A consequence of the geological settings of Santos Cooper Basin operations is the location of *gas* production fields within the centre of Santos production area (Figure 2) and the *oil* production fields around the edges of study area.

Activities undertaken in the oil and gas fields can be classified in a successive logical order:

- Geophysical Operations including Exploration surveying to provide detailed information on geology;
- Drilling and well operations for exploration drilling to verify the presence or absence of a hydrocarbon reservoir and quantify the reserves;
- Drilling & Well Operations Appraisal drilling to determine if the reservoir is economically feasible to develop; and
- Development, production and processing operations to produce oil and gas from the respective reservoirs until economically feasible reserves are depleted.

Only activities related to potential groundwater impact are further developed in this report.

## 6.2 Gas Extraction

#### 6.2.1 Areas of Production and Target Beds

Gas is primarily extracted from the formations of the Cooper Basin. The geology of the Cooper Basin has been presented in Section 3.3. The main consequence of the geological settings is the very deep location of the gas target beds at depth of 2,000 m or more. The gas fields are located in the centre of Santos tenements in SWQ and in SA (Figure 2).

There are 191 producing gas wells within Santos SWQ tenements.

The major gas reservoirs as illustrated in the stratigraphic column presented in 6.2.1 and are as follows:

- The Toolachee Formation;
- The Epsilon Formation; and
- The Patchawarra Formation.

These reservoirs are stacked porous sandstone formations separated by finer grained siltstones and mudstone formations (refer to detailed stratigraphy table Figure 10). The latter are typically referred to as the seal or cap rock beds where they are located over the reservoirs.



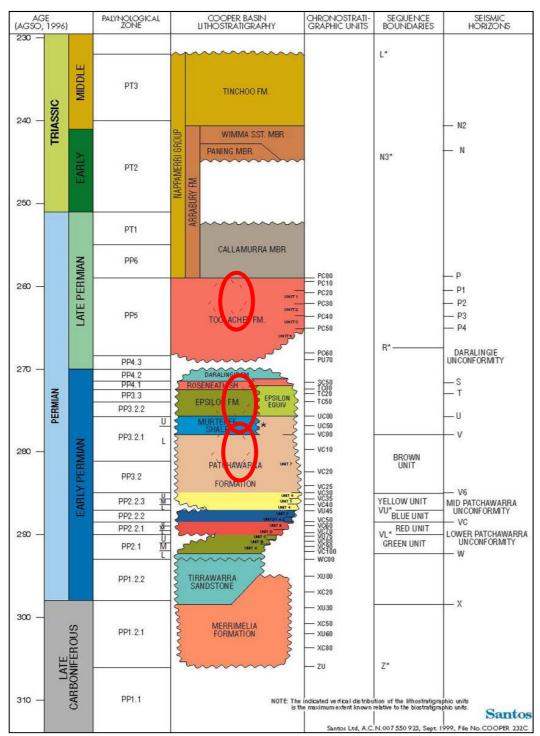



Table 20 provides the target gas reservoirs for each gas field in SWQ.

Figure 31: Gas Reservoirs Stratigraphical Distribution





#### Table 20: List of Gas Fields

| PL Number               | Target Formation                                                           | Gas Field Names                           |  |  |
|-------------------------|----------------------------------------------------------------------------|-------------------------------------------|--|--|
| PL 107, 82, 83          | Patchawarra Formation                                                      | Okotoko                                   |  |  |
| PL 108                  | Toolachee Formation, Patchawarra Formation, Epsilon<br>Formation           | Costa                                     |  |  |
| PL 109                  | Epsilon Formation, Patchawarra Formation, Toolachee Formation              | Tudga                                     |  |  |
| PL 110                  | Epsilon Formation, Patchawarra Formation                                   | Stokes                                    |  |  |
| PL 111                  | Toolachee Formation, Patchawarra Formation, Epsilon<br>Formation           | Yawa                                      |  |  |
| PL 112                  | Toolachee Formation (mostly), Patchawarra Formation                        | Barrolka                                  |  |  |
| PL 113                  | Toolachee Formation and Patchawarra Formation                              | Tartulla                                  |  |  |
| PL 114                  | Toolachee Formation                                                        | Wareena                                   |  |  |
| PL 117                  | Toolachee Formation                                                        | Vernon                                    |  |  |
| PL 129                  | Toolachee Formation, Patchawarra Formation, Epsilon<br>Formation           | Ashby                                     |  |  |
| PL 130                  | Patchawarra, Epsilon Formation                                             | Chirron                                   |  |  |
| PI 131                  | Toolachee Formation and Patchawarra Formation                              | Baryulah, Vega, Tuno,<br>Wellington Acrus |  |  |
| PL 132                  | Toolachee Formation, Patchawarra Formation, Epsilon<br>Formation           | Costa                                     |  |  |
| PL 133                  | Toolachee Formation                                                        | Goora                                     |  |  |
| PL 134                  | Toolachee Formation, Patchawarra Formation, Epsilon<br>Formation           | Карра                                     |  |  |
| PL 136                  | Patchawarra Formation                                                      | Keilor                                    |  |  |
| PL 137                  | Epsilon Formation, Patchawarra Formation                                   | Macadama                                  |  |  |
| PL 138                  | Toolachee Formation                                                        | Marago                                    |  |  |
| PL 139                  | Toolachee Formation and Patchawarra Formation                              | Monte                                     |  |  |
| PL 140                  | Patchawarra Formation                                                      | Moon                                      |  |  |
| PL 141                  | Toolachee Formation, Tinchoo Formation                                     | Mt Howitt                                 |  |  |
| PL 142                  | Toolachee Formation, Patchawarra Formation, Epsilon<br>Formation           | Raffle                                    |  |  |
| PL 143                  | Toolachee Formation, Poolowanna (basal Hutton)                             | Ruby                                      |  |  |
| PL 144                  | Toolachee Formation                                                        | Thoar                                     |  |  |
| PL 145                  | Toolachee Formation                                                        | Toby                                      |  |  |
| PL 146,147,<br>25,85,86 | Birkhead Formation, Toolachee Formation, Hutton Sandstone, Murta Formation | Wackett                                   |  |  |
| PL 148                  | Patchawarra Formation, Toolachee Formation                                 | Whanto                                    |  |  |
| PL 151                  | Toolachee Formation (mostly), Patchawarra Formation                        | Barrolka                                  |  |  |
| PL 152                  | Toolachee Formation Barrolba                                               |                                           |  |  |
| PL 152                  | Toolachee Formation (mostly), Patchawarra Formation                        | Barrolka                                  |  |  |
| PL 154                  | Toolachee Formation Clinton                                                |                                           |  |  |
| PL 155                  | Toolachee Formation (mostly), Patchawarra Formation Barrolka               |                                           |  |  |
| PL 158                  | Wimma Sandstone                                                            | Marama                                    |  |  |
| PL 159                  | Toolachee Formation, Patchawarra Formation, Tirrawarra                     | Tallalia                                  |  |  |





| PL Number  | Target Formation                                                    | Gas Field Names                                |  |  |
|------------|---------------------------------------------------------------------|------------------------------------------------|--|--|
|            | Formation                                                           |                                                |  |  |
| PL 177     | Toolachee Formation                                                 | Winninia                                       |  |  |
| PL 178     | Toolachee Formation                                                 | Winninia                                       |  |  |
| PL 181     | Toolachee Formation, Patchawarra Formation, Tirrawarra Formation    | Roti                                           |  |  |
| PL 186     | Patchawarra Formation                                               | Quasar                                         |  |  |
| PL 188     | Toolachee Patchawarra Formation                                     | Ramses                                         |  |  |
| PL 207     | Toolachee Formation                                                 | Chinook                                        |  |  |
| PL 208     | Toolachee Formation, Epsilon Formation                              | Hebe                                           |  |  |
| PL 241     | Toolachee Formation, Patchawarra Formation, Epsilon<br>Formation    | Theta                                          |  |  |
| PL 25      | Toolachee Formation, Patchawarra Formation                          | Naccowlah Chilla, Chookoo,<br>Wackett          |  |  |
| PL 254     | Toolachee Formation, Patchawarra Formation                          | Lepard                                         |  |  |
| PL 255     | Toolachee Formation, Patchawarra Formation                          | Lepard                                         |  |  |
| PL 26      | Hutton, Patchawarra, Epsilon Formations                             |                                                |  |  |
| PL 34      | Murta Formation, McKinley/Namur for Oil. Toolachee for gas          | Tickalara, Sigma, Mooliampah,<br>Iliad, Rhiems |  |  |
| PL 61      | Patchawarra Formation, Toolachee Formation                          | Ballera, Curri. Yanda, Galex                   |  |  |
| PL 62      | Epsilon Formation, Patchawarra Formation, Toolachee<br>Formation    | Tudga                                          |  |  |
| PL 79      | Toolachee Formation and Patchawarra Formation                       | Costa                                          |  |  |
| PL 80, 156 | Toolachee Formation                                                 | Durham Downs                                   |  |  |
| PL 81      | Toolachee Formation and Patchawarra Formation                       | Karmona                                        |  |  |
| PL 84      | Epsilon Formation, Patchawarra Formation                            | Stokes                                         |  |  |
| PL 86      | Toolachee Formation                                                 | Wackett                                        |  |  |
| PL 87      | Toolachee Formation and Patchawarra Formation                       | Wippo                                          |  |  |
| PL26       | Hutton Sandstone, Patchawarra Formation, Epsilon                    | Bogala, Karri, Chookoo                         |  |  |
| PL34       | Epsilon Formation                                                   | Wills Matrix                                   |  |  |
| PL61       | Hutton Sandstone, Namur, Toolachee Formation, Patchawarra Formation | Yanda, Cari, Ballera, Galex                    |  |  |
| PL75       | Toolachee Formation                                                 | Patroclus                                      |  |  |
| PL 98      | Formation unknown                                                   | Challum                                        |  |  |
| PL 59      | Formation unknown                                                   | Challum                                        |  |  |

## 6.2.2 Activities and Infrastructures

#### Ballera Gas Centre

The Ballera Gas Centre accepts production from approximately 45 gas fields containing about 130 producing gas wells through approximately 500 kilometres of pipelines and flowlines. All field boost compression facilities are located at the main plant, being supplemented by additional nodal compression at strategic field locations.

The Ballera centre ties into a moderate size underground storage for processed sales gas at Chookoo. Some natural gas liquids are recovered at Ballera with raw gas and condensate sent to Moomba via the 180





kilometre Ballera–Moomba pipeline to allow additional liquids recovery. Sales gas from Ballera is sent to Mt Isa via an 800 kilometre pipeline and to Wallumbilla in eastern Queensland for transportation on to Brisbane via a 1,100 kilometre pipeline. No crude oil is processed at Ballera.

The central processing plant comprises:

- Inlet separators;
- Two potassium carbonate CO<sub>2</sub> removal trains;
- One membrane CO<sub>2</sub> removal train;
- Glycol gas dehydration;
- Two Dew Point Control separation trains; and
- Export compression.

Water required by the processing facilities is provided by local groundwater bores. A membrane treatment plant is required to produce potable water.

Electrical power id supplies by a 45 MW electricity generation plant located on site and which is powered by natural gas (the electricity is produced for site use only and is not for sale).

Ballera Gas Centre is serviced by a jet-capable sealed airstrip and also includes associated services, a waste management facility and camp.

#### Chookoo Gas

The Chookoo facility consists of reciprocating gas compressors enabling either field re-injection into underground storage of sales gas from Ballera plant, or compression of withdrawal gas and discharge to the Ballera Plant sales export compressors.

## 6.3 Oil Production

#### 6.3.1 Areas of Production and Target Beds

Oil production is extracted from the GAB formations within the Eromanga Basin at depth averaging 1,000 m below ground level. The major oil reservoirs are found within the following GAB formations:

- The Murta Formation and the Namur Formation, these are the upper and lower formations of the Hooray Sandstone. Oil reservoirs are not frequent in the Namur Formation (a sandstone) but more abundant in the Murta Formation (interbedded mudstones, siltstones and fine grained sandstones).
- The Birkhead Formation: the Birkhead formations are interbedded siltstone, mudstone and fine sandstone. Oil reservoirs are present in the basal Birkhead mostly, scattered oil reservoirs are found in the middle Birkhead Formation.
- The Hutton Sandstone: this is the main extraction unit for oil over the Santos tenements in SWQ.

Minor oil reservoirs are also found in other formations:

- The Wyandra Sandstone Member, this is the upper formation of the Cadna-Owie Formation, oil occurrence is not frequent; and
- The Westbourne Formation and the Adori Sandstone.

Figure 32 summarises the occurrence of oil reservoir through the stratigraphy profile.

There are 230 producing oil wells within Santos tenements in SWQ.





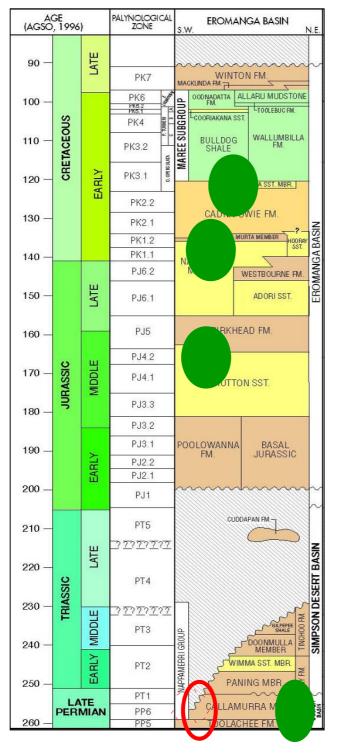



Diagram as provided by Santos

Figure 32: Oil Reservoirs Stratigraphical Distribution





#### Table 21: List of Oil Fields

| PL Field<br>Number Type |                | Target Formation                                                                                            | Area Name                                      |  |
|-------------------------|----------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| PL 23                   | Oil            | Murta Formation, Namur Sandstone, Westbourne<br>Formation, Birkhead Formation (mostly), Hutton<br>Sandstone | Jackson, Gunna, Tinpilla,<br>Tostada           |  |
| PL 24                   | Oil            | Westbourne Formation, Birkhead Formation, Hutton Sandstone                                                  | Jackson South                                  |  |
| PL 25                   | Oil            | Hutton Sandstone, Murta Formation, Basal Jurassic                                                           | Naccowlah Chilla, Chookoo,<br>Wackett          |  |
| PL 26                   | Oil            | Hutton Sandstone, Murta Formation, Basal Jurassic,<br>Birkhead                                              | Bogala, Karri, Chookoo                         |  |
| PL 29                   | Oil            | Wyandra, Birkhead, Hutton Sandstone                                                                         | Tintaburra                                     |  |
| PL 33                   | Oil            | Murta Formation, Birkhead Formation, Adori Sandstone                                                        | Nockatunga, Winna, Kihee,<br>Koora             |  |
| PL 34                   | Oil and<br>Gas | Murta Formation, McKinley Member/Namur Sandstone for Oil. Toolachee Formation for gas                       | Tickalara, Sigma, Mooliampah,<br>Iliad, Rheims |  |
| PL 35                   | Oil            | Hutton Sandstone                                                                                            | Watson, Watkins, Wandilo                       |  |
| PL 36                   | Oil            | Birkhead Formation, Hutton Sandstone                                                                        | Cooroo                                         |  |
| PL 38                   | Oil            | Birkhead Formation, Hutton Sandstone                                                                        | Toobunyah                                      |  |
| PL 39                   | Oil            | Wyandra Sandstone, Murta Formation, Westbourne<br>Formation, Birkhead, Adori Sandstone                      | Talgeberry, Mulbery                            |  |
| PL 50                   | Oil            | Murta Formation                                                                                             | Maxwell                                        |  |
| PL 51                   | Oil            | Murta Formation, Birkhead formation                                                                         | Thungo, Muthero, Kanel, Dilkera                |  |
| PL 52                   | Oil            | Wyandra Sandstone, Murta Formation, Hutton Sandstone                                                        | Ipundu, Tarbat                                 |  |
| PL 55                   | Oil            | Basal Birkhead Formation                                                                                    | Munro                                          |  |
| PL 57                   | Oil            | Birkhead Formation                                                                                          | Cranston, Endeavour, Minni<br>Ritchi           |  |
| PL 61                   | Oil            | Cadna-Owie Formation, Murta Formation, Basal<br>Birkhead/Hutton Sandstone                                   | Yanda                                          |  |
| PL 68                   | Oil            | Basal Birkhead Formation, Hutton Sandstone                                                                  | Genoa                                          |  |
| PL 75                   | Oil            | Hutton Sandstone, Namur (upper) Sandstone                                                                   | Patroclus                                      |  |
| PL 76                   | Oil            | Birkhead Formation, Hutton Sandstone                                                                        | Bolan, Corella, Echuburra, Natan               |  |
| PL 77                   | Oil            | NA                                                                                                          | Jarrar                                         |  |
| PL 78                   | Oil            | Westbourne Formation, Namur Sandstone, Birkhead Formation                                                   | Bowen                                          |  |
| PL 95                   | Oil            | Westbourne Formation, Hutton Sandstone                                                                      | Monler                                         |  |
| PL 97                   | Oil            | Hutton Sandstone, Namur Sandstone                                                                           | Cook                                           |  |
| PL 168                  | Oil            | NA                                                                                                          | Tennaform                                      |  |
| PL 169                  | Oil            | Birkhead Formation                                                                                          | Gimboola, Chancett                             |  |
| PL 170                  | Oil            | Birkhead Formation, Murta Formation, Wyandra Sandstone                                                      | Kooroopa, Takyah                               |  |
| PL 244                  | Oil            | Murta Formation                                                                                             | Currambar                                      |  |
| PL 245                  | Oil            | Murta Formation                                                                                             | Noccundra                                      |  |
| PL 293                  | Oil            | Wyandra Sandstone, Murta Formation                                                                          | ZeoniZenoni                                    |  |
| PL 294                  | Oil            | Murta Formation                                                                                             | Mugginanullah                                  |  |

| PL<br>Number | Field<br>Type | Target Formation                                     | Area Name          |
|--------------|---------------|------------------------------------------------------|--------------------|
| PL 295       | Oil           | Birkhead Formation                                   | Mulberry Endeavour |
| PL 298       | Oil           | Wyandra Sandstone                                    | Aros               |
| PL 301       | Oil           | Birkhead Formation                                   | Zeus, Minos        |
| PL 302       | Oil           | Murta Formation                                      | Bogala             |
| PL 303       | Oil           | Murta Formation                                      | Cuisinier          |
| PL 460       | Oil           | Birkhead Formation, Namur Sandstone, Murta Formation | Inca               |

## 6.3.2 Activities and Infrastructures

#### Jackson Oil facility

The Jackson Oil facility accepts production from a number of oil fields serviced by approximately 250 kilometres of pipelines and flow lines. Produced oil is dewatered and sent via the 250 kilometre, 300mm Jackson-Moomba pipeline to Moomba and on to the Port Bonython oil terminal in South Australia.

Jackson acts as the central collection and storage facility for several outlying satellite gathering areas such as Watson, Tickalara, Naccowlah and Tarbat.

The Jackson facility comprises:

- Oil processing inlet separators, dewatering tanks, evaporation ponds and skimming ponds;
- Centralised electrical power services totalling 8.5 MW supply beam pumps, progressive cavity pumps (PCPs) and electric submersible pumps (ESPs) at Jackson and Naccowlah facilities;
- Oil storage (two tanks, 63,000 barrels total or about 10 ML)
- Landfarm;
- Shipping pumps; and
- Associated services and camp.

Water is provided by bores and treated by a Reverse Osmosis Plant (ROP) to produce potable water.

#### Naccowlah Oil

The Naccowlah facility comprises oil storage tanks, wash and test tanks, a diesel storage (frac) tank, a crude storage (frac) tank and a landfarm. Oil is transferred from the Naccowlah field via artificial lift pumps. Power is distributed to the Plant and associated fields via a Ruston turbine and Waukesha generator packages, with Caterpillar diesel generators for back up. Produced formation water is separated through wash tanks to the on-site evaporation pond system. Oil is pumped to Jackson as required via pipeline.

#### Tickalara Oil

The Tickalara Oil satellite consists of oil storage tanks, wash tanks, a test tank and several crude fuel storage tanks. Oil is transferred from Tickalara and associated fields via artificial lift pumps including ESP, beam pumps and PCPs. The Tickalara facility has Caterpillar shipping pumps for the transfer of produced oil through the Tickalara-Watson-Cooroo (TWC) pipeline to the Jackson Oil facility or direct injection into the Jackson to Moomba oil flowline and transferred to Moomba . The Tickalara facility is equipped with a tanker unloading terminal for the receipt of crude oil from the Munro and Dulu fields. The facilities are complete with dewatering tanks, and a series of evaporation ponds and oil skimming facilities.



#### Watson Oil

The Watson Oil facility consists of oil storage tanks, wash tanks, vertical frac tanks and crude fuel storage tanks. Oil is transferred from Watson and associated fields via artificial lift pumps including ESP, beam and jet pumps. In winter months Watson Oil receives oil production from the Tickalara Oil facility as required. Watson oil is transferred to Jackson via shipping pumps and the TWC pipeline or direct injection into the Jackson to Moomba Oil pipeline to Moomba. The facilities are complete with dewatering tanks, and a series of evaporation ponds and oil skimming facilities.

#### Nockatunga Oil

The Nockatunga Oil facility consists of oil storage tanks, wash tanks, crude fuel storage tanks and associated services and camp. Oil is transferred to Nockatunga from associated fields via artificial lift beam pumps, Jet Pumps and progressive capacity pump (PCPs). The Nockatunga facility transfers produced oil to the Jackson Plant via road tankers. The loading terminal consists of a diesel powered loading pump. The facilities are complete with dewatering tanks, and a series of evaporation ponds and oil skimming facilities.

#### Tarbat Oil

The Tarbat Oil facility consists of oil storage tanks, wash tanks, crude fuel storage tanks, land farm and associated services and camp. Oil is transferred to Tarbat from the associated fields via artificial lift (beam) pumps and PCPs. Tarbat facility transfers produced oil to the Jackson Plant via a 250 mm trunkline. Mains power is supplied to the field and permanent camp by a 5MW gas turbine. The facilities are complete with dewatering tanks, and a series of evaporation ponds and oil skimming facilities.

#### 6.3.3 Water Flooding

Water flooding is being undertaken in the Cranstoun, Mulberry, Gimboola, Talgeberry and Endeavour fields (all in ATP299P) with the objective of enhancing oil recovery by maintaining pressure in the Birkhead and Murta oil reservoirs and improving sweep efficiency (Table 20 and Figure 30). Significant and rapid pressure depletion in the reservoirs had occurred despite only modest fluid production - confirming the suitability for a Secondary Recovery pressure maintenance scheme. Water flooding was selected as the preferred Secondary Recovery scheme. Water is injected into the oil reservoir in order to restore and maintain pressure and enhance production.

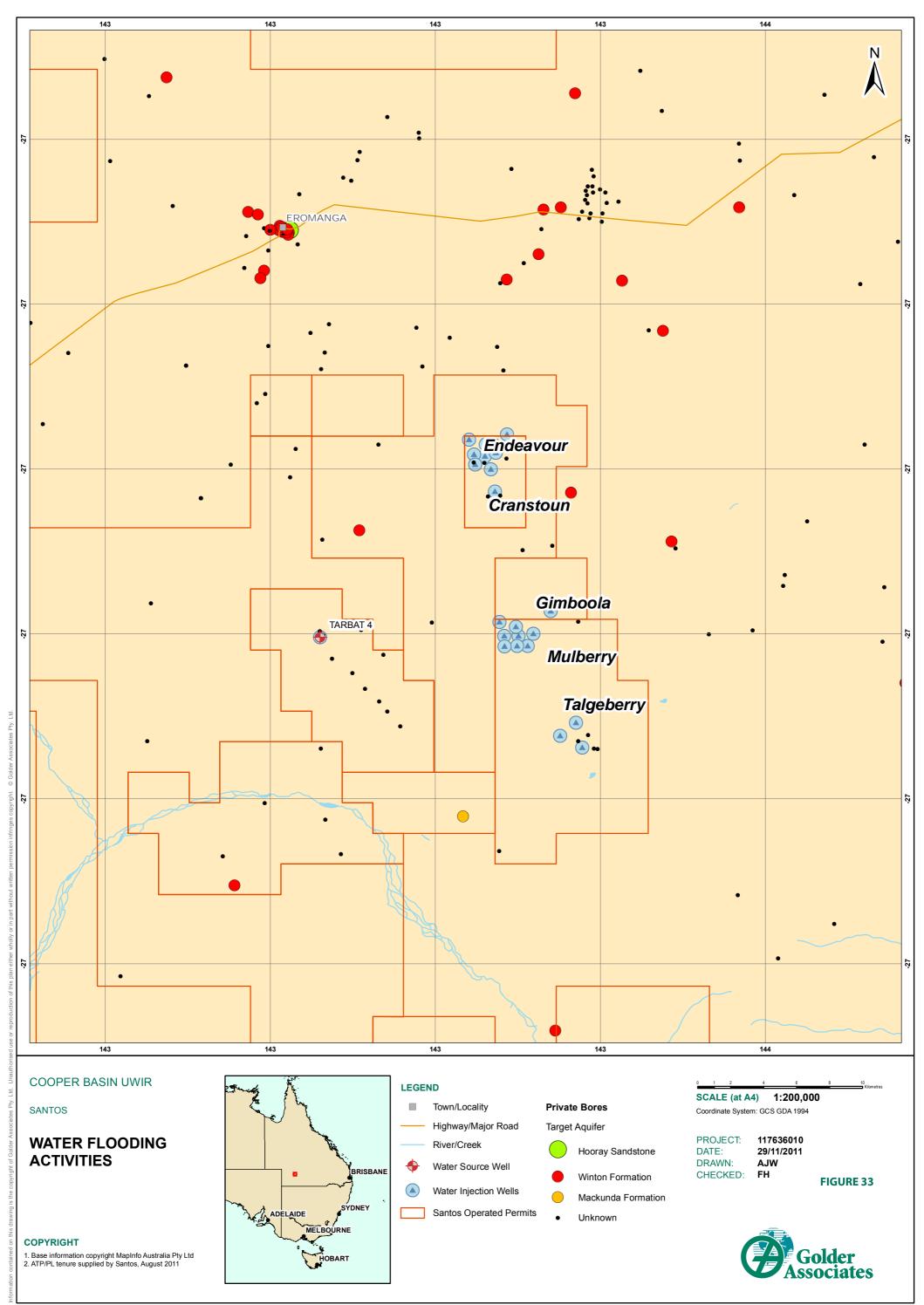
The Birkhead Formation is located 1300 m below ground level at the Mulberry and Endeavour oil fields. In this area of the Eromanga Basin, the deposits were fluvial-lacustrine with frequent laterial facies variations resulting in a channelized geometry of the sandstone beds which restrict lateral continuity of the oil reservoirs.

The Murta Formation is found from 700 - 800 m depth. The Murta Formation was deposited during meandering fluvial conditions, floodplain and lacustrine environments.

Water flooding is organised generally around one water injection well surrounded by a number of oil producing wells with an average distance between injection and production wells of 400 to 500 m. Santos has a number of injection wells for each field where water flooding is performed. At Endeavour 9, the average injection rate is of 0.10 ML/day (65 barrels of water per day).

Until early February 2009, the water has historically been sourced from the Namur Sandstone aquifer (from Tarbat 4). From that date, water was sourced mostly from treated produced water (from the Tarbat treatment plant) and supplemented by groundwater from Tarbat 4. Defects in the design which affected chemical injection resulted in the plant being shut down, redesigned and becoming operational again in February 2011. During that period, Santos reverted in using Tarbat 4 as primary source of water for water flooding.

Section 8.2 and 8.3 further discuss the potential risks and impacts related to these activities, and management measures implemented to control those risks.






| Field      | Reservoir | Water Injection<br>Commenced  | No of Water<br>Injectors | Water Injectors                                  | Relevant<br>PL      |
|------------|-----------|-------------------------------|--------------------------|--------------------------------------------------|---------------------|
| Cranstoun  | Birkhead  | Aug '07                       | 1                        | Cranstoun 4                                      | PL 57               |
| Endeavour  | Birkhead  | Oct '06 & Aug/Sep<br>'07      | 9                        | Endeavour 4, 6,<br>9, 10, 11, 12, 14,<br>17 & 36 | PL 57 (&<br>PL 295) |
| Gimboola   | Birkhead  | Mar '07                       | 1                        | Gimboola 5                                       | PL 169              |
| Mulberry   | Birkhead  | Jun '06, Nov '06 & Jul<br>'07 | 8                        | Mulberry 2, 4, 7,<br>18, 25, 28, 30 &<br>41      | PL 39 (&<br>PL 295) |
| Talgeberry | Murta     | May '07 & Oct '07             | 3                        | Talgeberry 6, 8 & 17 (via annulus)               | PL 39               |
|            | Birkhead  | Oct '07                       | 1                        | Talgeberry 17 (via<br>tubing)                    | PL 39               |

Table 22: Summary of Water Flooding Activities





File Location: J:\hyd/2011\117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0065\_CooperBasinWaterFloodingActivities.mxd



## 6.3.4 Summary of Oil and Gas Production Wells

The numbers of oil and gas production wells in each tenure is given in Appendix E.

## 6.4 Hydraulic Fracturing

As mentioned previously, the gas wells within the Cooper Basin formations generally each intersect several reservoirs. Historically, hydraulic stimulation was not required but as tighter gas is being targeted there is a need to stimulate the target formation for the operations to remain economically viable.

In order to produce from all of the gas reservoirs intersected in a well, Santos uses methods to selectively isolate and individually fracture each hydrocarbon bearing zone. As a result, a typical gas well will have more than one fracturing treatment and the current average is about five treatments per well. The typical Santos oil well will rarely have more than one fracturing treatment due to the limited number of oil reservoirs and the fact that oil bearing formations are not as dependent on fracturing to be commercially viable.

Since 1987, a total of 275 hydraulic stimulations have been completed within 192 wells (not all producing) in the SWQ (Figure 34).

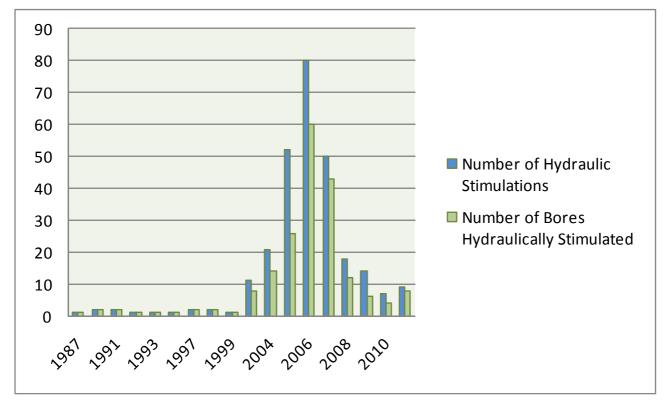



Figure 34: Historical Number of Hydraulically Stimulations in SWQ

The number of stimulation has recently been quite small in SWQ however this varies depending on the development activities. The locations of the stimulations carried out in the last five years are illustrated on Figure 35 Santos has performed few hydraulic stimulation in the last two years in SWQ, the last SWQ stimulation was undertaken in June 2010 on Patroclus 3, a few locations at Challum gas fields are planned to be hydraulically stimulated in 2012.

The water source for hydraulic fluids is selected from a range of options:

- Specifically completed water bores;
- Water line of one of the nearby facility;



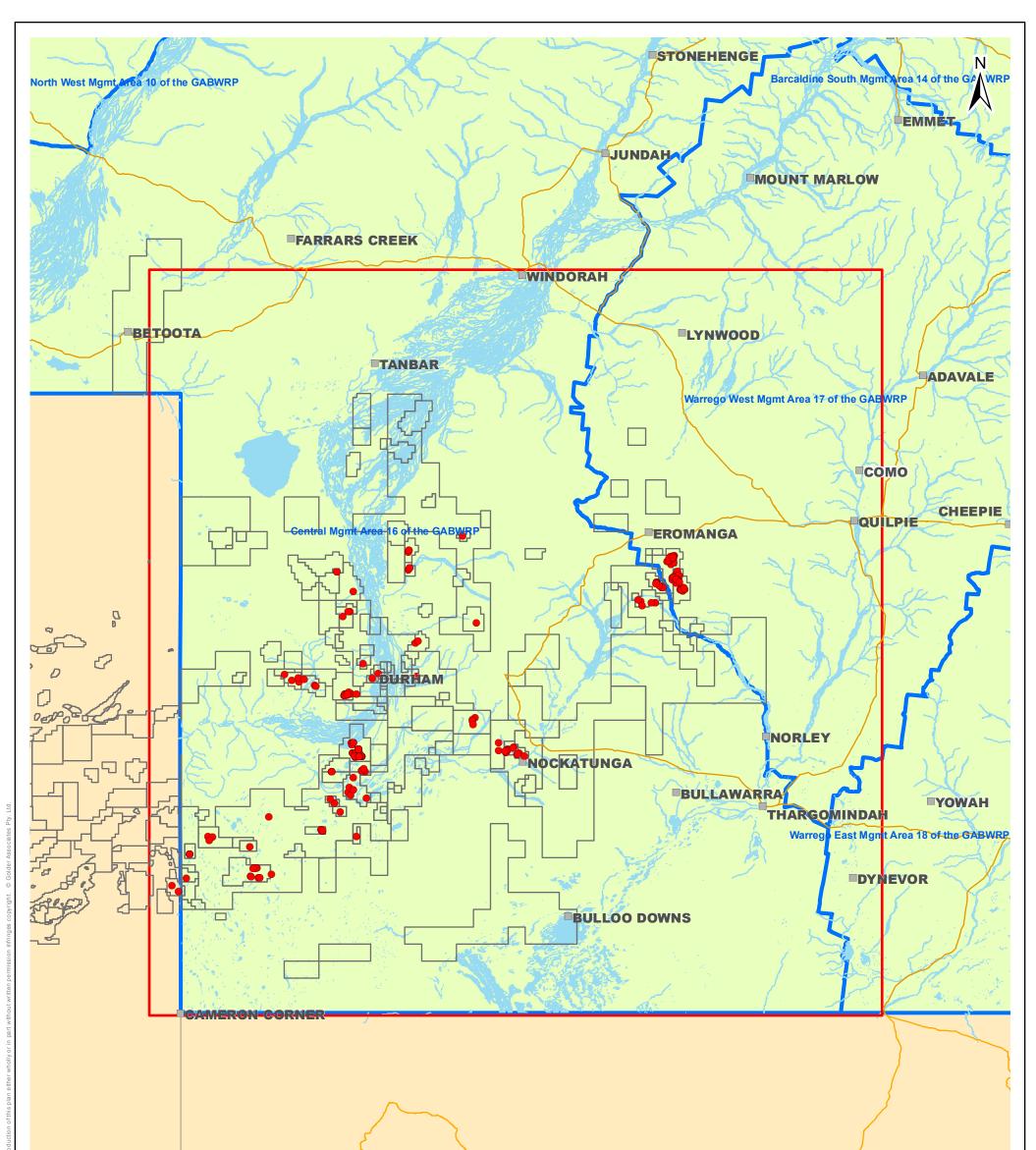


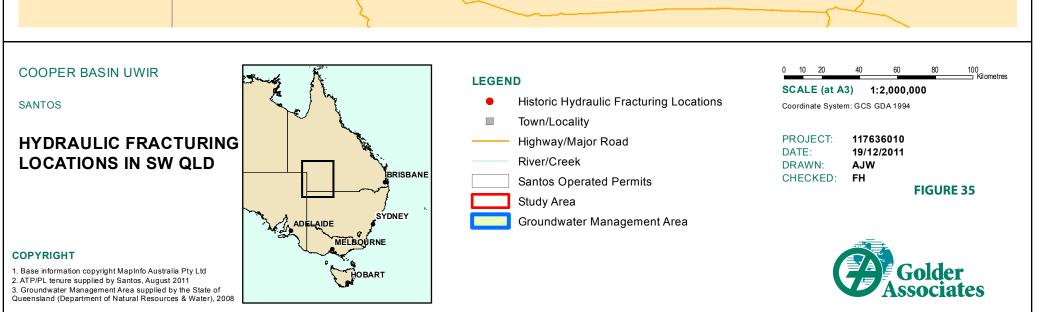
- Evaporation ponds;
- Water collection tanks; or
- Stage separator pond (see section 6.5), water used would be from the bottom section of the pond.

The suitable water source selected for hydraulic fracturing would have the lowest salinity level possible. Santos has sampled over 800 locations in SWQ to identify amongst them potential water sources or characterise the water source.

Chemistry of the fluid is strictly controlled to ensure the fluid is at the right conditions to mix, hydrate, crosslink during treatment and then break on flow back. Laboratory tests are performed for the entire duration of the stimulation.

Flow back fracture fluid at present is not recycled. Once returned to the surface, the fracture fluids are discharged to the flow back pit. Where visible hydrocarbon is present on the surface of the water in the pit, a vacuum truck is used where practicable to remove the hydrocarbon.


Santos has provided DERM with information on hydraulic fracturing practices in 2010 (Santos, 2010), this includes information on the composition of hydraulic fracturing fluids, process of hydraulic fracturing for oil and gas wells followed by Santos and depth of the hydraulic fracturing in relation to depth of private bores (stock and domestic water waters). From this document and recent update on Santos practices, the following conclusions can be made:


- BTEX is being eliminated from the hydraulic fracturing process of oil operations. Small volumes of diesel (which contains some of the constituents of BTEX) were used in the past as a suspension agent in fracturing fluids. Santos now uses dry gel powder with water as a substitute.
- BTEX is a natural component of hydrocarbon light crude (condensate) production.

In the last twelve months Santos has started a program of sampling flowback water for hydrocarbons for all hydraulically stimulated well. This will be applied to the 2012 hydraulic fracturing program.

Santos is also investigating potential recycling of flow back fluid. Results of trials in other Santos operations will be applied to SWQ operations as appropriate.







File Location: J:hyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0035\_CooperBasinFracturingLocations.mxd



## 6.4.1 **Produced Water Production**

Water is produced as a co-product of gas and oil production. The gas extraction generates only a limited volume of water oil production generated a larger volume of water. Approximately 191 gas producing wells and 230 oil producing wells concur to the water production figures provided in this section. Figure 37 illustrates the average annual rate water in Central and Warrego West. The highest average annual rates is in Central (Hutton Sandstone) – 4,998 ML/year (Table 23)

## 6.4.2 Produced Water Monitoring Methodology

The methodology for monitoring extracted water is different for the oil and gas wells. Generally gas wells produce significantly less water.

### Gas water measurement methodology

Santos (per. comm. Owen Davies and Tom Paspaliaris; Santos, 2012) indicated that *the volume of produced* water associated with gas production is not metered or measured directly. The total volume is estimated based on the average water content of the produced gas.

#### Oil water measurement methodology

The methodology for monitoring produced water in *oil* production is summarised as:

Individual well water measurement can be by water-cut meters (Red-eye or DNOC), wellhead water-cut samples or via tank dips. Very few wells use this, due to flowing conditions rendering meter readings useless.

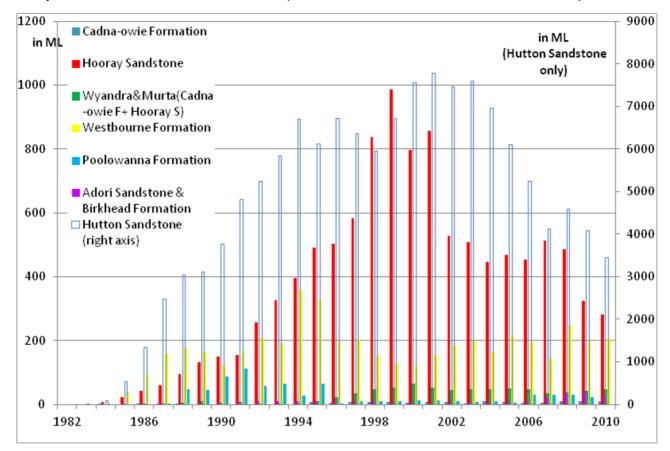
Monthly Allocation to any given well is done by:

- Estimating the theoretical monthly oil and water production by well (using latest individual well test rates multiplied by the number of days the well was producing for the month [referred to as the "uptime"]);
- Summing all the wells' theoretical volumes that collect into some fixed, known gathering point to give the monthly total theoretical oil & water volumes;
- Comparing it to the actual monthly oil and water production at that fixed, known gathering point (where the monthly actual oil and water production is based on measurement of trucked oil loads, or oil piped through a fiscal metering point; and
- Allocating (pro-rating) the total theoretical volumes to the individual wells based on the ratio of "actual total"/"theoretical total".

The monitoring methodology for the majority of the produced water (i.e. the approximately 5 GL/year abstracted through oil production) is likely to be a reasonable approximation of actual volumes. This is because the total volume for each well is recorded at a known gathering point and compared to the actual oil and water production volumes through a fiscal metering point. This provides a check that the monitoring equipment is operating properly and provides the opportunity to record this at two separate points.

There is likely to be more uncertainty with the produced water from gas production. However, as this required less produced water to be extracted (approximately 3% of the total from the Cooper and Eromanga Basins) this is not considered to be a significant source of error in the impact calculations.

## 6.4.3 Methodology for Predicting Three Year Water Extraction


Santos does not estimate future produced water extraction for either oil or gas activities (per. comm. Owen Davies; Santos, 2012). For the purposes of 'immediately affected area' predictive modelling (the next three years of extraction), the last year of extraction data was taken to be representative of future extraction.

Considering the duration of extraction from these basins and the declining trend in extraction, (Figure 36) this was considered conservative and likely to be greater than actual extraction for the next three years.



To adopt a conservative approach to the long term affected area calculation, the last year of extraction data was extrapolated for a period of 20 years. This is considered highly conservative.

Water production varies over time (Figure 36), a water production peak has been observed in the late 1990s – early 2000s, the current trend is a decline of produced water associated with the decline of oil production.



Note: The Hutton Sandstone produced water volumes are displayed on the right axis

Figure 36: Variation over time of produced Water in Santos SWQ Oil and Gas Fields





## **Table 23: Produced Water Production**

| Grouped by<br>GMU             | Formations                                                    | Total<br>Water<br>produced | Average Average    | Annual Wa<br>on Rate <sup>[1]</sup> | iter                         | General Reserve<br>Central and<br>Warrego West | Total S&D + E       | Entitlement                 | Predicted Average<br>Annual Rate <sup>[3]</sup> |
|-------------------------------|---------------------------------------------------------------|----------------------------|--------------------|-------------------------------------|------------------------------|------------------------------------------------|---------------------|-----------------------------|-------------------------------------------------|
|                               |                                                               | ML                         | Total<br>ML/year   | Central -<br>ML/year                | Warrego<br>West -<br>ML/Year | ML/year                                        | Central,<br>ML/year | Warrego<br>West,<br>ML/year | ML/year                                         |
| Central 2 /<br>Warrego West 2 | Cadna-Owie<br>Formation                                       | 125                        | 8.89               | 8.89                                | 0                            | 0                                              | 214                 | 1,007                       | 5.8                                             |
| Central 3 /<br>Warrego West 3 | Hooray Sandstone                                              | 11,615                     | 523                | 522                                 | 1.14                         | 1,000 + 1,000 ML                               | 11,198              | 4,669                       | 344                                             |
| Central 4 /<br>Warrego West 4 | Westbourne/Adori/<br>Birkhead (Injune Ck<br>Group equivalent) | 8778                       | 483                | 411                                 | 72                           | 0                                              | 254                 | 774                         | 318                                             |
| Central 5 /<br>Warrego West 5 | Hutton Sandstone                                              | 133,229                    | 4,998              | 4,998                               | 0.36                         | 0                                              | 293                 | 525                         | 3,288                                           |
| Central 6 /<br>Warrego West 6 | Poolowanna<br>Formation                                       | 715                        | 78                 | 78                                  | None                         | 0                                              | 0                   | 10                          | 51                                              |
|                               | Toolachee &<br>Patchawarra                                    | NA                         | 150 <sup>[2]</sup> | 150*                                | NA                           | NA                                             | NA                  | NA                          | 98                                              |
| TOTAL AN                      | INUAL ABSTRACTION                                             | N ( ML/year)               | 6,241              | TOTAL ANNUAL ABSTRACTION ( ML/year) |                              |                                                | 4,106               |                             |                                                 |

[1] The average annual water production rate is annual average established for all producing years at each field. Water production for each oil and gas fields are reported in Appendix DAPPENDIX D.

[2] Estimate provided by Santos gas reservoir Engineers, actual volumes are currently being compiled

[3] Predicted Average Annual Rate (discussed in Section 6.4.3) represents recent extraction extrapolated for the next three years. As extraction is declining, this is lower than the historical average annual water production rate.





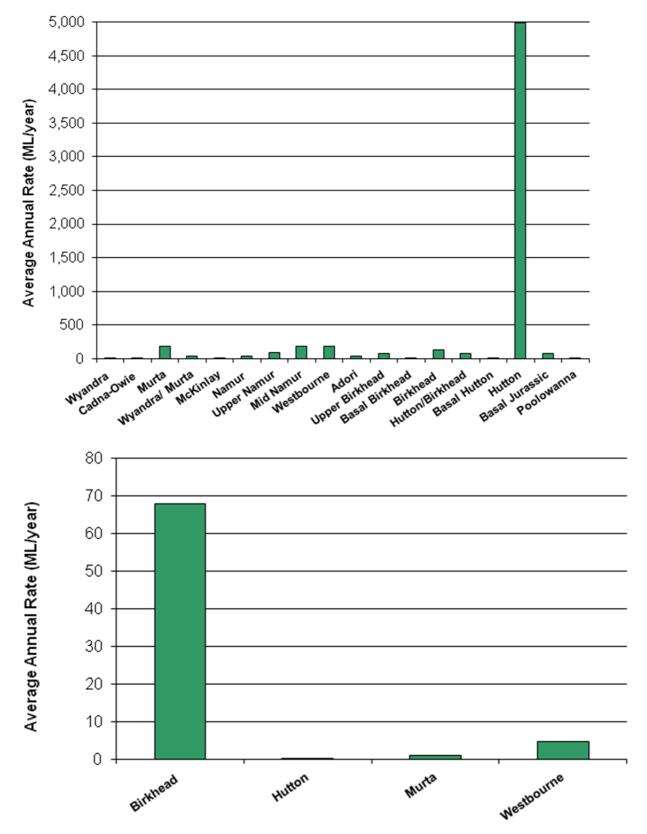



Figure 37: Average Annual Water Rate in Central and Warrego West (note: graphs scales are different)





# 6.5 Management of Produced Water

Produced water is either collected in tanks located at the well head and then transferred to interceptor ponds (oil wells) or directed to the separation facilities at the nearest satellite (gas wells).

The produced water is stored in ponds. Some of the water is re-used for drilling or hydraulic fracturing if located close enough to the activities, the rest eventually ends up in evaporation ponds.

There are three types of ponds:

- Interceptor ponds: those ponds are often located at individual well sites, or at the local oil and gas facility. The water is separated from the hydrocarbons using up to two levels of separations. Interceptor ponds allow for the collection from the water surface of dissolved hydrocarbons or suspended droplets to a dewatering or slops tank for later reprocessing or disposal.
- Holding ponds: these ponds are used downstream of secondary separation *if* evaporation is to take place in free-form evaporation ponds. This ensures an additional buffer to prevent hydrocarbon from reaching the free-form evaporation ponds, should there be a process upset.
- *Evaporation ponds*: water from the secondary separation or holding ponds flows to one or more ponds designed for evaporation. Water entering these ponds should contain only trace levels of hydrocarbons.

Facilities used for separation are lined. From the interceptor pond, water proceeds to the holding and evaporation ponds, which may have a synthetic liner, many of them using compacted clay or earthen surface. Table 24 provides a summary of water management ponds. The detailed list, pond size and coordinates of all ponds in SWQ are reported in Appendix A.

Where water flooding is undertaken, water for the water flooding is sourced from treated produced water at the Tarbat treatment plant (Section 6.3.3).

|                                     | Number of ponds | Maximum surface area (ha)<br>Average [Min – Max] | Maximum operating Volume (ML)<br>Average [Min – Max] |
|-------------------------------------|-----------------|--------------------------------------------------|------------------------------------------------------|
| Interceptor ponds                   | 35              | 0.068 [0.003 - 0.175]                            | 0.947 [0.046 - 2.625]                                |
| Holding ponds                       | 21              | 0.192 [0.038 - 0.63]                             | 2.315 [0.375 - 7.5]                                  |
| Evaporation ponds                   | 65              | 3.658 [0.060 - 29.2]                             | 33.201 [0.78 - 292]                                  |
| Other (Airport and pump-out ponds ) | 2               | 0.545 [0.09 - 1.00]                              | 5.675 [1.35 - 10]                                    |

### **Table 24: Summary of Water Management Ponds**





# 7.0 GROUNDWATER IMPACT ESTIMATION

For the purposes of this UWIR, the affected area due to groundwater drawdown for consolidated rock aquifers was considered to be the area with greater than 5 m drawdown.

Impacts to groundwater dependant ecosystems (GAB springs) was considered to be a calculated drawdown of 0.2 m directly beneath the springs. As the source aquifers supplying the springs is uncertain, the 0.2 m drawdown assessment was considered for a range of potential source aquifers in the study area.

# 7.1 Approach and Limitations

The following sections discuss the approach used in the groundwater impact estimation.

## 7.1.1 Analytical Approach

An analytical approach was selected to provide an *indicative estimated of the magnitude of potential drawdown* in the target beds and neighbouring formations in the immediate and long term scenarios.

The analytical approach was considered as appropriate after consideration of:

- the depth of Santos groundwater extractions compared to the depth of extraction in private water bores: Santos is extracting at depths over 2,000 m for the Cooper Basin, and over 1,000 m for more than 90% of the extraction in the Eromanga Basin while most private bore target the upper formations;
- the stratigraphic settings: a number of confining beds are located between the upper aquifers of the stratigraphy profile which are the target aquifers for most private bores and Santos production activities; and
- the large area of Santos production activities resulting in the geographical distribution of the volumes of water produced.

In addition, the data (density and quality) and resources available to Golder were not sufficient for the preparation of a numerical model.

As a result of the above, an analytical approach was considered more appropriate to establish an indicative assessment of affected areas due to the extraction of produced groundwater during gas and oil production on neighbouring formations.

## 7.1.2 AnAqSim Analytical Software

The groundwater impact estimation was conducted using an analytical solution called AnAqSim (version 2011-2 and updated using the 64-bit version 2012-1). AnAqSim is analytical software capable of superimposing multiple analytical calculations (using flow equation calculations) to yield a composite solution consisting of equations for head and discharge as a function of location and time. Whilst the analytical equations are written in two-dimensions, three-dimensional flow may be simulated using simple planar multiple levels. In multi-level calculations, the resistance to vertical flow is accounted for in the vertical leakage between levels.

Note: AnAqSim is not a high resolution numerical model, such as might be undertaken in MODFLOW or FeFlow. It is indicative in its level of complexity and output. However, AnAqSim is significantly better than many traditional analytical methods.

It was necessary to simplify the conceptual hydrogeological model to comply with the capabilities of the analytical calculations (equations). Whilst this did not permit the analysis of basin structure and geometry, it did provide a representative vertical distribution of strata ('layers') and representative groundwater levels.

Up to five planar layers with corresponding initial groundwater levels are permitted in the software. To evaluate the potential impact in each basin, analysis was divided into two separate calculation exercises:

1) **Eromanga Basin**: containing the Early Jurassic to Late Cretaceous strata, namely the GAB aquifers; and





2) **Cooper Basin**: containing the Late Carboniferous, Permian and to Triassic strata, namely the older pre-GAB aquifers.

The separate calculation domains are shown in Table 25 and Table 26 respectively.

The division into two separate domains permitted the allocation of five layers in the Eromanga Basin as a separate hydraulic system, excluding the underlying Cooper Basin strata. It was anticipated that the impact from extraction in the Cooper Basin would not impact beyond the top of the Tinchoo Formation (i.e. the top of the Cooper Basin) due to the thickness of the low permeability layers and the small abstraction rate.

If no impact was predicted by the analysis at the top of the Cooper Basin, then it was considered reasonable to omit this form the overlying Eromanga Basin calculations.

## 7.1.3 Assumptions and Limitations

The following assumptions and limitations are inherent to the analytical modelling process:

- Calculations for both basins were undertaken in steady state conditions (i.e. not time varying) to investigate the 'immediate affected area' and the 'long term affected area' using recent extraction average and the long term extraction average respectively;
- Other abstractors (non Santos wells) were not considered in the calculation;
- Total recorded annual extraction was apportioned to each model layer to create a representative abstraction for modelling;
- Total annual extraction was divided between a representative number of wells. It was necessary to reduce the actual number of wells in the analysis to maintain stability in the software. Approximately 1/3 of the total number of wells was used, whilst maintaining the geographical distribution pattern. This had the effect of increasing the extraction from each well by approximately 2/3 in order to preserve the total extraction from the field. Given the resolution of the model, this approach was considered representative of the total extraction, both volumetrically and spatially. This was further refined for the immediately affected and long term calculations, as follows;
  - The immediate affected area calculation used an extraction rate for both basins that was calculated by extrapolating the last year of historical extraction data. This was considered conservative as the likely actual extraction was anticipated to decline over this period (Figure 36);
  - The long term affected area calculation used an extraction rate for both basins that was calculated by taking the long term historical extraction. As the fields are generally in decline (Figure 36) the long term extraction was larger than the immediate extraction rate.
- It was necessary to select adjacent strata to group together in the model to simplify the actual layering. This was because the model is capable of modelling only 5 layers. Grouping of stratum was carried out in such a way as to minimise the impact on the model results. The grouping process grouped adjacent stratum with similar hydrostratigraphical properties (e.g. adjacent aquifers and aquitards) and assigned a single representative hydraulic property. This is known as the equivalent porous medium approach. This was considered suitable given the available data in this area;
- The necessary combination of layers (considering these are in reality interbedded high and low permeability layered strata) as a single equivalent porous medium layer result in a worst case scenario as the selected value was conservative and potential very low permeability layers cannot be captured in the model;
- AnAqSim provides the calculated drawdown for the top of the each layer (no results are available for each subdivision). and
- The model calculates the drawdown as water head pressure. Where the formations are artesian, the calculated drawdown corresponds to a water pressure decline (unless the extent of the pressure





decline is such that the bore reaches sub-artesian conditions), in non-artesian formations (as in the upper formations targeted for water supply by the community), the drawdown corresponds to a decrease of water level.

# 7.2 Groundwater Impact Calculation Input Parameters

This section discusses the input parameters necessary for the groundwater impact calculation.

The simplified geological layering used in the calculation for the Eromanga Basin and Cooper Basin is shown in Table 25 and Table 26 respectively. These simplified layering grouped similar adjacent strata together where appropriate, to reduce the observed stratigraphy into no more than 5 layers.

Input parameters were sourced from Santos records of historical values, literature values and from Golder's experience in the area (as discussed in Section 5.5 and reference list). Likely values were selected for the predictive model calculations. The impact of the selected representative hydraulic property values was investigated through sensitivity analysis (Section 7.6).

DERM groundwater level monitoring data including artesian pressure data (Section 5.6) was used to establish a representative initial groundwater levels for each model layer as well as observed pressure data from Santos wells.





| Tubic 20. Eronnungu Busin Al                                                                         | larytiour out                        | Sulution r uru                |                           |                                               |                                          |                        |                         |                                                                        |     |
|------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|---------------------------|-----------------------------------------------|------------------------------------------|------------------------|-------------------------|------------------------------------------------------------------------|-----|
| Layer                                                                                                | Top<br>Elevation<br>(mAHD)           | Bottom<br>Elevation<br>(mAHD) | Average<br>Head<br>(mAHD) | Horizontal<br>Hydraulic<br>Conductivity (m/d) | Vertical Hydraulic<br>Conductivity (m/d) | Porosity<br>(Fraction) | Storativity             | Representative number of<br>Santos wells in QLD (QLD<br>plus SA wells) | Нус |
| TOP OF MODEL – ground leve                                                                           | 1                                    |                               |                           |                                               |                                          |                        |                         |                                                                        |     |
| 1 – UPPER: Tertiary and<br>Quaternary strata and Winton<br>Formation (UNCONFINED)                    | Ground<br>level <sup>[1&amp;2]</sup> | -185 <sup>[1&amp;2]</sup>     | 100 <sup>[1]</sup>        | 5.0x10 <sup>-2 [3]</sup>                      | 5.0x10 <sup>-4 [3]</sup>                 | 0.1 <sup>[3]</sup>     | Sy: 0.05 <sup>[3]</sup> | 0                                                                      | Aqu |
| 2 – LOWER: Tertiary and<br>Quaternary strata and Winton<br>Formation (CONFINED)                      | -100 <sup>[1&amp;2]</sup>            | -185 <sup>[1&amp;2]</sup>     | 100 <sup>[1]</sup>        | 5.0x10 <sup>-2 [3]</sup>                      | 5.0x10 <sup>-4 [3]</sup>                 | 0.1 <sup>[3]</sup>     | 0.08 <sup>[3]</sup>     | 0                                                                      | Aqu |
| 3 – Alluru, Toolebuc and<br>Wallumbilla Formations                                                   | -185 <sup>[1&amp;2]</sup>            | -500 <sup>[1&amp;2]</sup>     | 150 <sup>[1]</sup>        | 1.0x10 <sup>-2 [3]</sup>                      | 1.0x10 <sup>-4 [3]</sup>                 | 0.15 <sup>[3]</sup>    | 0.01 <sup>[3]</sup>     | 0                                                                      | Aqu |
| 4 – Cadna-Owie Formation and Hooray Sandstone                                                        | -500 <sup>[1&amp;2]</sup>            | -620 <sup>[1&amp;2]</sup>     | 200 <sup>[1&amp;2]</sup>  | 1.0x10 <sup>-3 [4]</sup>                      | 1.0x10 <sup>-5 [4]</sup>                 | 0.02 <sup>[4]</sup>    | 0.01 <sup>[4]</sup>     | 0*                                                                     | Aqu |
| 5 – Westbourne, Adori and<br>Birkhead Formations and<br>Hutton Sandstone and<br>Poolowanna Formation | -620 <sup>[1&amp;2]</sup>            | -895 <sup>[1&amp;2]</sup>     | 290 <sup>[2]</sup>        | 1.0x10 <sup>-2 [4]</sup>                      | 1.0x10 <sup>-4 [4]</sup>                 | 0.15 <sup>[4]</sup>    | 0.04 <sup>[4]</sup>     | 336 (404)                                                              | Aqu |
| BASE OF MODEL – major unco                                                                           | onformity at b                       | ase of Eromar                 | nga Basin                 |                                               | -                                        |                        | -                       |                                                                        |     |

#### Table 25: Eromanga Basin Analytical Calculation Parameters

#### Table 26: Cooper Basin Analytical Calculation Parameters

| Tuble Let Booper Buein / Indi                                 | Juoai Galoaid              |                               | 010                       |                                               |                                          |                        |                      |                                                        |               |
|---------------------------------------------------------------|----------------------------|-------------------------------|---------------------------|-----------------------------------------------|------------------------------------------|------------------------|----------------------|--------------------------------------------------------|---------------|
| Layer                                                         | Top<br>Elevation<br>(mAHD) | Bottom<br>Elevation<br>(mAHD) | Average<br>Head<br>(mAHD) | Horizontal<br>Hydraulic<br>Conductivity (m/d) | Vertical Hydraulic<br>Conductivity (m/d) | Porosity<br>(Fraction) | Storativity          | Representative number of<br>Santos wells in QLD and SA | Hyd           |
| TOP OF MODEL – major unco                                     | nformity at top            | o of Cooper Ba                | Isin                      |                                               |                                          |                        |                      |                                                        |               |
| 1 – UPPER: Tinchoo and<br>Arrabury Formations<br>(UNCONFINED) | -895 <sup>[1&amp;2]</sup>  | -950 <sup>[1&amp;2]</sup>     | 315 <sup>[3]</sup>        | 1.0x10 <sup>-4 [3]</sup>                      | 1.0x10 <sup>-5 [3]</sup>                 | 0.01 <sup>[3]</sup>    | 0.001 <sup>[3]</sup> | 0                                                      | Aqu           |
| 2 – LOWER Tinchoo and<br>Arrabury Formations                  | -950 <sup>[1&amp;2]</sup>  | -1100 <sup>[1&amp;2]</sup>    | 315 <sup>[3]</sup>        | 1.0x10 <sup>-4 [3]</sup>                      | 1.0x10 <sup>-5 [3]</sup>                 | 0.01 <sup>[3]</sup>    | 0.001 <sup>[3]</sup> | 0                                                      | Aqu           |
| 3 – Toolacheee to<br>Patchawarra Formations                   | -1100 <sup>[1&amp;2]</sup> | -1200 <sup>[1&amp;2]</sup>    | 325 <sup>[2]</sup>        | 3.9x10 <sup>-3 [4]</sup>                      | 3.9x10 <sup>-4 [4]</sup>                 | 0.05 <sup>[4]</sup>    | 0.005 <sup>[4]</sup> | 38                                                     | Inter<br>laye |
| BASE OF MODEL – major unc                                     | onformity ove              | rlying Cambro                 | -Ordivician W             | /arburton Basin                               |                                          |                        | -                    |                                                        |               |

#### Notes for both tables:

#### Source

- [1] DERM database
- Santos / Santos DST / Santos groundwater monitoring data
- Inferred value
- [2] [3] [4] Literature value

Abstraction from Layer 4 (Cadna-Owie Formation and Hooray Sandstone) was assigned to the underlying Layer 5 to maintain numerical stability in the model. Assigning extraction in the base layer of the model provided additional numerical stability. Layer 5 was selected as the majority of extraction is likely to be sourced from these stratum (Section 7.2.4). Concentrating extraction in this manner was considered suitable as drawdown was still able to propagate upwards through the Layer 4 to the overlying Layer.



### ydraulic Properties

quifer

quifer

quitard

quifer and Aquitard (part)

quifer and Aquitard (part)

ydraulic Properties

quitard

quitard

terbedded aquitard / aquifer yers

# 7.2.1 Extent of Calculation and Boundary Conditions

The extent of the Cooper Basin and Santos tenements (Figure 39) was used in conjunction with the distribution of Santos extraction wells in Queensland only to form the extent of the calculation domain. This included a buffer of approximately 50 km from the nearest extraction well to limit the influence of the boundary conditions on the solution.

Boundary conditions were set as lines of zero flux (i.e. no flow boundaries) and located at sufficient distance from the area of interest to be far field boundaries.

The upper and lower extents of the model were assigned as head dependant flux conditions. This permitted the increasing groundwater level with depth conditions by mimicking recharge at the surface and a small flux at the base.

In the Eromanga Basin, the value assigned to the head dependant flux was 100 mAHD at the surface (to represent approximated observed groundwater levels in the upper layer). This is computed using the head difference between a specified head and the domain head. Vertical resistance to flow was created by the layer properties.

The flux at the base of the model was calibrated at  $1 \times 10^{-5}$  m/d (equivalent to 3.65 mm/year recharge to the base of the model). This was necessary to simulate the observed increasing hydraulic pressure with depth in both basins.

For the Cooper Basin, the upper model boundary had a head dependant flux set at 315 mAHD, to replicate observed heads and a flux at the base of  $1 \times 10^{-6}$  m/d (equivalent to 0.37 mm/year recharge to the base of the model). The value for the flux at the base of the model was achieved through the calibration process that matched modelled groundwater levels to the approximated observed groundwater levels.

The extent of the Eromanga Basin calculation domain can be seen in Figure 38 and the extent of the Cooper Basin calculation domain can be seen in Figure 39.

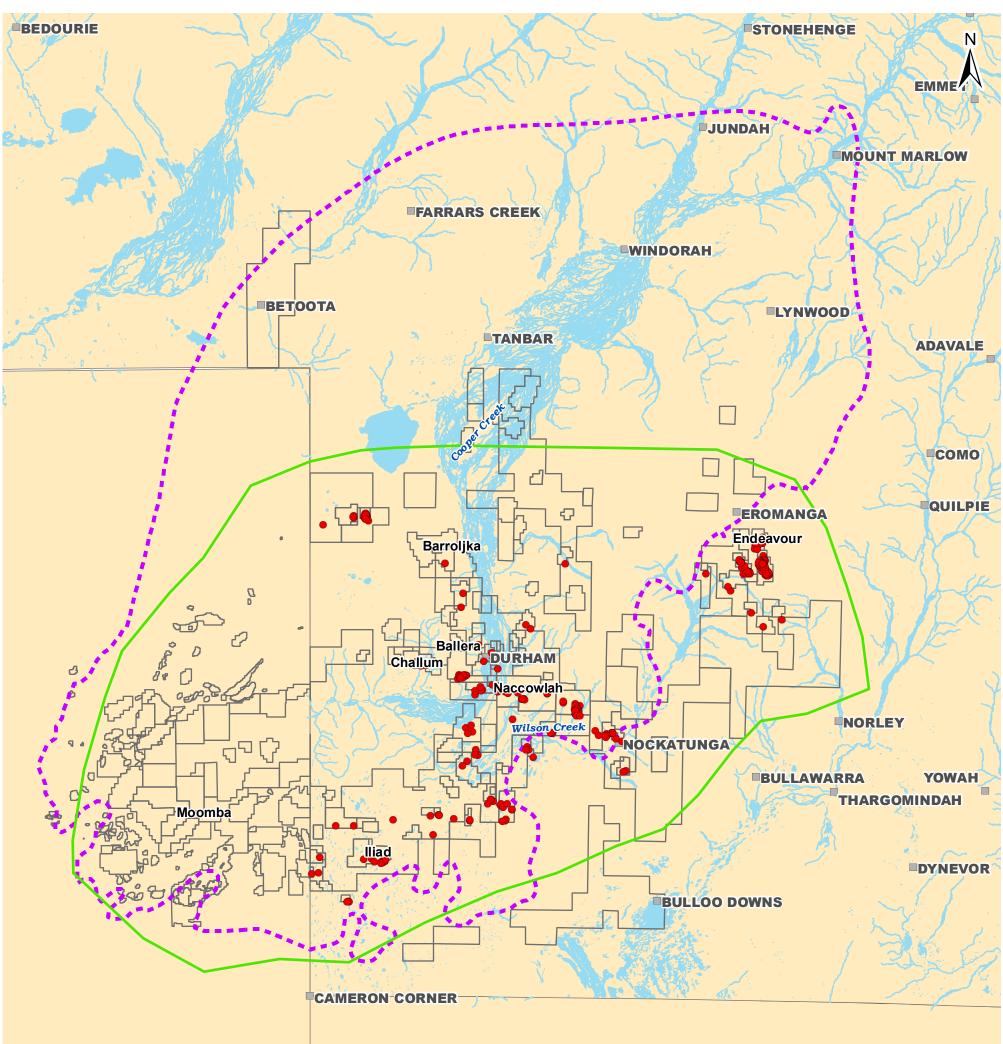
Santos bores shown in these figures have been tabulated and are given in Appendix E.

## 7.2.2 Water Production Volumes Used for the Calculation

The water extraction rates for the *immediately affected area* was calculated as the average recent extraction (last year of available data) and extrapolated over the next three years.

The *long term affected area* used average extraction for all years of operation for which data is available. The rate of groundwater extraction in the analytical model is representative of a steady state solution i.e. the rate used in the calculation cannot vary over time. A summary of the extraction rates used in the modelling is as follows:

### Eromanga Basin


- Eromanga Basin predictive model *immediate affected area* extraction rate (equivalent to the last 3 years average extraction) of 30.7 m<sup>3</sup>/day for each representative well used in the model;
- Eromanga Basin predictive model *long term affected area* extraction rate (equivalent to the long term average extraction) of 34 m<sup>3</sup>/day for each representative well used in the model;

### Cooper Basin

- Cooper Basin predictive model *immediate affected area* extraction rate (equivalent to the last three years average extraction rate) of 3.5 m<sup>3</sup>/day for each representative well used in the model;
- Cooper Basin predictive model *long term affected area* extraction rate (equivalent to the long term average extraction) of 4.5 m<sup>3</sup>/day for each representative well used in the model.

Variation over time of the water production for oil and gas fields is provided in Section 6.4.1.



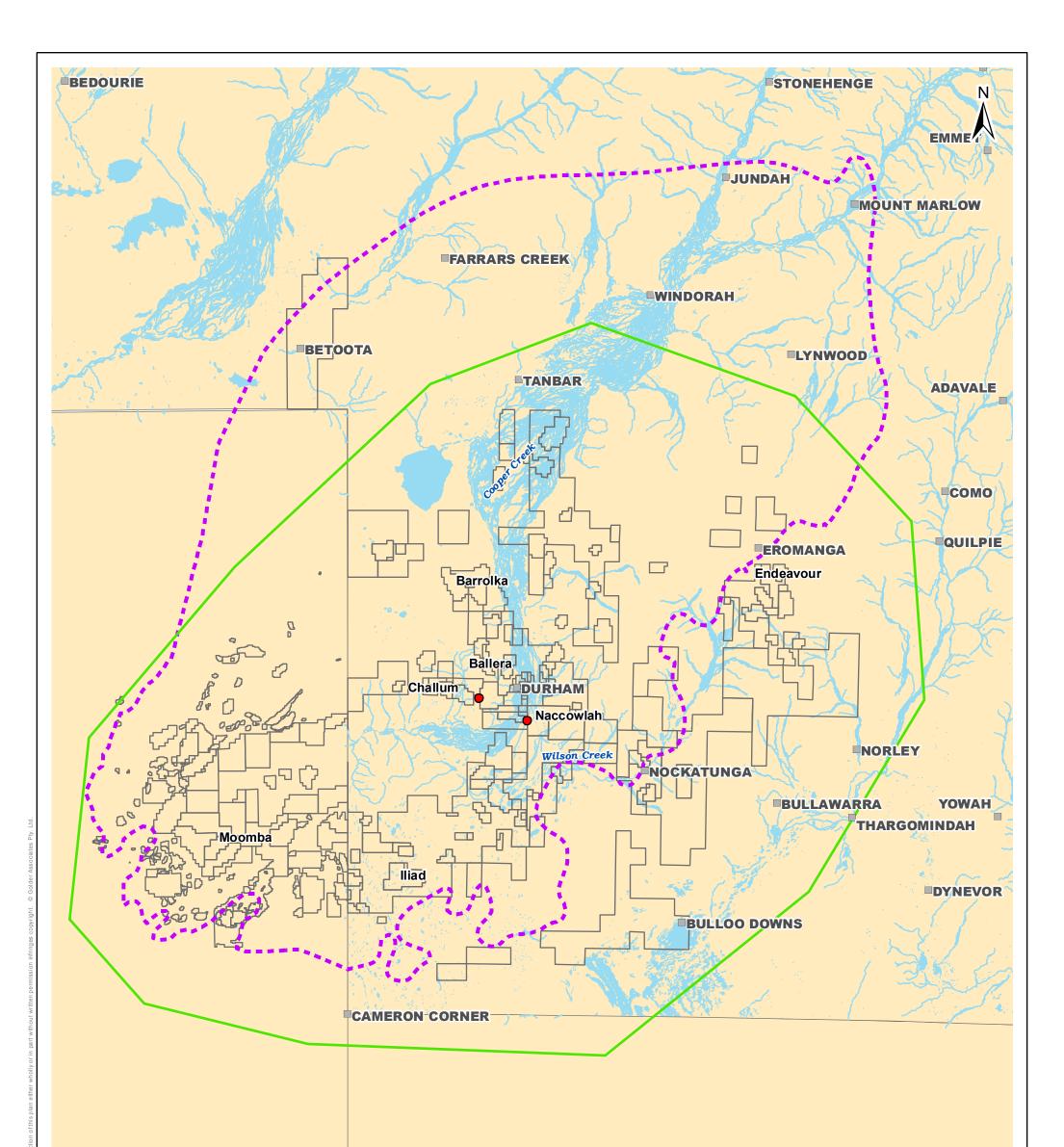


t written permission infringes copyright.

#### COOPER BASIN UWIR

#### SANTOS

## EXTENT OF THE EROMANGA BASIN CALCULATION


#### COPYRIGHT

1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011



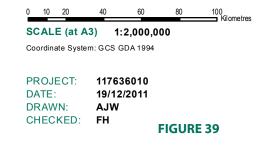


File Location: Jt/hyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil -official folder in BRISBANE/GISIProjects/117636010\_R\_F0048\_CooperBasinDrawdownModelExtent\_EB.mxd



#### COOPER BASIN UWIR

#### SANTOS


## EXTENT OF THE COOPER BASIN CALCULATION

#### COPYRIGHT

1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011









File Location: Jthyd/2011/117636010 Santos\_Copper Basin O&G & Moonie Oil-official folder in BR\SBANE\GIS\Projects\117636010\_R\_F0047\_CooperBasinDrawdownModelExtent\_CB.mxd



## 7.2.3 Justification for the Layering in AnAqSim

The *Eromanga Basin* was grouped into five layers according to the hydraulic properties of the strata and the most commonly observed multiple targets for oil and gas extraction.

- Layer 1: consisted of the upper half of the major aquifers in the area, exploited for groundwater abstraction. These were the unconfined shallow Quaternary, Tertiary and Winton Formation aquifers (Figure 29). These were grouped into two layers. No abstraction was assigned to this upper layer in the model. The upper portion contained the head dependant flux boundary;
- Layer 2: consisted of the lower half of the Quaternary, Tertiary and Winton Formation. These have been split into the upper two layers in order to investigate the potential impact of the deeper oil and gas extraction;
- Layer 3: consisted of the underlying Alluru, Toolebuc and Wallumbilla Formations. These are generally considered to be an aquitard with very little groundwater abstraction and no oil or gas extraction in the Eromanga Basin;
- Layer 4: combined the Cadna-Owie Formation and Hooray Sandstone. Oil and gas wells are often screened in both these formations and they exhibit similar geological characteristics, both being generally thinly interbedded sandstone and siltstone with occasional coarse grained, brecciaed or pebble beds;
- Layer 5: consisted of the Westbourne, Adori and Birkhead Formation aquifers and aquitards as well as the underlying Hutton Sandstone and Poolowanna Formation. Oil and gas extraction wells were often screened over a combination of these strata generally comprising interbedded siltstone, shale, fine sandstone and occasional coal seams. The Hutton Sandstone and Poolowanna Formation were considered to be more permeable and accounted for the highest extraction rate by an order of magnitude. The Hutton Sandstone and Poolowanna Formation are therefore the main targets for oil and gas extraction; and
- The Base of the model was formed by the base of the Eromanga Basin, which is marked by a major unconformity. Underlying the Eromanga Basin are the aquitards of the Tinchoo and Arrabury Formations. It was considered suitable to separate the Cooper Basin into a separate model due to the hydraulic separation of the two basins as well as the low average extraction from the underlying Cooper Basin.

The *Cooper Basin* was grouped into three layers, with the upper layer being split into two layers with identical properties. This was to permit the response of pumping to be observed in the Tinchoo and Arrabury Formations. The layers were configured as follows:

- Layer 1: the upper portion of the Tinchoo and Arrabury Formations comprise layer 1. This had the head dependant flux boundary condition to be applied to the top in order to replicate the observed groundwater levels. Layer 1 was assigned identical hydraulic properties to the underlying Layer 2 Tinchoo and Arrabury Formations;
- Layer 2: represented the lower half of the Tinchoo and Arrabury Formation aquitards. No oil or gas extraction was identified to target these strata. These are generally interbedded siltstone and fine sandstone with low permeabilities; and
- Layer 3: combined the strata between the Toolacheee to Patchawarra Formations at the base of the Cooper Basin. These were not utilised for water supply and only a limited extraction of oil and gas has been extracted from these strata. Often, wells are completed at multiple levels across this Early to Late Permian strata, making grouping of these suitable for analysis.

Note that although AnAquSim allows the division of a layer in two, the calculated results are provided for the full layer (no results available for each subdivision).





## 7.2.4 Assigning Abstraction in the Calculation

Historical abstraction data provide by Santos assigns oil and gas extraction to each field in the Cooper or Eromanga Basin

No complete data set for the abstraction target for each well or field was available. Many wells are likely to have perforated casing over multiple productive layers. This means assigning the historical abstraction to individual target formations unfeasible. It was considered reasonable therefore to assign all abstraction to a single layer in the analysis for both basins.

The grouping of the strata in the software (Section 7.2.3) and treating adjacent grouped strata as an EPM removed the necessity to establish the target formation beyond the defined layers within the software. This is because abstraction can only be assigned to defined software layers and not specific target depths or strata within an individual layer. This allowed a much more coarse definition of assigning the extraction target formation. Golder considers this an acceptable assumption as the software does not allow for further refinement, the EPM approach should already provide a bulk representative behaviour of the adjacent grouped strata. As the focus of impact is the strata generally overlying the extraction targets, this was deemed to be a suitable methodology.

The target of extraction was assigned to the layers, as defined in Table 25 and Table 26. The total annual abstraction was preserved for each basin and so this methodology was considered representative of the actual extraction.

For simplicity, the Hutton Sandstone and Poolowanna Formation were grouped together as the bottom layer of the model and therefore also combined the abstraction from these strata into the single layer. The total abstraction from each target layer was equally assigned to a representative number of wells. This was calculated to be proportional to the total number, required for ease of calculation. This scenario was also considered to represent the worst case scenario, as in reality, the abstraction is divided over a greater number of wells and over a spatially greater area.

It was necessary to further group the total abstraction in the Eromanga Basin model to Layer 5 (i.e including the Cadna-Owie Formation and Hooray Sandstone, Westbourne, Adori and Birkhead Formations and Hutton Sandstone and Poolowanna Formation). This will have the impact of increasing the drawdown in Layer 5, however it is considered not to reduce the impact above Layer 4 in the model.

The extraction well locations in the Eromanga Basin were filtered to reduce the number of wells in the calculation whilst maintaining the spatial distribution of extraction. This was achieved by accepting every tenth well from all Santos wells when ordered in an increasing easterly direction. The locations of the representative extraction wells are shown in Figure 38 and Figure 39.

In the Cooper Basin, the total extraction rates were considered low. The proportion of extraction from each field was also accounted for (Table 23) as follows:

- Eromanga Basin Layer 4 (Cadna-Owie Formation and Hooray Sandstone) accounting for 9% of the total annual extraction;
- Eromanga Basin Layer 5 (Late to Early Jurassic [Westbourne Formation, Adori Sandstone, Birkhead Formation, Hutton Sandstone and Poolowanna Formation]) accounting for 89% of the total annual extraction; and
- Cooper Basin Layer 3 (Early to Late Permian [Toolachee and Daralingie Formations, Roseneath Shale, Epsilon Formation, Murtree Shale and Patchwarra Formation]) accounting for 2% of the total annual extraction.

The relatively low extraction rate from the Cooper Basin is due to the Cooper Basin being a target for gas more than oil. As discussed, gas results in significantly less produced water than oil.





## 7.2.5 Observed Groundwater levels and Calibration Targets

Groundwater levels in the shallow aquifers and those that are utilised for groundwater abstraction or monitored by DERM were generally obtained from the DERM groundwater database.

Section 5.6 discusses the observation bore network and demonstrates the spread of available data both temporally and spatially in the study area. Strata that have been targeted for oil or gas extraction also has some hydrostatic pressure and groundwater level data. This was obtained from Santos, with representative groundwater levels given in Table 25 and Table 26. The selected value for groundwater level is derived from numerous spatially distributed values and from a range of elevations and depths across the basins. As the calculation required the layers to be horizontal and planar, the groundwater levels were also set at simplified representative levels.

Where no groundwater level data was available, it was necessary to extrapolate between adjacent layers to infer the level in the calculation.

Calibration was undertaken on both calculations using observed groundwater levels verses calculated groundwater levels in unpumped conditions. The bottom flux and hydraulic conductivity values were altered until a satisfactory fit was achieved. A plot of modelled verses observed groundwater level for the Eromanga Basin is given in Figure 40.

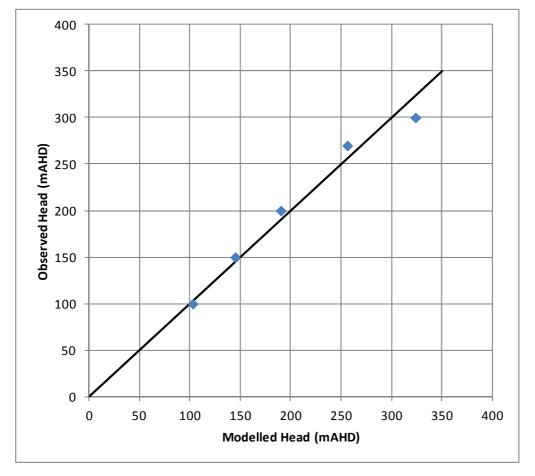



Figure 40: Eromanga Basin Model Initial Conditions: Observed verses Modelled Groundwater Level

A good fit for initial model conditions for the Eromanga Basin between modelled and observed groundwater head was achieved in using the parameters given in Table 25. The data shown in Figure 40 is tabulated in Table 27.

| Calibration Target | Modelled Groundwater<br>Level (mAHD) | Observed Groundwater<br>Level (mAHD) | Residual (m) |  |  |  |
|--------------------|--------------------------------------|--------------------------------------|--------------|--|--|--|
| Level 1            | 102                                  | 100                                  | 2            |  |  |  |
| Level 2            | 104                                  | 150                                  | -46          |  |  |  |
| Level 3            | 120                                  | 200                                  | -80          |  |  |  |
| Level 4            | 196                                  | 270                                  | -74          |  |  |  |
| Level 5            | 270                                  | 300                                  | -30          |  |  |  |

Table 27: Eromanga Basin: Observed verses Modelled Groundwater Level

The fit for initial groundwater conditions for the Cooper Basin are shown in Table 28.



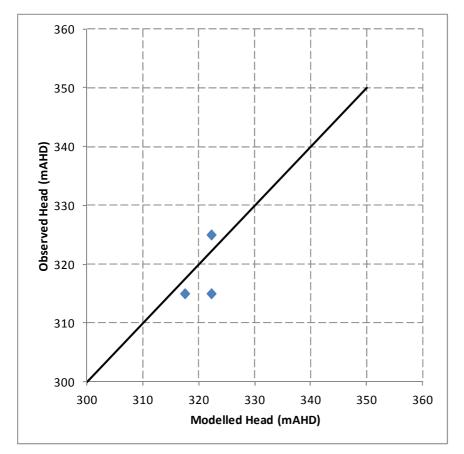
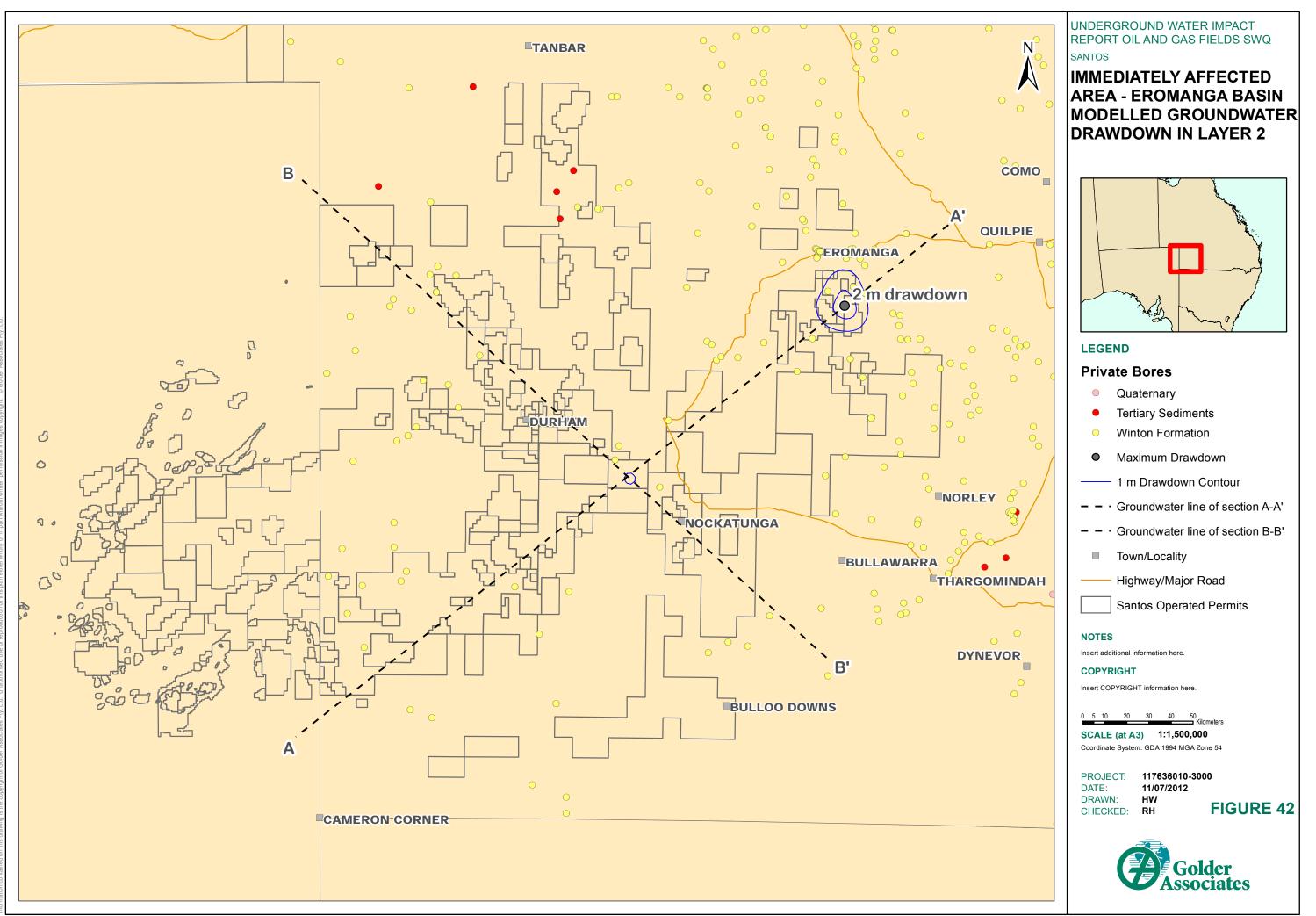
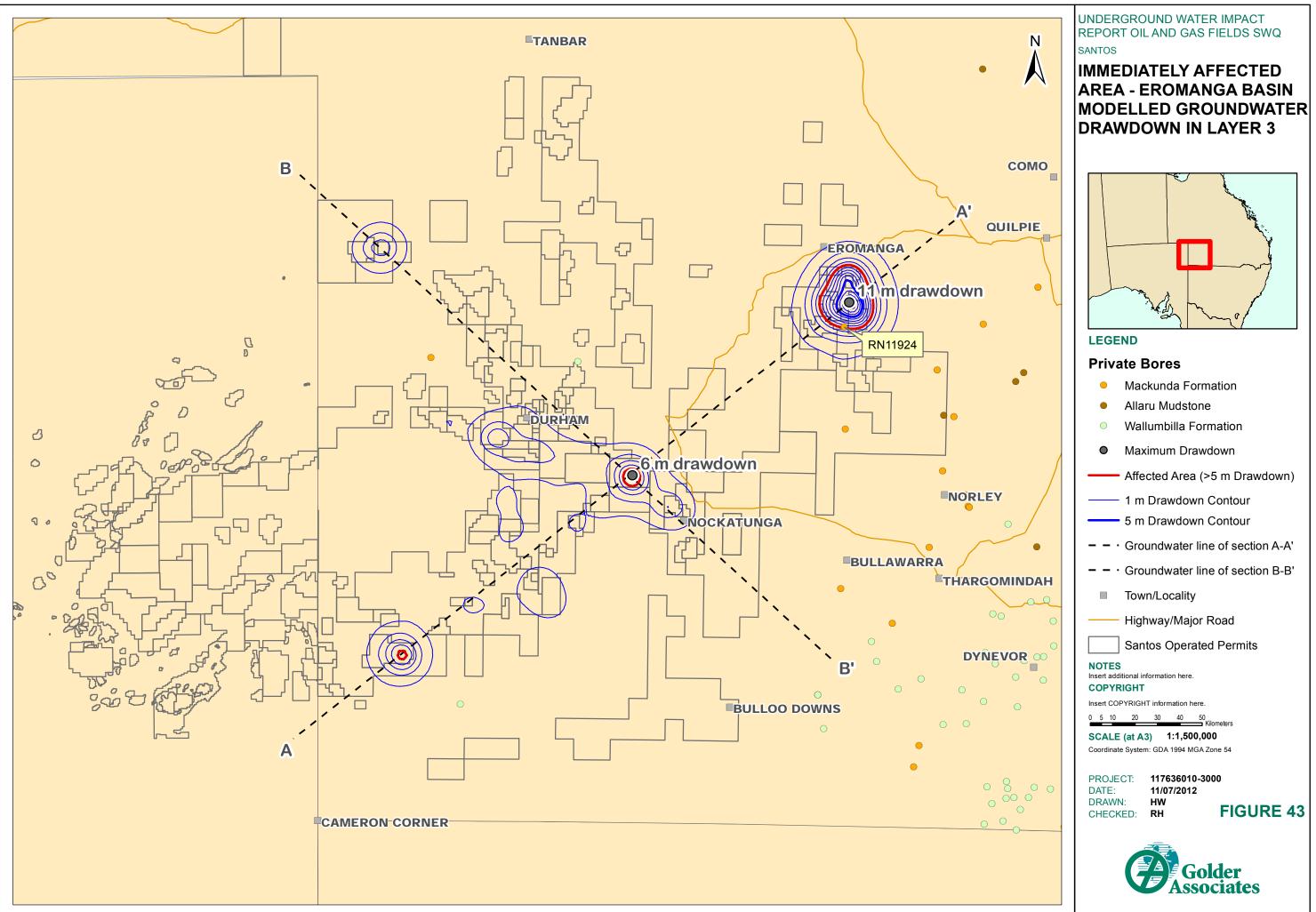


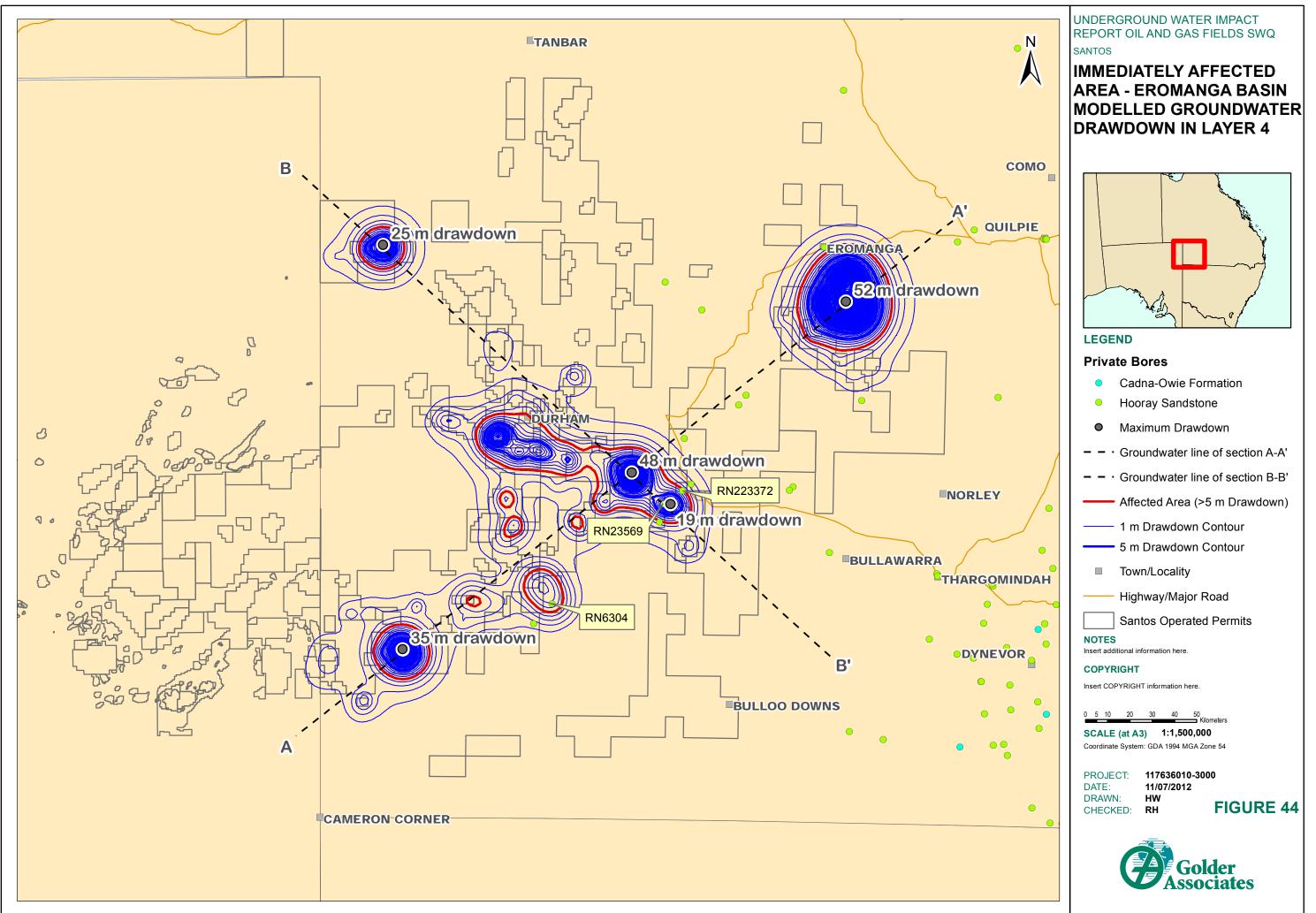

Figure 41: Cooper Basin Model Initial Conditions: Observed verses Modelled Groundwater Level

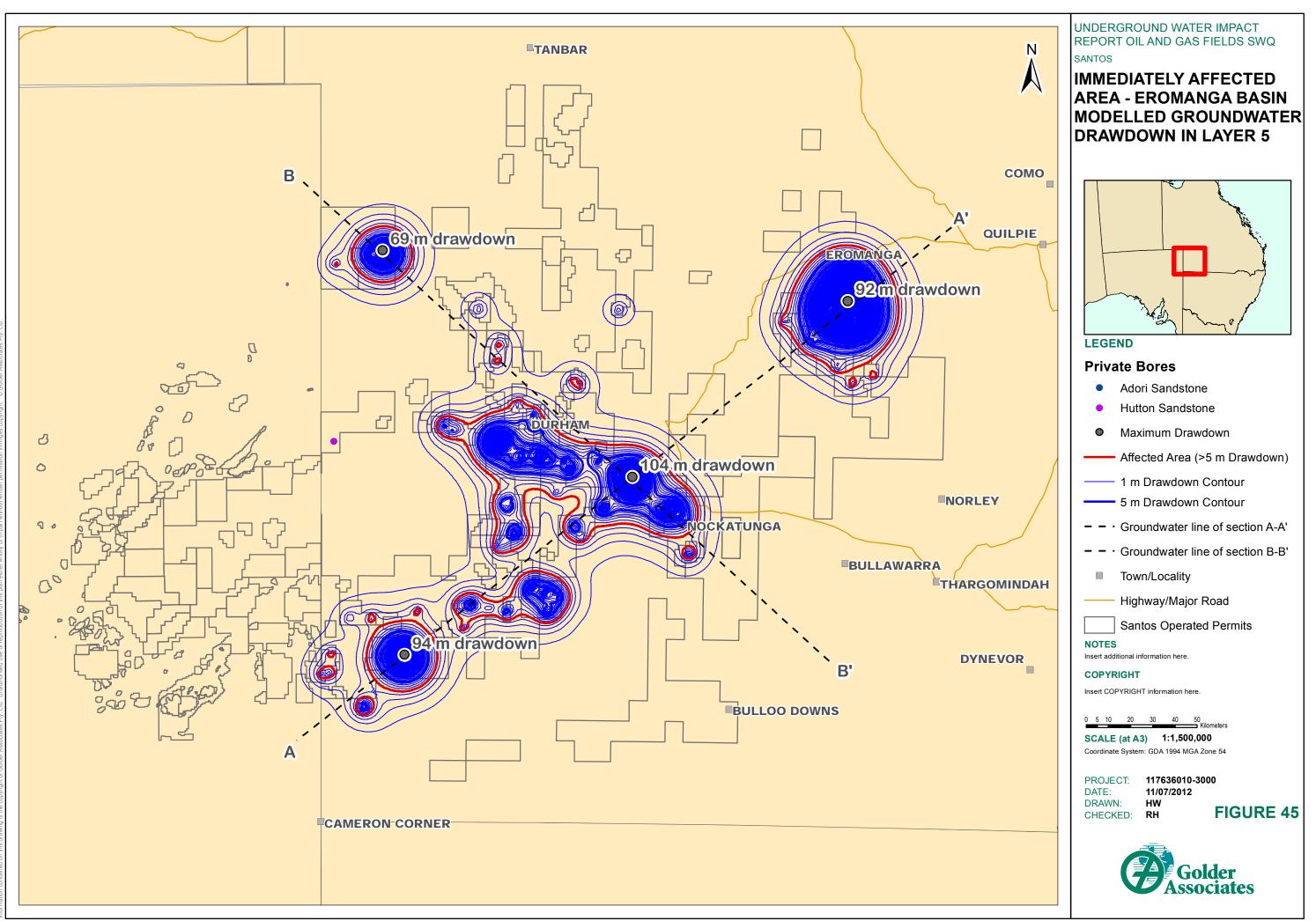
## Table 28: Cooper Basin: Tabulated Observed verses Modelled Groundwater Level

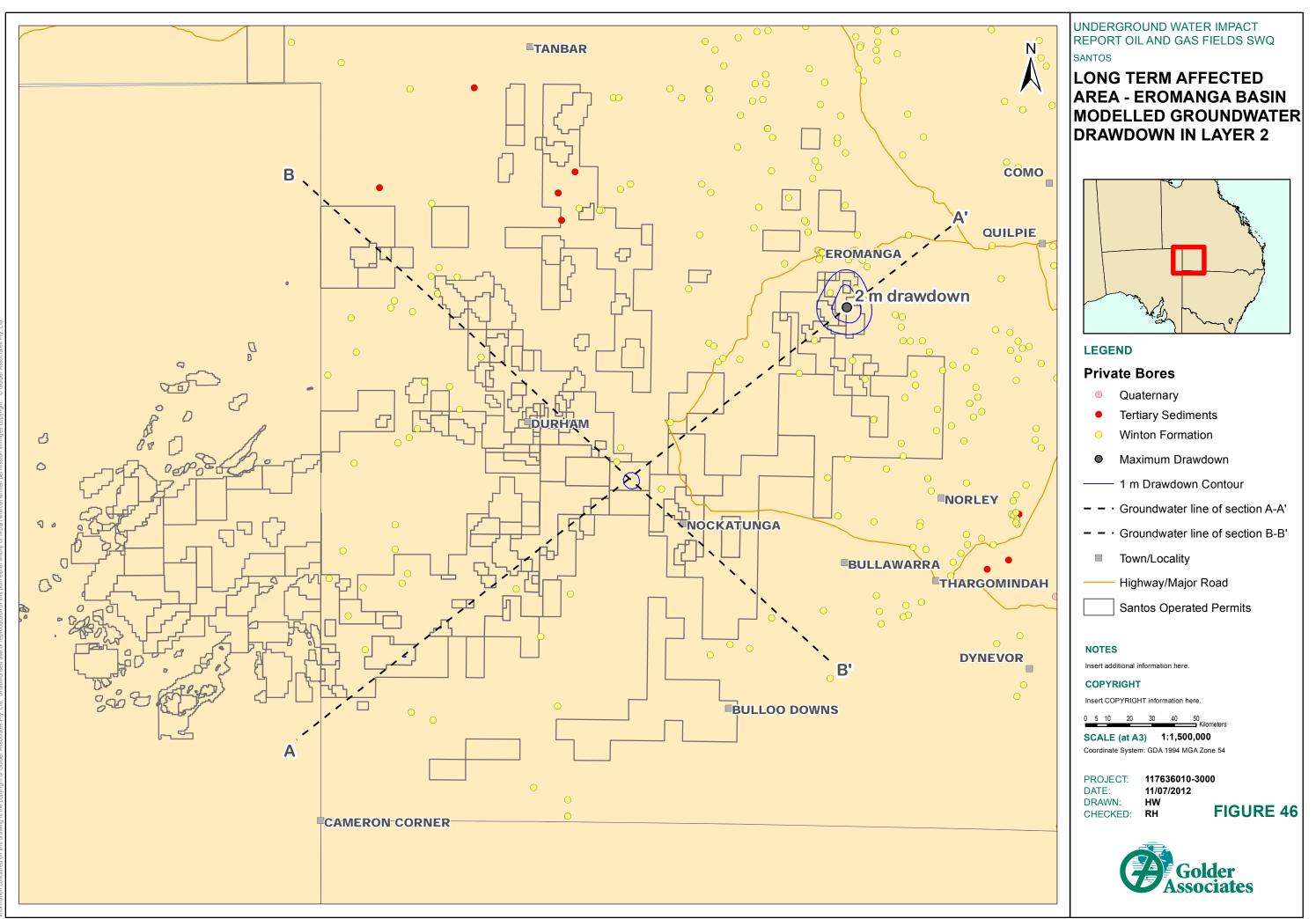

| Calibration Target Modelled Groundwater<br>Level (mAHD) |     | Observed Groundwater<br>Level (mAHD) | Residual (m) |
|---------------------------------------------------------|-----|--------------------------------------|--------------|
| OBH Layer 1                                             | 317 | 315.0                                | 2            |
| OBH Layer 2                                             | 322 | 325.0                                | -3           |
| OBH Layer 3                                             | 322 | 315.0                                | 7            |

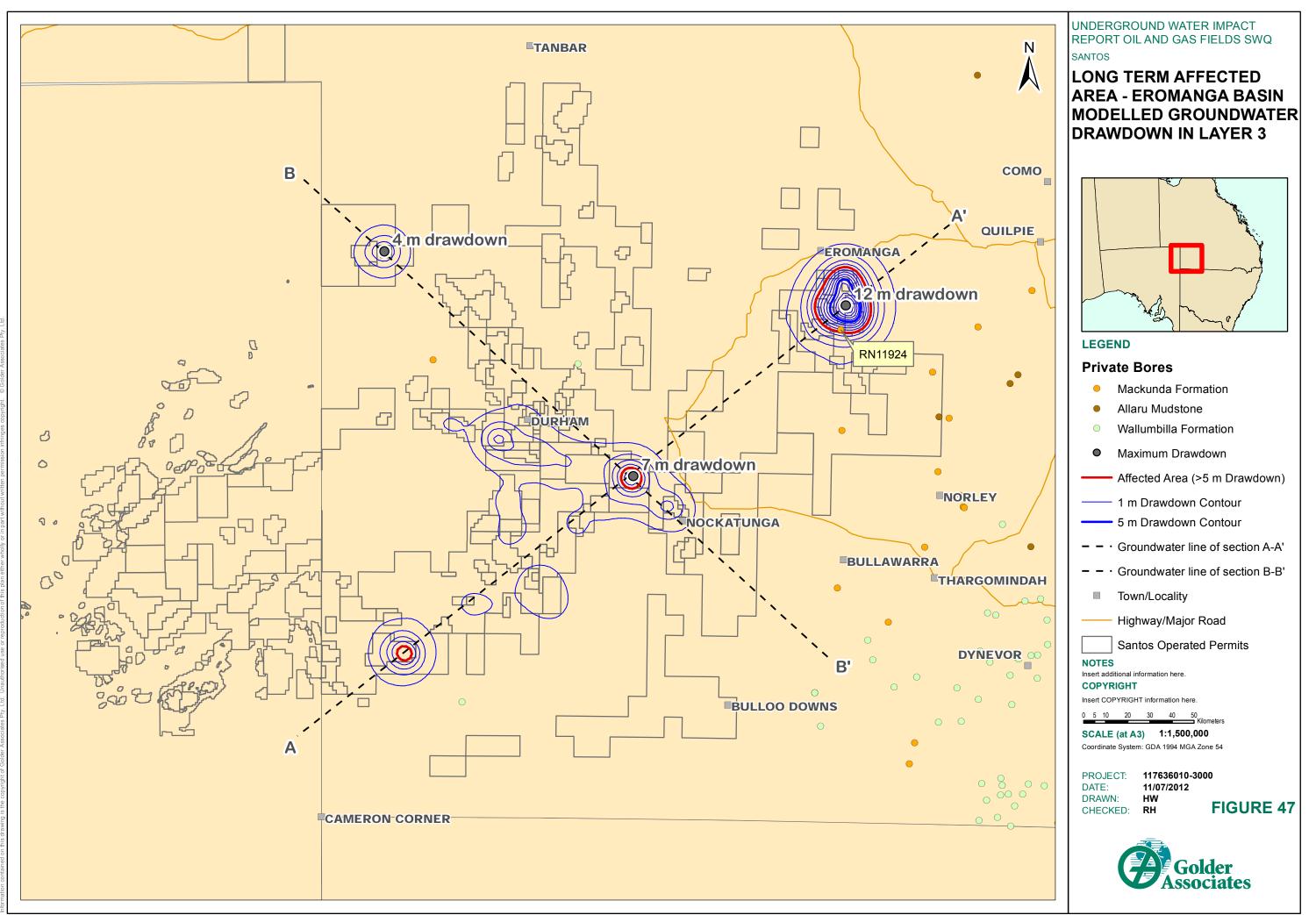

Both models were considered to be well calibrated and able to demonstrate the potential impact of pumping.

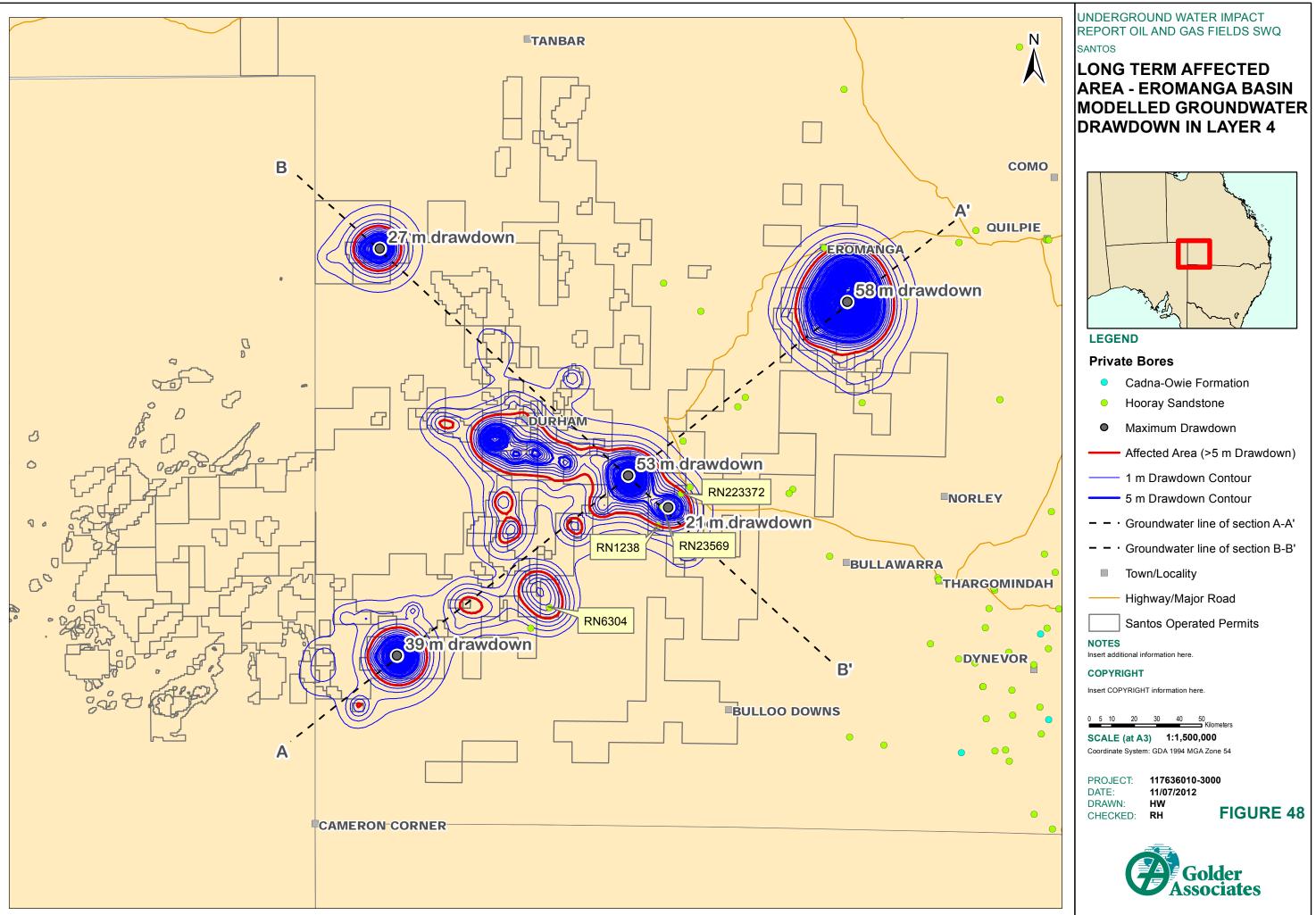
# 7.3 Calculated Impact of in the Eromanga Basin

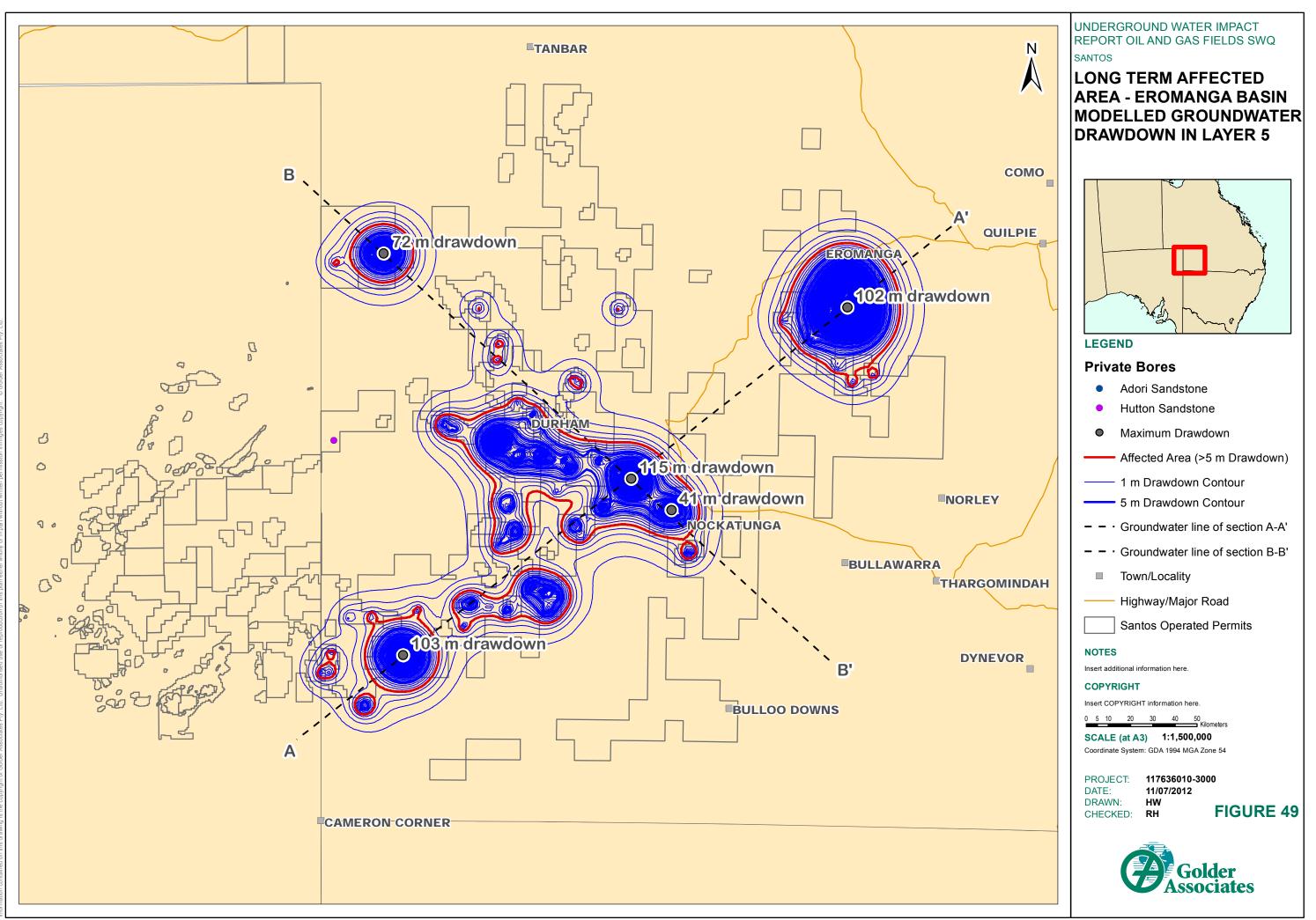

The calibrated model was run in steady state to give a conservative, worst case scenario for the *immediately affected area* and *long term affected area*. The calculated drawdown for each layer is given in Figure 42 to Figure 45 (Note: the contours shown are one metre contours).



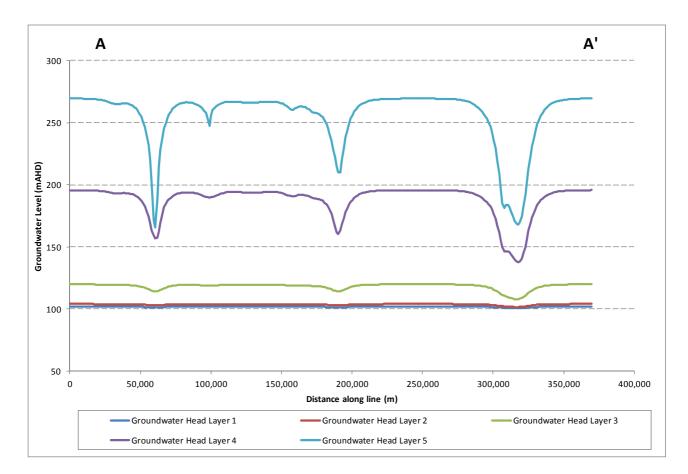


File Location: J:hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE/GIS/Projects/UWIRupdate/117636010\_3000-rev2-F43-draft\_A3.mxd














Groundwater level plots in cross section across the calculation area, are shown in Figure 50 and Figure 51.

Figure 50: Eromanga Basin: Calculated Groundwater Levels in Immediately Affected Ares (Section A-A' and B-B')



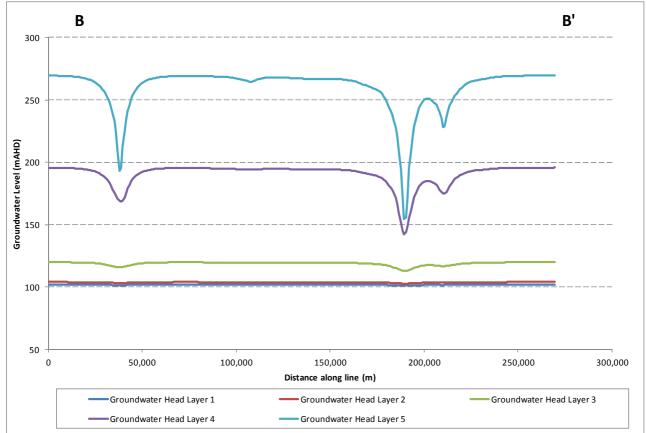


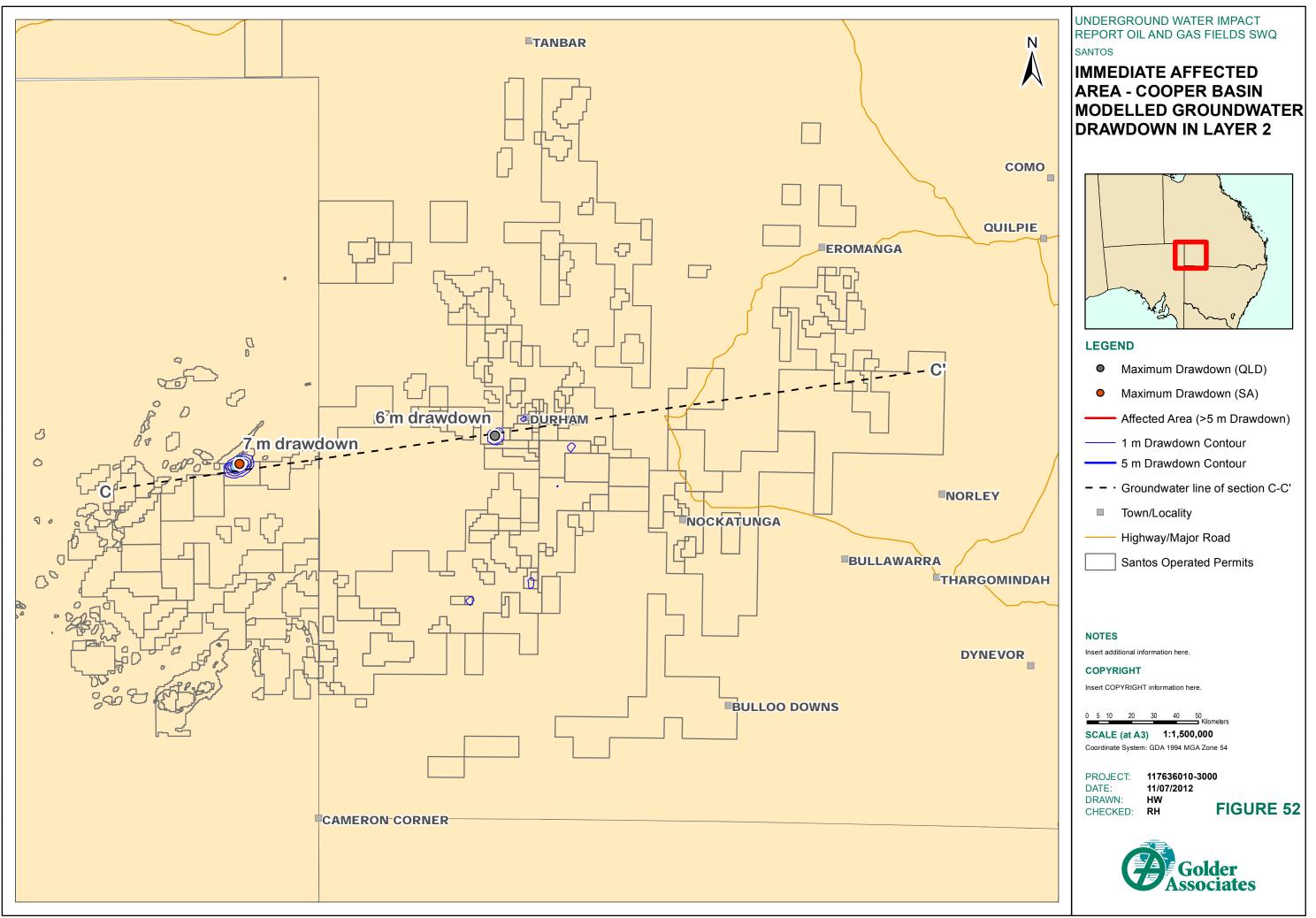


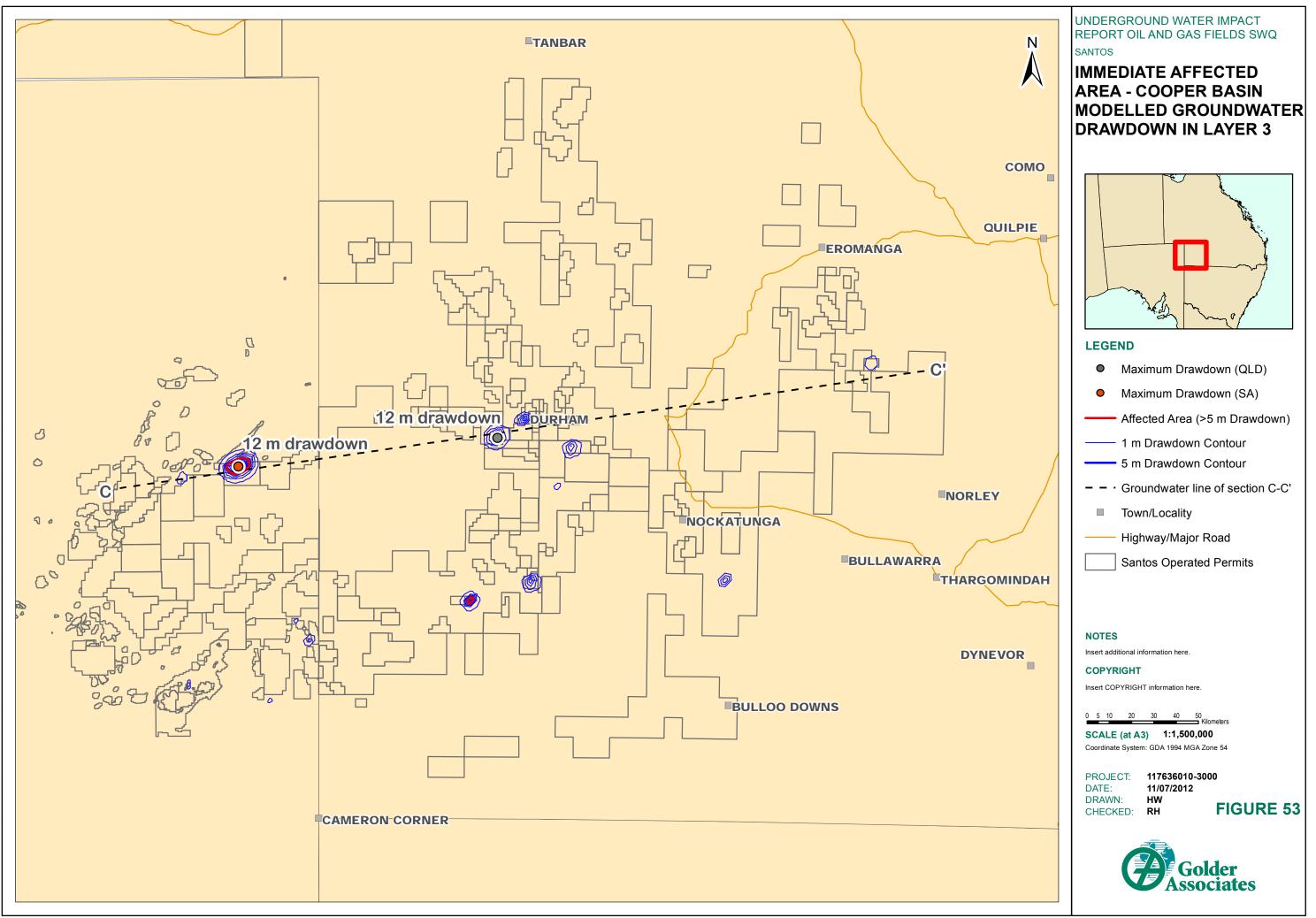

Figure 51: Eromanga Basin: Calculated Groundwater Levels in Long Term Affected Ares (Section A-A' and B-B')

The maximum calculated drawdown in each layer along these lines of section is shown in Table 29.

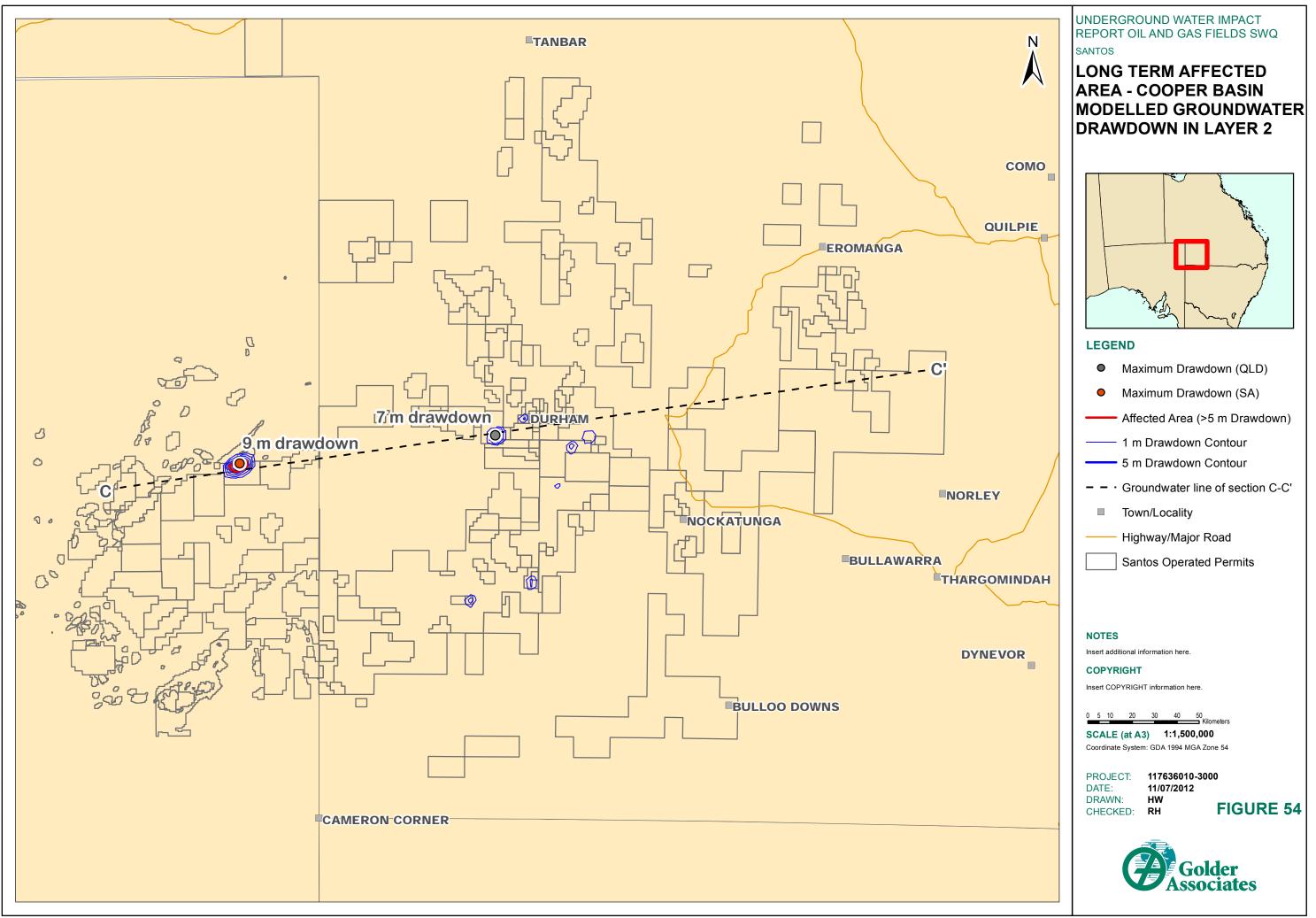
| Layer<br>Number | Laura Dagariatian                                                                           | Maximum Drawdown in the Eromanga Basin (m) |                            |  |  |
|-----------------|---------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|--|--|
|                 | Layer Description                                                                           | Immediately Affected<br>Area               | Long Term Affected<br>Area |  |  |
| 2               | Quaternary, Tertiary and Winton<br>Formation                                                | 2                                          | 2                          |  |  |
| 3               | Alluru, Toolebuc and Wallumbilla<br>Formations                                              | 11                                         | 12                         |  |  |
| 4               | Cadna-Owie Formation and Hooray Sandstone                                                   | 52                                         | 58                         |  |  |
| 5               | Westbourne, Adori and Birkhead<br>Formations / Hutton Sandstone and<br>Poolowanna Formation | 104                                        | 115                        |  |  |

| Table 29: Calculated maximum | n drawdown along lines of section |
|------------------------------|-----------------------------------|
|                              |                                   |


Groundwater level and pressure calculations from the software indicated limited propagation of drawdown (or pressure decline, in confined aquifers) up to Layer 2, even under steady state conditions. In reality, this would be anticipated to be less than that calculated due to the *intermittent and time-limited* operation of the extraction wells, as well as the increased spatial distribution of the extraction over a number of wells an order of magnitude higher than that used in this calculation.


Figure 42 to Figure 45 also show the spatial distribution of the greater than 5 m drawdown to be limited to the vicinity of the most clustered extraction wells.

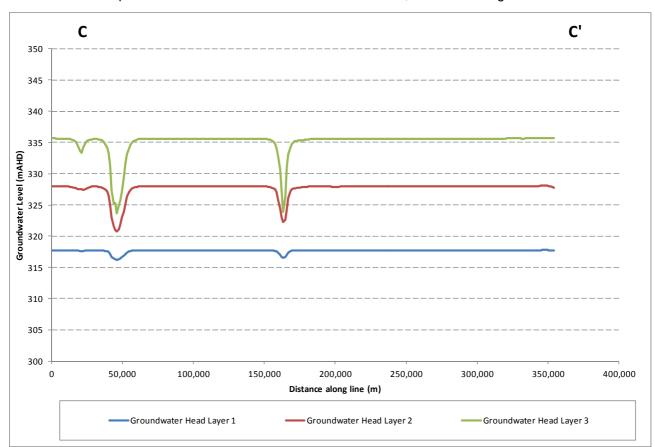
# 7.4 Calculated Impact on the Cooper Basin


The calibrated model was run in steady state to give a conservative the worst case scenario. The calculated drawdown for each layer is given in Figure 52.








File Location: J/hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\UWIRupdate\117636010\_3000-rev2-F53-draft\_A3.mxd





File Location: J/hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE/GIS/Projects/UWIRupdate/117636010\_3000-rev2-F55-draft\_A3.mxd





Groundwater level plots in cross section across the calculation area, as shown in Figure 56.

Figure 56: Cooper Basin: Modelled Immediate Affected Area Groundwater Levels in Cross Section C-C'





## Figure 57: Cooper Basin: Modelled Long Term Affected Area Groundwater Levels in Cross Section C-C'

The maximum calculated pressure decline in each layer along these lines of section is shown in Table 30.

| Layer<br>Number |                                                  | Maximum Drawdown (m) along line C-C' |                            |  |  |
|-----------------|--------------------------------------------------|--------------------------------------|----------------------------|--|--|
|                 | Layer Description                                | Immediately Affected<br>Area         | Long Term Affected<br>Area |  |  |
| 2               | Layer 2 - Tinchoo and Arraburry<br>Formations    | 7                                    | 9                          |  |  |
| 3               | Layer 3 – Toolachee to<br>Patchawarra Formations | 12                                   | 16                         |  |  |





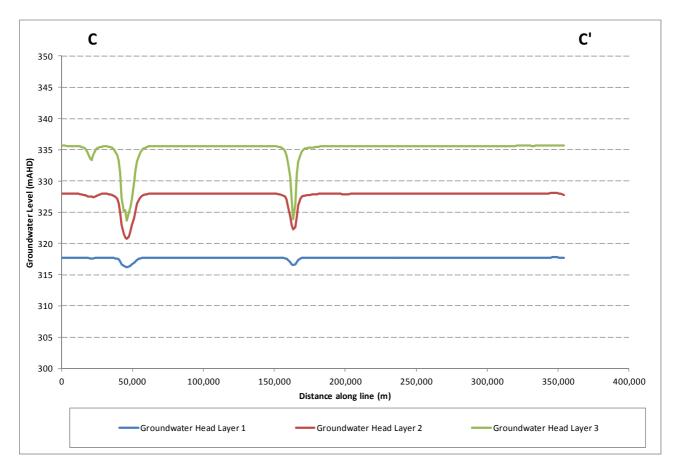



Figure 56 and Table 30 shows that the calculated pressure decline at the top of the Cooper Basin stratigraphy is very small in relation of the abstraction assigned at just 38 wells. No impact is likely to propagate above the top of the Tinchoo and Arraburry Formations due to extraction in the Toolachee to Patchawarra Formations.

The impact of extraction from the wells in Layer 3 of the model is also considered minimal, however, as this gives a worst case scenario, as actual extraction is geographically spread over a greater number of wells, the simulation was retained using this methodology.





# 7.5 Summary of Key Points from Analytical Calculations

Key points from the analytical calculation are:

- The calculated immediately affected area in the Eromanga Basin extends to include three private bores potentially extracting from the Cadna-Owie Formation or Hooray Sandstone (model layer 4). These are: RN223372, RN23569 and RN6304 (Figure 44);
- An additional single private bore was calculated as being within the long term affected area also
  potentially extracting from the Cadna-Owie Formation or Hooray Sandstone. This is bore: RN1238
  (Figure 48);
- The calculated immediately affected area and long term affected area both included a single private bore potentially extracting form the Mackunda Formation (model layer 3) as shown in Figure 43 and Figure 47. This is private bore RN11924;
- The impact of extraction in the Cooper Basin does not affect areas beyond the assumed extraction well locations at the top of the Cooper Basin stratigraphy. These impacts can therefore be discounted from the analysis of the overlying Eromanga Basin; and
- The maximum predicted drawdown in the Eromanga Basin stratigraphy, in the strata directly underlying the unconfined Tertiary and Quaternary strata, is 2 m in steady state conditions. This is a worst case scenario due to the limited number of extraction well locations used in the calculation and the steady state analysis conditions applied in the computation. The impact on the Tertiary and Quaternary strata will therefore be less than 2 m.
- A maximum pressure decline of 52 m is estimated for the modelled unit containing the Cadna-Owie Formation and Hooray Sandstone, the 5 m contour line does not significantly extend outside of the tenements and only two private bores targeting the Cadna-Owie Formation and Hooray Sandstone have been identified within these 5 m (note that the target formation for those bores will need to be clarified).
- A maximum pressure decline of 115 m is estimated for the long term model unit comprising the Westbourne Formation, Adori Sandstone, Birkhead Formation, Hutton Sandstone and Poolowanna Formation. The 5 m drawdown contour line does not significantly extend outside of the tenements and no private bores targeting those formations.
- The Cooper Basin model was run to include extraction in South Australia. With the given hydraulic parameters in this model, no impact was observed in the Eromanga Basin due to extraction from the Cooper Basin in South Australia.

# 7.6 Sensitivity Analysis

Sensitivity analysis was undertaken on the calculations to investigate the confidence in the results. Two types of sensitivity analysis were undertaken:

- Hydraulic Parameter sensitivity analysis involving increasing the vertical hydraulic conductivity of the seal rock (underlying aquitard cap rock of the extraction targets) by an order to magnitude); and
- Extraction scenario sensitivity analysis involving the addition of extraction in South Australia, to investigate the potential for cumulative impacts form both states to influence the result for the QLD extractions alone).

All other input parameters to the model remained the same as the groundwater impact estimation scenario. Each is dealt with individually in the following sections.





# 7.6.1 Hydraulic Parameter Sensitivity Analysis

Analysis of the sensitivity of the groundwater impact estimation scenario result to changes in the vertical hydraulic conductivity of the seal layer was undertaken. To provide a conservative approach to sensitivity analysis, the vertical hydraulic conductivity was *increased* by an order of magnitude, as follows:

- HPSA1: Hydraulic Parameter Sensitivity Analysis on the Cooper Basin: Layer 2 (lower portion of the Tinchoo and Arraburry Formation) vertical hydraulic conductivity increased to 1x10<sup>-3</sup> m/d; and
- HPSA2: Hydraulic Parameter Sensitivity Analysis on the Eromanga Basin: Layer 3 (the grouped layer consisting of the early to late Cretaceous Mackunda, Allura Mudstone, Toolebuc Formation and Wallumbilla Formation) vertical hydraulic conductivity increased to 1x10<sup>-1</sup> m/d.

Recalibration of the steady state analysis was necessary in both cases. This involved altering the flux at the top of the model to achieve representative initial steady state groundwater levels in the model.

#### 7.6.2 Extraction Sensitivity Analysis

In addition to the hydraulic parameter sensitivity analysis, the potential impact of extraction from Santos' SA operations was investigated. This was possible only for the Eromanga Basin as the deeper Cooper Basin extractions do not extend into South Australia.

The following scenario was calculated:

**ESA1:** Extraction Sensitivity Analysis on the Eromanga Basin: inclusion of all Santos' oil and gas extraction within the Eromanga Basin included in the analysis,

The extraction rate was altered from the predictive model to allow for the addition of South Australia wells. The following extraction rates were used:

- Eromanga Basin QLD plus SA model immediate affected area extraction rate (equivalent to the last 3 years average extraction) of 25.5 m<sup>3</sup>/day for each representative well used in the model; and
- Eromanga Basin QLD plus SA model long term affected area extraction rate (equivalent to the last 3 years average extraction) of 28.5 m<sup>3</sup>/day for each representative well used in the model.

All other input parameters were the same as the predictive model.

## 7.6.3 Sensitivity Analysis Steady State Calibration

The same target initial groundwater conditions used in the groundwater impact estimation scenario to calibrate the sensitivity analysis steady state calculations. Results from the final calibrated steady state calculations for all sensitivity scenarios are tabulated in Table 31 and plotted in Figure 58.

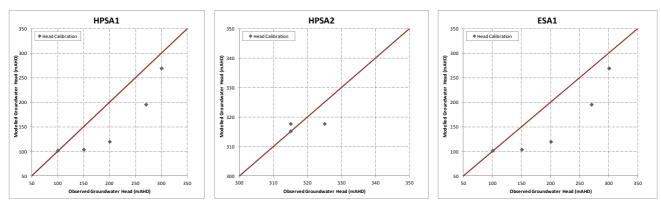
| Model Layer (and modelled groundwater<br>level [mAHD]) |              |              | Obser<br>Groundwat<br>(mAH | er Level        | Sensitivity Analysis versus<br>Observed Groundwater Level<br>Residual (m) |       |      |
|--------------------------------------------------------|--------------|--------------|----------------------------|-----------------|---------------------------------------------------------------------------|-------|------|
| HPSA1                                                  | HPSA2        | ESA1         | Eromanga<br>Basin          | Cooper<br>Basin | HPSA1                                                                     | HPSA2 | ESA1 |
| Layer 1: 102                                           | Layer 1: 315 | Layer 1: 102 | 100                        | 315             | 2                                                                         | 0     | 2    |
| Layer 2:104                                            | Layer 2: 318 | Layer 2:104  | 150                        | 325             | -46                                                                       | -7    | -46  |
| Layer 3:120                                            | Layer 3: 318 | Layer 3:120  | 200                        | 315             | -80                                                                       | 3     | -80  |
| Layer 4: 196                                           | -            | Layer 4: 196 | 270                        | -               | -74                                                                       | -     | -74  |
| Layer 5: 270                                           | -            | Layer 5: 270 | 300                        | -               | -30                                                                       | -     | -30  |

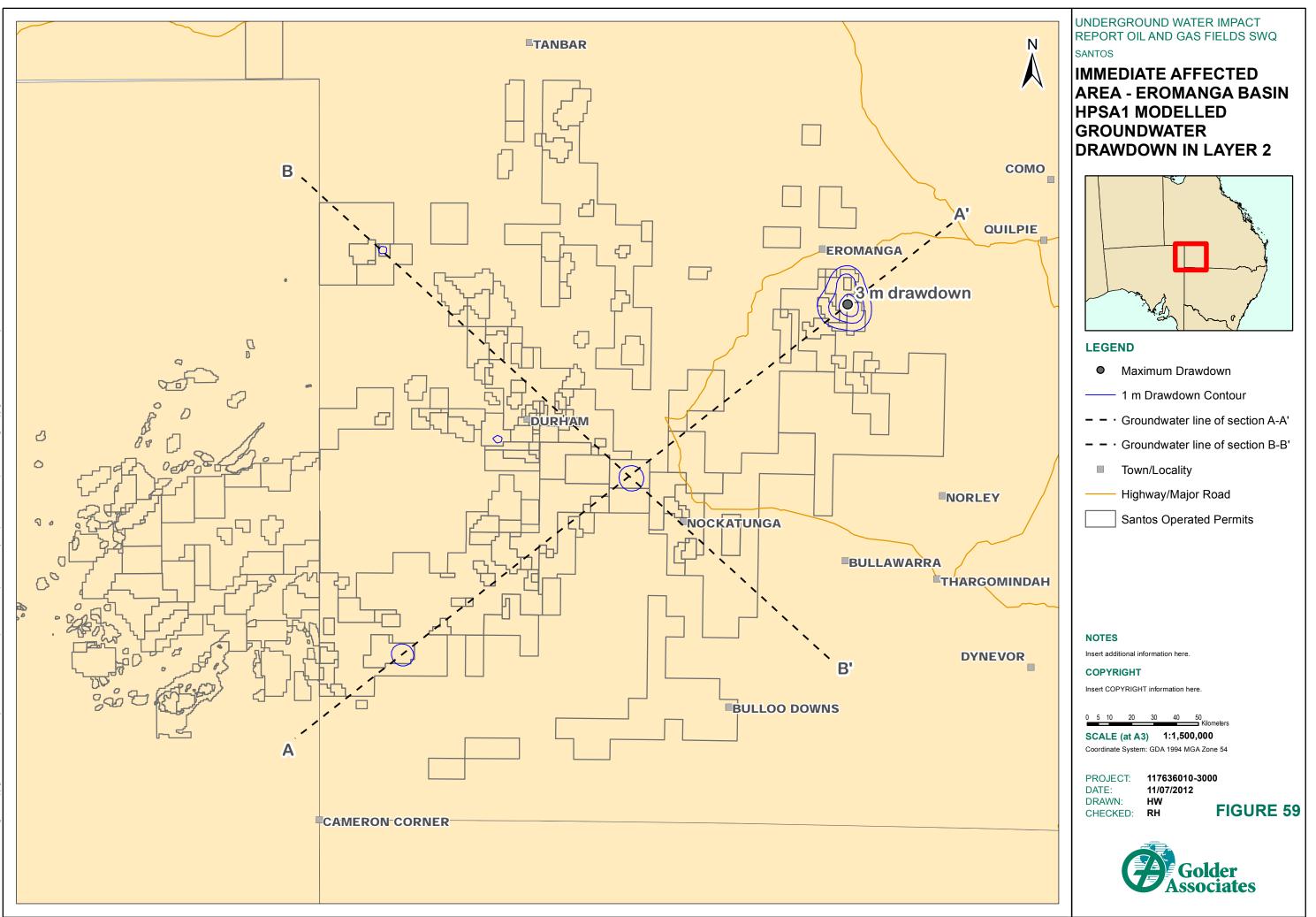
#### Table 31: Sensitivity Analysis Calibration Results

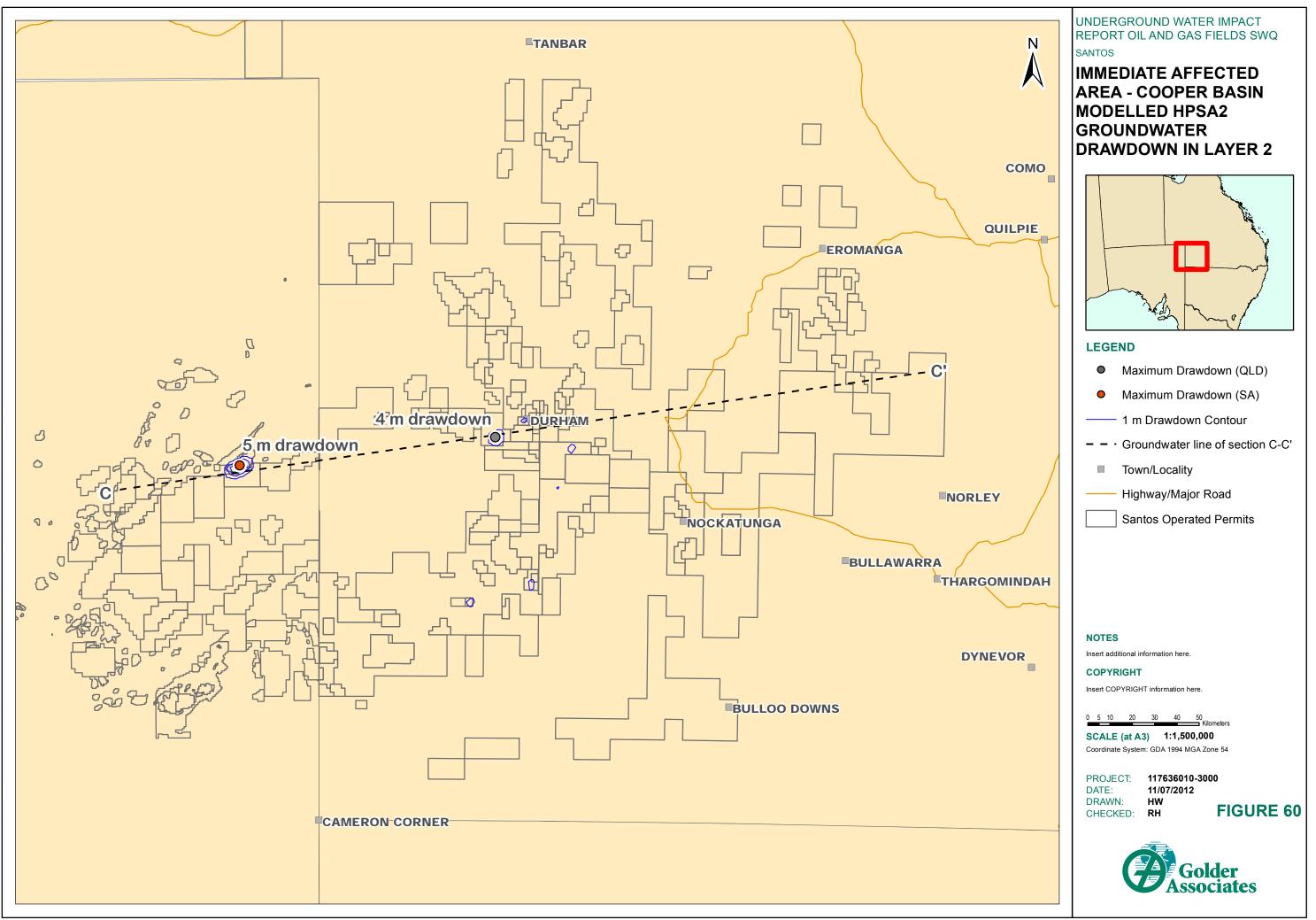


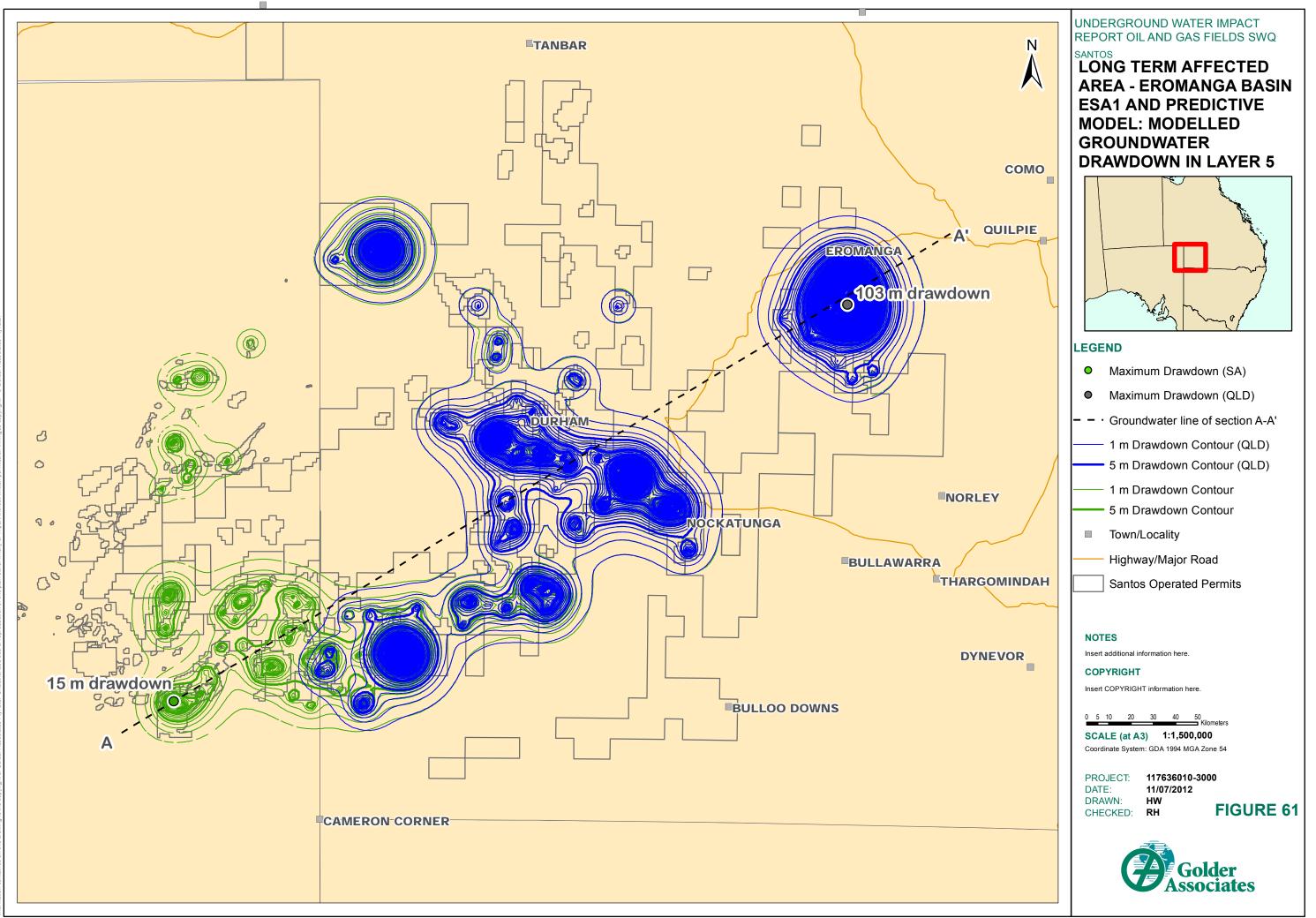


The calibration plot of modelled groundwater level verses observed for all sensitivity models is show in Figure 58.





Figure 58: Plot of Sensitivity Analysis Steady State Calibration


These calibrations were considered suitable to conduct the sensitivity analysis modelling.


# 7.6.4 Results of Sensitivity Analysis Modelling

The calibrated models were run in steady state to give a conservative, worst case scenario. The calculated drawdown for each layer is given in Figure 59 to Figure 65 (Note: the contours shown are one metre contours).











Α Α' 170 150 **Groundwater Level (mAHD)** 110 00 70 50 50,000 100,000 150,000 250,000 300,000 400,000 0 200,000 350,000 Distance along line (m) -Groundwater Head Layer 1 Groundwater Head Layer 2 - Groundwater Head Layer 3 Groundwater Head Layer 4 Groundwater Head Layer 5 B' В 170 150 **Groundwater Level (mAHD)** 110 00 70 50 50,000 100,000 150,000 200,000 250,000 300,000 0 Distance along line (m)

Groundwater level plots in cross section across the calculation area for the sensitivity analysis are shown in the following figures.

Figure 62: HPSA1: Immediately Affected Groundwater Cross Section A-A' and B-B'



- Groundwater Head Layer 3

Groundwater Head Layer 1

Groundwater Head Layer 4

Groundwater Head Layer 2

Groundwater Head Layer 5



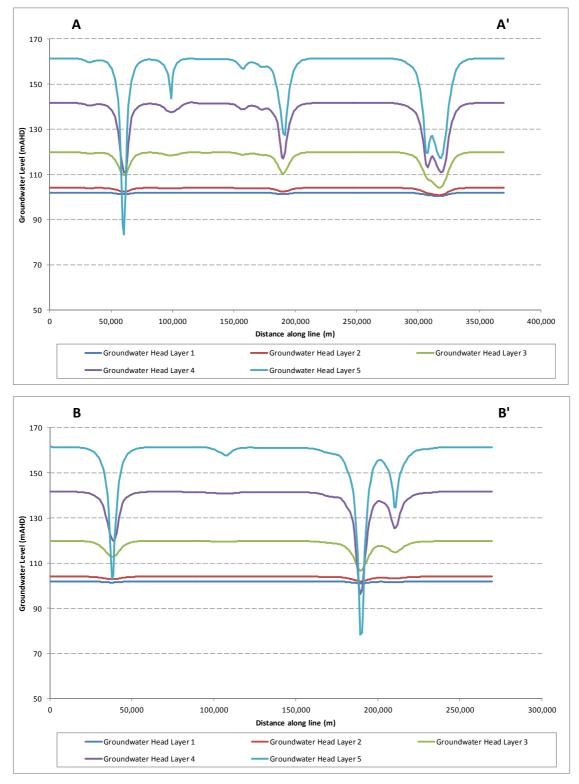



Figure 63: HPSA1: Long Term Affected Groundwater Cross Section A-A' and B-B'





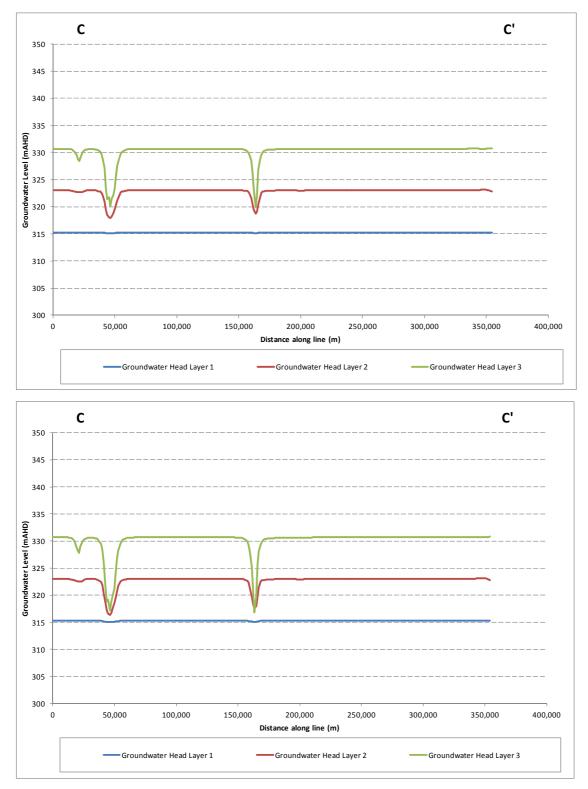
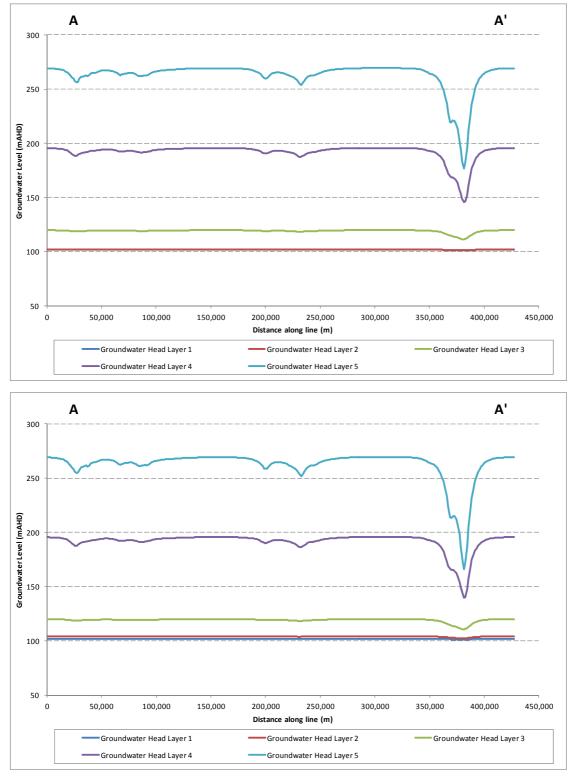




Figure 64: HPSA2: Immediately and Long Term Affected Groundwater Cross Section C-C'





#### Figure 65: ESA1: Immediately and Long Term Affected Groundwater Cross Section A-A'

The maximum calculated pressure decline in each layer along these lines of section is shown in Table 32.



|         | Maximum Calculated Drawdown along line(s) of section (m) |                       |                         |                       |                         |                       |  |  |
|---------|----------------------------------------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|--|--|
| Model   | HP                                                       | SA1                   | HP                      | SA2                   | ES                      | ESA2                  |  |  |
| Layer   | Immediately<br>Affected                                  | Long Term<br>Affected | Immediately<br>Affected | Long Term<br>Affected | Immediately<br>Affected | Long Term<br>Affected |  |  |
| Layer 1 | 1                                                        | 2                     | 0                       | 0                     | 1                       | 1                     |  |  |
| Layer 2 | 3                                                        | 3                     | 5                       | 7                     | 2                       | 2                     |  |  |
| Layer 3 | 14                                                       | 16                    | 11                      | 14                    | 8                       | 9                     |  |  |
| Layer 4 | 41                                                       | 45                    | -                       | -                     | 50                      | 56                    |  |  |
| Layer 5 | 75                                                       | 83                    | -                       | -                     | 92                      | 103                   |  |  |

#### Table 32: Sensitivity Analysis Maximum Drawdown along lines of section

#### 7.7 Summary of Key Points from Analytical Calculations

14

41

75

A summary of the modelled drawdown for the predictive modelling and sensitivity analysis modelled is given in Table 33 and Table 34.

| Table 33: Summary of Predictive and Sensitivity Analysis Drawdown for the Eromanga Basin |                     |                |         |                                |       |      |  |
|------------------------------------------------------------------------------------------|---------------------|----------------|---------|--------------------------------|-------|------|--|
|                                                                                          |                     | nediate Drawdo | own (m) | Maximum Long Term Drawdown (m) |       |      |  |
| Model Layer                                                                              | Predictive<br>Model | HPSA1          | ESA1    | Predictive<br>Model            | HPSA1 | ESA1 |  |
| Layer 1                                                                                  | 1                   | 1              | 1       | 1                              | 2     | 1    |  |
| Layer 2                                                                                  | 2                   | 3              | 2       | 2                              | 3     | 2    |  |

8

50

92

12

58

115

16

45

83

9

56

103

#### T-1-1-00-0 .

| Table 34: Summary of Predictive and Sensitivity Analysis Drawdown for the Coop | oer Basin |
|--------------------------------------------------------------------------------|-----------|
|--------------------------------------------------------------------------------|-----------|

| Model Layer | Maximum Immediat | e Drawdown (m) | Maximum Long Term Drawdown (m) |       |  |
|-------------|------------------|----------------|--------------------------------|-------|--|
| Model Layer | Predictive Model | HPSA2          | Predictive Model               | HPSA2 |  |
| Layer 1     | 2                | 0              | 2                              | 0     |  |
| Layer 2     | 7                | 5              | 9                              | 7     |  |
| Layer 3     | 12               | 11             | 15                             | 14    |  |

Key points from the sensitivity analysis analytical calculation are:

11

52

104

- There is only limited variation between the sensitivity analysis results and the predictive model results. This gives confidence in the predictive model results in terms of potential impact from the Queensland extraction only model and the Queensland plus South Australia model run; and
- Eromanga Basin sensitivity analysis HPSA1 (increasing the vertical hydraulic conductivity of the seal rock [Layer 3] above the target extraction zone) in the Eromanga Basin did not significantly alter the model estimated results:

In Layer 2 (the Tertiary Sediments and Winton Formation aguifers) drawdown in increased by 1 m in both the immediately and long term affected areas (from a maximum drawdown of 2 m to 3 m):

In Layer 3 (the over burden consisting of the Mackunda Formation to Wallumbilla Formation directly overlying the Cadna-Owie Formation) maximum drawdown was increased by 3 m (from a maximum



Layer 3

Layer 4

Layer 5



drawdown of 11 to 14 m) in the immediately affected area and by 4 m (from a maximum drawdown of 12 to 16 m) in the long term affected area;

- Cooper Basin sensitivity analysis HPSA2 (increasing the vertical hydraulic conductivity of the seal rock [Layer 2] above the target extraction zone) in the Cooper Basin did *not* significantly alter the model estimated results:
  - In both the immediate and long term affected areas, the maximum drawdown decreased by between 1 to 2 m from the predictive model.

# 8.0 POTENTIAL IMPACTS

# 8.1 Risk Assessment Process

Potential impacts related to water from pumping activities over the oil and gas fields have been systematically evaluated using a risk based assessment framework. This section provides the approach followed for the risk assessment performed for the water management activities associated with the oil and gas operations in the Cooper Basin.

#### **Drivers for Risk Management:**

Risk is to be managed to generally control two major elements:

- The impact of the activities on potential receptors; potential receptors being:
  - Environmental values described in Section 4.4 and particularly groundwater dependant ecosystems and river baseflow (watercourse springs),
  - The local community through town or individual domestic water supplies, recreational areas and activities, agricultural activities relying in groundwater and industrial groundwater users; and
  - Site workers (public health risks);
- The regulatory risks:
  - Adherence to the specific conditions for the operations (EAs); and
  - Adherence to the intent of the applicable legislation.

#### **Risk Assessment Process**

A risk is defined by the Australia/New Zealand Standard for Risk Management (AS/NZS 4360:2004) as *the chance of something happening that will have an impact on objectives*. It is measured in terms of a combination of the consequences of an event, and the likelihood of an event occurring.

The potential risks and their impacts to groundwater and environmental values associated to the current operations have been identified. The potential risks were evaluated and assigned a risk ranking according to the likelihood of the risk occurring, and the associated consequences (Table 35).

The matrix used to evaluate the risk consequences is the standard *Santos EHSMS risk assessment matrix* (developed in accordance with ANZ 4360:2004) presented in Appendix B, which includes a description of the categories of consequences considered, and a description of the relative magnitude of consequences for each category.

An analysis of the likelihood and consequence for each risk resulted in the risk issue being assigned a risk tolerance, *likelihood* and *consequence* are defined as:

The likelihood is the probability for an event to occur,





The consequence is the effect that the event will have on different receptors or parameters. The consequence can be to human health and safety, to the natural environment and to the Project reputation. Consequences can also be of financial matters.

Category between one (tolerable) and five (least tolerable), according to the matrix presented in

Table 36 and the hierarchy of risk analysis presented in Figure 66. A risk issue assessed as Category 1 is considered to be tolerable in its current state, without the need for mitigation actions to reduce the risk; these generally represent risk issues that are either very unlikely to occur, or that would result in a minor or negligible consequence if they do occur. Risk issues assessed as Category 2 to 5 may still be tolerable but require further evaluation of potential contingency actions or mitigation measures.

The development and implementation of management and mitigation measures by Santos have allowed the re-evaluation of the level of some of the risks.

#### Table 35: Risk Assessment Definitions (Santos)

|                        | Consequen                                                                  | Consequences                                                                              |                                                                                                                |                                                                                                                                     |                                                                                                                            |  |
|------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Consequence<br>Type    | Negligible                                                                 | Minor                                                                                     | Moderate                                                                                                       | Major                                                                                                                               | Critical                                                                                                                   |  |
| Health and<br>Safety   | Minor injury -<br>first aid<br>treatment                                   | Injury<br>requiring<br>medical<br>treatment<br>with no lost<br>time                       | Injury<br>requiring<br>medical<br>treatment,<br>time off work<br>and<br>rehabilitation                         | Permanent<br>disabling injury<br>and/or long term off<br>work                                                                       | Fatality                                                                                                                   |  |
| Natural<br>Environment | Negligible<br>impact.<br>Reporting<br>according to<br>routine<br>protocols | Impact on<br>fauna, flora<br>and/or<br>habitat.<br>Immediate<br>regulator<br>notification | Short term<br>impact on<br>sensitive<br>environmental<br>features.<br>Triggers<br>regulatory<br>investigation. | Long term impact<br>of regional<br>significance on<br>sensitive<br>environmental<br>features.<br>Regulatory<br>intervention/action. | Destruction of<br>sensitive<br>environmental<br>features.<br>Regulatory & high<br>level Government<br>intervention/action. |  |
| Reputation             | Little public<br>awareness<br>and no<br>concern. No<br>media<br>coverage   | Some impact<br>on business<br>reputation.<br>Adverse<br>news in local<br>media.           | Moderate to<br>small impact<br>on business<br>reputation.<br>Qld media<br>exposure.                            | Significant impact<br>on business<br>reputation and/or<br>national media<br>exposure.                                               | Critical impact on<br>business reputation<br>/or international<br>media exposure                                           |  |

#### Table 36: Santos Risk Matrix and Risk Tolerance Definition

|            |                                                                    |   |   | Consequence |     |    |   |
|------------|--------------------------------------------------------------------|---|---|-------------|-----|----|---|
|            |                                                                    |   | 1 | II          | III | IV | V |
| q          | Almost Certain<br>Is expected to occur<br>in most<br>circumstances | A | 2 | 3           | 4   | 5  | 5 |
| Likelihood | Likely<br>Could occur in most<br>circumstances                     | в | 1 | 3           | 3   | 4  | 5 |
|            | Possible<br>Has occurred here or<br>elsewhere                      | с | 1 | 2           | 3   | 3  | 4 |



|                                                        |   |   | C | Consequenc | е |   |
|--------------------------------------------------------|---|---|---|------------|---|---|
| Unlikely<br>Hasn't occurred yet<br>but could           | D | 1 | 1 | 2          | 2 | 3 |
| Remote<br>May occur in<br>exceptional<br>circumstances | E | 1 | 1 | 1          | 1 | 2 |

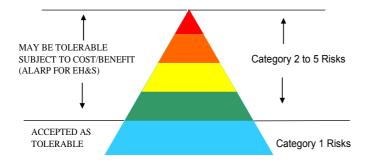



Figure 66: Hierarchy of Risk Tolerance (Santos EHSMS)

# 8.2 Identification of Risk to Environmental Values

The potential risk identification was undertaken following an operational approach (i.e. based on activities)

Operational risks include:

- Drilling, bore design, bore completion, hydraulic fracturing activities, and bore integrity of oil and gas exploration and production wells;
- Groundwater extraction associated with oil and gas operations;
- Produced water gathering, distribution, management, storage and disposal;
- Water treatment operations; and
- Other project infrastructures such as roads and camp services, irrigation and water supply.

Note: this section identifies generic risks and impacts *potentially* associated to oil and gas activities. The assessment against Santos specific operations is provided in Section 8.3.

# 8.2.1 Drilling, Well Installation and Well Integrity

#### Associated Risks

The primary risks associated with drilling, well installation and well integrity include:

- Creating an artificial connection between water-bearing formations that bypasses aquitards;
- Loss of drilling fluid into the formation (resulting in degradation of water quality);
- Contamination of deep aquifers, shallow aquifers, soil and surface water from the drilling fluids;



- Inappropriate control of artesian flows, if encountered; and
- Hydrocarbon and/or aquifer cross-flow or depletion from corrosion of un-cemented casing string sections by Permian oil or gas due to high levels of corrosive fluids.

The factors that traditionally contribute to these risks include inadequate design, construction and well head completion techniques for the wells, poor planning of drilling programmes, inappropriate drilling techniques and/or drilling and drilling fluid selection, and inappropriate abandonment methods.

#### **Potential Impacts**

The potential impacts associated with improper drilling, well installation, well integrity or borehole abandonment include depressurisation and/or cross-contamination of groundwater resources through leakage within the borehole, groundwater quality impacts resulting from loss of drilling fluid to the formation, and cross-contamination or depressurisation of water-bearing formations through inadequate control of flowing artesian conditions. In addition to groundwater impacts, mismanagement of flowing artesian conditions can result in water quality changes, erosion and surface water impacts from uncontrolled overland flow of artesian water into surface water courses.

The environmental values at risk from potential impacts related to drilling and well installation include:

- Human consumptive uses such as groundwater supply for drinking water and primary industry, which could be affected either through degradation of groundwater quality to a condition that is unsuitable for current uses, or depressurisation of water supply aquifers through inter-borehole leakage. Migration of saline water through leaky boreholes is a commonly observed impact from poor well completion or borehole abandonment techniques;
- Aquatic ecosystems, which could be affected by degradation of shallow aquifers that contribute baseflow to surface water features, or induced vertical leakage of water table aquifers resulting in reduced spring flow or baseflow contributions to aquatic ecosystems. Aquatic ecosystems would also be vulnerable to uncontrolled discharge of flowing artesian water, particularly where erosive scouring and increased sediment loads are involved.

## 8.2.2 Hydraulic Fracturing

#### **Associated Risks**

The risks associated with hydraulic fracturing processes are similar to those for drilling and well installations, as such:

- Loss of hydraulic fracturing fluid into the formation (resulting in potential degradation of water quality);
- Contamination of deep water table aquifer, soil and surface water from the storage and handling of hydraulic fracturing fluids at surface; and
- Health risks to aquatic and human receptors resulting from potential migration of hydraulic fracturing fluids components.

The factors that traditionally contribute to these risks include inadequate process design, constitution of the hydraulic fracturing fluids, and inappropriate management of hydraulic fracturing fluids and flowback at surface.

#### **Potential Impacts**

The potential impacts associated with hydraulic fracturing include contamination of the targeted aquifer from loss of hydraulic fracturing fluids to the formation and cross-contamination of groundwater resources through leakage within the borehole. In addition to groundwater impacts, mismanagement of fracturing fluids at surface during preparation or flowback can result in impacts to the water table aquifer and surface water system.



The environmental values potentially at risk from impacts related to drilling and well installation include:

- Human consumptive uses such as groundwater supply (deep aquifer or water table aquifer through uncontrolled release at surface) for drinking water and primary industry, which could be affected either through degradation of groundwater quality to a condition that is unsuitable for current uses;
- Soils and aquatic ecosystems, which could be affected by uncontrolled discharge of hydraulic fracturing fluids.

#### 8.2.3 Groundwater Extraction

#### **Associated Risks**

The risk associated with extraction of groundwater during production of oil and gas is a risk of depressurisation of the target aquifer and potential induced leakage from overlying and underlying aquifers.

#### **Potential Impacts**

Potential loss of available drawdown in bores and loss of artesian pressure

The potential loss of drawdown in bores would affect Water Act bores in a region largely relying on groundwater for water supply and cattle farming. Groundwater usage has been discussed in Section 5.9. The risk analysis takes into account the target depth of these bores and the estimated impact from groundwater extraction (Section 6.0). The assessment and results of the potential impacts in view of these characteristics are discussed in Section 8.3.

Subsidence

Subsidence is a potential impact only if associated to extraction of sufficient volumes of water to depressurise one or several aquifers to the extent that the vertical effective stress (i.e. the stress that is carried on the rock skeleton due to the weight of the overburden to the surface) may increase sufficiently to cause settlement.

Water quality changes

Water quality changes may occur through inter-aquifer flow where higher salinity water is leaking into a low salinity aquifer thus contaminating the receiving aquifer. To enable water quality changes through induced leakage, both the volume of groundwater extracted and the hydrogeological characteristics of the aquifers are to be considered. The assessment and results of the potential impacts in view of these characteristics are discussed in Section 8.3.

Loss of baseflow

This potential impact would only be possible if groundwater extraction associated with the oil and gas production would result in a drawdown within the water table aquifer and if the water table aquifer was providing baseflow to streams.

Impact on GAB springs

Impact on GAB springs would result from a pressure drop in GAB aquifers due to extraction of large volumes of water. The depressurisation would need to propagate a certain distance. In the case of Santos operations, the nearest GAB spring is located at 90 km from Santos tenements. The results from the groundwater impact assessment will provide the basis of the risk assessment (Section 8.3).

# 8.2.4 Water flooding

#### **Associated Risks**

The risks associated with the water flooding activities are the risk of creating inter-formation connectivities, degrading adversely water quality of the receiving aquifer and over-pressurising the receiving aquifer.

The risk analysis for water flooding was carried by URS (URS, 2010).



# **Potential Impacts**

The potential impact for migration of injection fluid out of the target formation into the aquifers would be due to wellbore integrity, fracture stimulation process of producing wells (see Section 8.2.2) and possible presence of conductive faults.

Degradation of the water quality in the receiving aquifer is dependent on the water quality used for water flooding and the potential for reactivity with the receiving aquifer.

Over-pressurisations may create fractures which could result in localised groundwater flows between formations.

# 8.2.5 Gathering and Water Disposal Systems

Gathering systems comprise the pipelines and associated infrastructure used to transport produced water from production wells. The water is transmitted to surface storage.

#### **Associated Risk Issues**

The primary risk issue associated with the gathering systems relevant to groundwater resources, is an uncontrolled release of produced water to the environment. This could result from a leak or break in the pipelines, or leakage from risers, drains and separators in the pipeline network.

The primary risk issue for water storages would be an uncontrolled discharge to the environment, either through vertical seepage through the base of unlined dams or ponds, or a catastrophic failure of the embankment. This could cause seepage into the groundwater aquifers and discharge to surface water courses.

#### **Potential Impacts**

An uncontrolled release of produced water from a gathering system could potentially impact shallow groundwater quality, depending on the size and location of the release, the nature of the soils, and the relative quality of the produced water compared to shallow groundwater quality. Related environmental impacts could include surface water contamination, soil contamination, and soil erosion.

The environmental values that would potentially be affected by an uncontrolled release are generally those that are associated with shallow groundwater systems. Potential contamination of a groundwater resource supporting municipal supply or primary industry uses would be the main concern for this scenario. It is likely that an uncontrolled release from a gathering system would be relatively limited in aerial extent, and as such any resulting impact to shallow groundwater should be localised. Aquatic ecosystems could also potentially be affected, either through direct overland runoff of produced water into a surface water body or via infiltration into shallow groundwater and subsequent discharge of a contaminant plume into a surface water body.

The groundwater values most likely to be affected by an uncontrolled release of poor quality water from a storage structure include human consumptive uses such as drinking water supply, and supply to primary industries and other industrial uses. Whilst municipal water supply bores often target deeper aquifer formations for security purposes, domestic water supply bores tend to preferentially access shallow groundwater resources to reduce the costs of well installation.

In the event of an impact to shallow groundwater that contributes to spring flow or baseflow, the aquatic ecosystem, and potentially the recreational and aesthetic amenity, associated with the receiving surface water body could be indirectly affected by impacts to shallow groundwater quality.

## 8.2.6 Project Infrastructure

In addition to water gathering and storage systems, oil and gas operations are supported by a range of additional infrastructure, including road networks, accommodation and related amenities for employees (possibly including STPs for sewage and grey water treatment), operations and maintenance facilities, gas and oil process facilities.





# Associated Risk Issues

The groundwater risks related to surface infrastructure are limited to potential contamination of shallow groundwater resources by the various waste streams generated by the support infrastructure. The potential risk to groundwater quality would be commensurate with the volume and quality of any uncontrolled release to the environment.

#### **Potential Impacts**

The primary groundwater-related impact associated with a waste stream release would be contamination of shallow groundwater resources. Related impacts would include soil contamination, and potential surface water contamination depending on the location and nature of the release.

# 8.3 Assessment and Results of the Risk Analysis

The assessment of the risks and potential impacts considers initially the inherent risk of oil and gas productions (inherent risk rating) and then the site specific risks inclusive of current risk managements and controls (residual risk rating).

The assessment and results are discussed below and summarised in Table 37.

## 8.3.1 Drilling, Well Installation and Well Integrity

The potential impacts from drilling and well installation can result in high level consequences, however the likelihood of the risk is considered relatively low due to:

- The high level compliance of well drilling and installation now required by the petroleum industry licence conditions. The current industry standards for well completions are as a minimum consistent with good industry practice as set out in the *Minimum Construction Requirements for Water Bores in Australia, Ed.2, Revised Sept 2003* (Land and Water Biodiversity Committee, 2003), and as prescribed in DERM's *Water Act 2000 Water Bore Drillers' Licensing Handbook*. Those standards have always required the casing (i.e. isolation) of the overburden formation from the opened interval as illustrated on Figure 67 for gas production wells.
- Well integrity is monitored through monitoring of well casing and testing of casings every one to three years dependant on risk level, number remaining un-cemented barriers for all Permian well;
- Upon completion of their service life the production wells and any other wells no longer required are decommissioned by pressure grouting. This provides for appropriate stewardship of the potential long-term risk of borehole degradation over time, which is so prevalent amongst old GAB bores that have never been reconditioned or appropriately decommissioned. Well suspension and abandonment are undertaken in accordance with the Statement of Environmental Objectives and Santos defined EHS Management Standards;
- Due to the depth of the formations targeted by Santos operations in SWQ, the drilling and completion of oil and gas wells encounter much higher pressures than water bores drilling and completion. High levels of operational standards are required to control those high pressures.

The gas and oil wells are targeting formations which are not targeted for groundwater extraction as their primary role due to their depth and the presence at shallower depth of good water supplies. The only exception is the Hooray Sandstone which supplies a limited number of groundwater users (Figure 29 and Figure 30) and within which localised minor oil accumulations are exploited. The groundwater users of the Hooray Sandstone are generally located at distance away of the oil production and are not considered to create any interference with water supply at such distances.



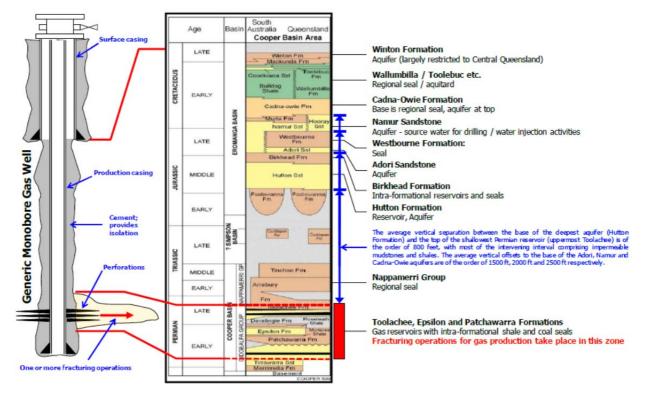



Figure 67: Typical Gas Well Construction Design (from Santos)

The risks to groundwater from drilling and well installation are classified in Table 37.

# 8.3.2 Hydraulic Fracturing

The use of hydraulic fracturing has recently been limited in the QLD part of Santos Cooper Basin activities mostly due to the remoteness of the sites and long travel distances making the processes logistically difficult and onerous.

The location of previous hydraulic fracturing and planned activities has been discussed in Section 6.3.4.

Although the consequence of contamination from hydraulic fracturing fluids will be major, the likelihood of the contamination occurring was classified as unlikely due to:

- the absence of potential receptors both at depth (i.e. private bores targeting the same geological units) and at surface (limited surface water network and absence of environmental values – Section 4.5);
- the geological and fracture (simulation) modelling undertaken prior to pumping the main treatments, with the intention of identifying and constraining the physical limits of fracture zone growth (in or out of zone); and
- The monitoring and disposal practices in place in Santos Cooper Basin oil and gas fields for handling of hydraulic fluids.

# 8.3.3 Groundwater Extraction

The order of magnitude of groundwater extraction (Section 7.0) has been taken in consideration for the risk assessment rating. To summarise:

 Gas production in SWQ produces an average of 150 ML/year groundwater, over 191 wells (currently). The volume of groundwater associated to the production of gas is insignificant and will not result in any depressurisation;



 Oil production in SWQ produces an average 6,092 ML/year of groundwater, most of which (4,998 ML/year) is produced from the Hutton Sandstone. The production area is geographically large and extraction is from approximately 230 producing oil wells in Santos activities in SWQ.

The impacts from groundwater extraction associated with the oil and gas productions have been assessed and are reported in Section 6.0. The groundwater impact assessment concluded that:

- The impact of extraction in the Cooper Basin does not extend beyond the top of the Cooper Basin and can be discounted from the cumulative assessment. No dewatering was predicted above the Tinchoo Formation;
- There was predicted to be less than 2 m drawdown due to deeper extraction on the Quaternary, Tertiary and Winton Formation aquifers. This is considered within the margin of error of the analysis. Furthermore, as this is from steady state analysis, it is considered a worse case scenario. Actual observed drawdown is likely to be less; and
- The calculated drawdown in the combined layer of the Cadna-Owie Formation and Hooray Sandstone (Layer 4 in the analysis) was approximately 52 m in the immediate affected area and 58 m in the long term affected area. Actual drawdown is likely to be much less than this due to the transient nature of the extraction as well as the presence of low permeability layers within the strata that could not be captured in the analysis. Intermittent low permeability layers would be expected to retard the propagation of drawdown vertically upwards, limiting this impact.
- The effectiveness of the low permeability layers to retard the vertical propagation of drawdown is demonstrated in the Tickalara and Iliad Fields. Here, a survey of pressures in the target oil beds and the overlying formation demonstrated that depressurisation due to extraction is confined to the target beds by the overlying seal beds (Figure 17and Figure 18); and
- The effectiveness of the aquitards was investigated in the sensitivity analysis (HPSA1 and HPSA2). This demonstrated that even with an increase in the vertical hydraulic conductivity of the aquitard seal rock above the target formation) there was still minimal impact on the overlying strata

Section 5.3 provided an available example of the depletion of pressure in each target formation due to the overlying confining aquitard. The effect of these low permeability layers could not be captured in the analytical analysis due to the simplicity of the methodology. However, it is anticipated that the observed effectiveness of the aquitards (seal beds) at Tickalara and Iliad Fields would be observed in the remainder of the Eromanga Basin. It should also be noted that the presence of hydrocarbons is by its nature confined by a sealing trap mechanism. Cross-flows between multiple layers due to depletion or over-pressuring is further limited as a result.

These figures show trends in the observed pressure in each target formation are plotted with a green dashed line. The manner in which these repeat with each target formation demonstrates the effectiveness of the overlying seal in retarding the vertical impact of extraction.

As a result the risks of depressurisation of the groundwater systems and other risks associated to groundwater extraction were rated low.

## 8.3.4 Water Flooding

The risks from water flooding were rated low for the following reasons:

- Over-pressurisation of target zone from injection:
  - General operations do not result in exceeding fracturing pressures; however, fractures (if created) would be limited to the near-wellbore region, contained within the Birkhead and have no impact upon aquifers
  - No groundwater users in the area are targeting aquifers deeper than the Winton Formation





- Risk of reactivity of injected fluid with target zone:
  - Groundwater for water flooding is now sourced from treated produced water, the Namur aquifer which water quality has been demonstrated to be compatible with groundwater of the Birkhead Formation (URS, 2010) is only used as a complementary or backup water source.
  - Comprehensive analysis of waters was undertaken prior to project startup
- Potential for migration of injection fluid out of target formation into aquifers:
  - The Murta Formation oil reservoir lies from about 700 800 m below surface, the Birkhead Formation reservoir target lies 1,300 m below the surface. Both are overlain by thick regional impermeable seal rocks; stratigraphy provides natural isolation of target zone.
  - Groundwater bores in the area are targeting aquifers no deeper than the Winton Formation (note: for bores which target aquifer can be defined).
  - Wellbore casing isolates Birkhead Formation impact zone from groundwater.
  - A tracer program indicates a closed system with water injection and oil production contained within the Birkhead Formation zone (URS, 2010).
  - Local surface water bodies are not in connection with deeper aquifers (e.g. Namur Sandstone).
  - No major faulting is evident in the area.

#### 8.3.5 Gathering and Water Disposal Systems

The potential risk issues associated with water storage activities were rated as Category 1 to 2 risks after assessment of water production volumes, pond sizes, operations and environmental settings.

Of the various scenarios considered, the highest risk rankings (Category 3) were related to potential seepage into the soil and shallow groundwater system.

#### 8.3.6 Project Infrastructures

The potential risk issues associated with the Project infrastructure were rated as Category 1 risks. In all cases, either the likelihood or consequence related to various uncontrolled release scenarios was considered to be low, based on the control measures in place for managing each of the waste streams, or the relatively minor volumes or innocuous nature of certain waste streams, or the physical distance from the nearest sensitive receptor.

# 8.4 Risk Control and Mitigation to Reduce/Manage Impact Levels

The principal issues of concern with respect to potential risks to groundwater availability and quality arising from oil and gas activities have been identified as reduced access to groundwater resources supplying stock, domestic and other licensed uses, and potential impacts to groundwater quality (especially to shallow groundwater resources) associated with an uncontrolled release of poor quality water or hydrocarbons.

These issues are also amongst the primary concerns of local bore owners and the regulators (e.g. DERM). To address these high priority concerns, Santos has adopted a combination of preventative actions and management options to reduce the likelihood of adverse impacts occurring and to mitigate those risks.

# 8.4.1 Drilling, Well Installation and Well Integrity

Well construction design has been discussed in Section 8.3.1. The integrity of wells and risks of well failure are monitored by a dedicated well integrity team established in 2004. The well integrity management actions include:

The monitoring of integrity of well by monitoring well casing.





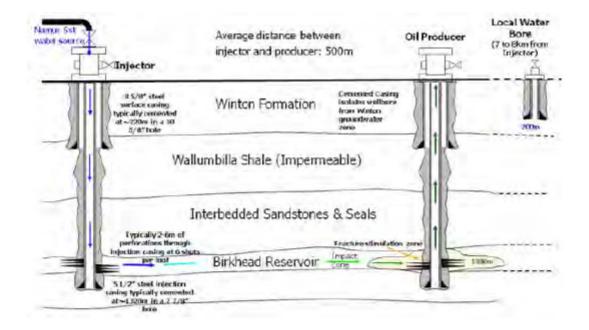
- All Permian well casings are tested every 1 to 3 years dependant on risk level and the number of remaining un-cemented. Well's casing strings are monitored by blowing down any trapped pressure, topping up with corrosion inhibited brine, pressure testing. The results are reviewed by field technician, database and well files are updated accordingly. Where issues have been flagged, further action is undertaken in liaison between Production operators & Petroleum Engineering staff.
- Casing Pressure monitoring: Where Remote Operational Control telemetry is not connected to the casing, production operators monitor well casing pressures quarterly and notify Petroleum Engineering of abnormal pressures or changes.
- Additional monitoring is advised on a case-by case basis by Petroleum Engineering.
- An annual surveillance maintenance programme across entire Cooper Basin well asset with capability to repair wells in event of sub-surface integrity problem and capability to suspend or plug and abandon wells in full compliance with Statement of Environmental Objectives

# 8.4.2 Hydraulic Fracturing

The hydraulic fracturing activities have been described in Section 8.4.3.

The risk associated with hydraulic fracturing is further controlled by:

- A process of both geological and fracture (simulation) modelling prior to pumping the main treatments, with the intention of identifying the physical limits of the fracture growth zone/s (in or out of zone) and to ensure the fluids pumped stay within the defined zone);
- Monitoring and control of the chemistry of the fluid to ensure the fluid is at the right conditions to mix, hydrate, crosslink during treatment and then break on flow back. Laboratory testings are performed for the entire duration of the stimulation.


# 8.4.3 Water flooding

Risk management procedures for water flooding include the following:

- Adherence to the flood well design illustrated on Figure 68. The design ensures the full integrity of the different formations is preserved. In addition well integrity is checked through regular mechanical integrity checks; and
- Effective management and monitoring of the waterflood program:
  - Metering, well testing and production allocation;
  - Chemical tracer program;
  - Regular produced water sampling (quarterly).
  - Reservoir and injection pressure monitoring.
  - Quarterly casing integrity checks.







Note: oil well design in this diagram is stylised and simplified; all oil well construction details are not shown.

Figure 68: Typical Water Flood Well Design

## 8.4.4 Pond and Dam Construction

Santos ponds are designed following the internal engineering standards defined in Santos EHSMS system (Santos Engineering Standard, DESIGN PRACTICE 1515-10-G008-0, Rev 2, 2005).

IN SWQ where a number of evaporation ponds are present, the ponds have been sited and designed to comply with the following requirements (Santos EHSMS):

- Operational / Engineering Criteria, evaporation ponds shall:
  - be contained within the field PPL boundary;
  - be located so as not to interfere with infrastructure or the requirements of other land users (e.g. landholders and tourists);
  - be located an appropriate distance from roads or other infrastructure (e.g. greater than 20m) so as not to create an unacceptable danger to humans or to stock and wildlife;
  - be readily accessible in all weather by 4WD cab utilities and 4WD vacuum trucks;
  - be optimally located (to minimise pipework lengths, etc.);
  - be downslope of separation facilities (to reduce pumping requirements, etc); and
  - be of sufficient area and allow room for expansion.
- Environmental Criteria, evaporation pond locations shall:
  - not overlie areas of shallow groundwater where that ground water is in use or may be used in the future;
  - not be located in natural watercourses, waterholes, drainage lines, salt lakes, salt pans and floodplains;





- be located in previously disturbed areas or in areas devoid of natural vegetation, or where this is not possible, contain vegetation of low conservation significance;
- avoid known sites of natural, scientific or cultural heritage (indigenous and non-indigenous) significance, and
- prevent significant seepage (ie. preference shall be given to sites with high clay content soils).

New pond designs will be in accordance with the relevant EA.

The relative magnitudes of the risks related to water management activities were used as a guide to developing appropriate risk control measures. The results of the risk assessment indicated that the majority of water management activities currently represent negligible or low risks to human health, the environment or the commercial viability of the Project. A summary table of risk analysis is presented in Table 37.



#### Table 37: Risk Assessment Results

| Risk Issue                                          | Cause                                                                                                                                         | Impact                                                                                   | Inherent<br>Risk Rating | Current Residual<br>Risk Rating<br>inclusive of<br>Mitigation and<br>Controls |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------|
| Well Construction                                   | on (Bore Drilling, Design,                                                                                                                    | Completion, Integrity)                                                                   |                         |                                                                               |
| Passage of water between aquifers                   | Poor design,<br>Construction technique,<br>Poor closure technique                                                                             | Contamination, Pressure loss, Non-<br>compliance                                         | 3                       | 2                                                                             |
| Leakage of<br>introduced<br>fluids including<br>mud | Inappropriate muds or<br>drilling technique                                                                                                   | Contamination of aquifers and/or surface water                                           | 2                       | 1                                                                             |
| Artesian Flows                                      | Over pressure/poor<br>mud control/incorrect<br>drilling assumptions                                                                           | Erosion, loss of reputation                                                              | 1                       | 1                                                                             |
| Hydraulic<br>fracturing Fluids                      | Use of hydraulic<br>fracturing fluids to<br>increase horizontal<br>connectivity and<br>enhance the production<br>of oil and gas<br>reservoirs | Contamination of deep aquifers and/or<br>surface water , soil and shallow<br>groundwater | 3                       | 1                                                                             |
|                                                     | Oil and Gas V                                                                                                                                 | Vells - Groundwater extraction from the                                                  | e wells                 |                                                                               |
|                                                     |                                                                                                                                               | Loss of available drawdown in bores                                                      | 3                       | 2                                                                             |
|                                                     |                                                                                                                                               | Subsidence                                                                               |                         | 1                                                                             |
|                                                     | Associated water                                                                                                                              | Water quality changes                                                                    |                         | 2                                                                             |
| Leakage<br>between                                  | production (limited volumes for gas                                                                                                           | Loss of baseflow (watercourse springs)                                                   | 2                       | 1                                                                             |
| aquifers                                            | production, larger<br>volumes for oil<br>production)                                                                                          | Impacts on GAB discharge springs<br>(incl. mound springs) and GAB<br>recharge springs    | 1                       | 1                                                                             |
|                                                     |                                                                                                                                               | Oil flows well head splits/leaks and gas flows                                           | 3                       | 1                                                                             |
|                                                     |                                                                                                                                               | Gathering Systems                                                                        |                         |                                                                               |
|                                                     | Leak of water pipe or                                                                                                                         | Soil/Shallow GW contamination                                                            | 1                       | 1                                                                             |
| Discharge of                                        | controls                                                                                                                                      | Contamination of local SW                                                                | 2                       | 1                                                                             |
| associated                                          | Break in pipeline                                                                                                                             | Soil/Shallow GW contamination                                                            | 3                       | 1                                                                             |
| water to<br>environment                             |                                                                                                                                               | Contamination of local SW                                                                | 3                       | 1                                                                             |
| chivitoninient                                      | Leakage from low point drains/separators                                                                                                      | Soil/Shallow GW contamination                                                            | 3                       | 2                                                                             |
| Erosion                                             | Design, construction of stream crossings, open areas                                                                                          | Stream water quality                                                                     | 2                       | 1                                                                             |
|                                                     |                                                                                                                                               | Water Storage                                                                            |                         |                                                                               |
| Uncontrolled                                        | Seepage - vertical                                                                                                                            | Shallow groundwater and/or soil contamination                                            | 3                       | 2                                                                             |
| discharge to<br>environment                         | Seepage - lateral                                                                                                                             | Vegetation loss, Discharge to water ways                                                 | 3                       | 2                                                                             |





| Risk Issue                                                 | Cause                                                                         | Impact                                                                                                        | Inherent<br>Risk Rating | Current Residual<br>Risk Rating<br>inclusive of<br>Mitigation and<br>Controls |
|------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------|
|                                                            | Dam Break                                                                     | Damage to property, soil, water,<br>surface infrastructure, loss of asset<br>and associated income, fatality. | 3                       | 1                                                                             |
|                                                            | Operational Failure<br>Overflow, Operational<br>Failure Accidental<br>Release | Damage to property, soil, water,<br>surface infrastructure, and associated<br>income.                         | 2                       | 1                                                                             |
|                                                            | Surface I                                                                     | nfrastructure (Road and Camp Service                                                                          | s)                      |                                                                               |
| Uncontrolled<br>run-off from<br>roads                      | Inadequate design and<br>management of<br>waterway crossings                  | Deterioration of water quality                                                                                | 2                       | 1                                                                             |
| Contaminant                                                | Effluent release from<br>sewage treatment                                     | Soil and shallow GW contamination                                                                             | 1                       | 1                                                                             |
| releases                                                   | Kitchen Waste                                                                 | Soil and shallow GW contamination                                                                             | 1                       | 1                                                                             |
| Workshop and maintenance areas                             | Chemical storage                                                              | Contamination of GW or SW                                                                                     | 2                       | 1                                                                             |
| Compressor station hazards                                 | Bulk Fuel and chemical storage                                                | Contamination of GW or SW                                                                                     | 2                       | 1                                                                             |
| Oil station                                                | Bulk Fuel and chemical storage                                                | Contamination of GW or SW                                                                                     | 2                       | 1                                                                             |
| hazards                                                    | Washdown areas                                                                | Contamination of GW or SW, weeds                                                                              | 2                       | 1                                                                             |
|                                                            |                                                                               | Water Flooding                                                                                                |                         |                                                                               |
| Potential for<br>migration of<br>injection fluid           | Wellbore integrity                                                            | Migration of injection fluid out of the target formation into the aquifers                                    | 3                       | 1                                                                             |
| out of target<br>formation into<br>aquifers                | Faults                                                                        | Migration of injection fluid out of the target formation into the aquifers                                    | 2                       | 1                                                                             |
| Reactivity of<br>injected fluid<br>with target zone        | Potential for reactivity<br>with the receiving<br>aquifer                     | Degradation of the water quality                                                                              | 3                       | 1                                                                             |
| Over<br>pressurisation<br>of target zone<br>from injection | Create fractures                                                              | Localised groundwater flows between formations                                                                | 2                       | 1                                                                             |

Abbreviations:

GAB - Great Artesian Basin

SW - Surface Water

GW - Groundwater



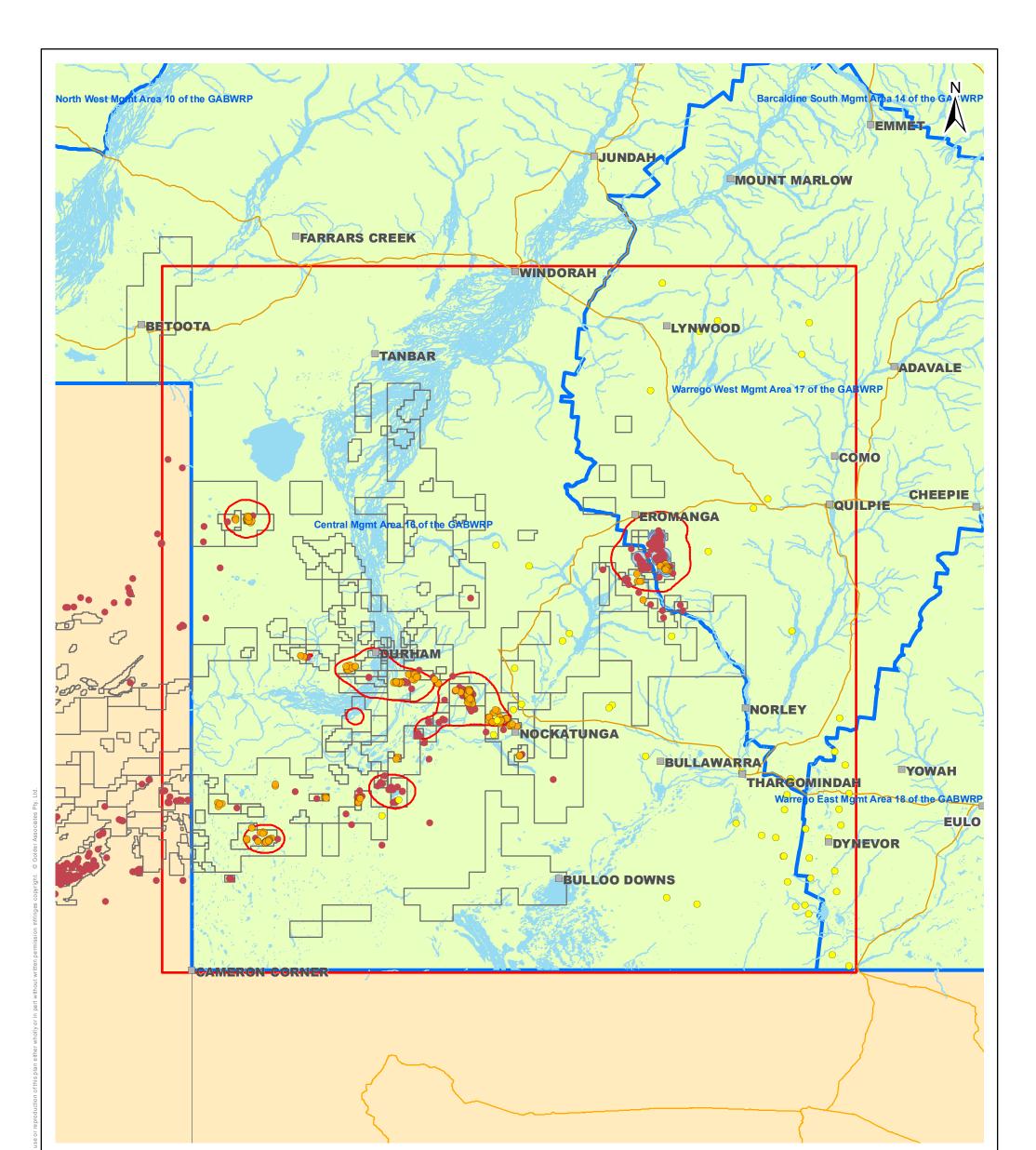
# 9.0 VULNERABILITY ASSESSMENT OF THE ENVIRONMENTAL VALUES

# 9.1 Vulnerability of GDEs

No GAB discharge springs (including mound springs) are located within the Santos tenements or within 90 km of the tenement boundaries, and none of the predicted drawdown exceed the established triggers for impact to aquifers outside of Santos SWQ tenements (i.e. all modelled impacts are less than 5 m drawdown outside of Santos SWQ tenements). Two maps indicating the 0.2m trigger threshold for model layers 3 and 4 are presented in Appendix I, using the base case scenario and showing the drawdown contours for the Long Term Affected Area (LTAA) and the Immediately Affected Area (IAA) in the Eromanga Basin model. The formations comprising these model layers are considered to be potential source aquifers for GAB discharge springs in the region. As indicated on the maps in Appendix I, the maximum modelled extent of the 0.2 m depressurisation contour for model layers 3 and 4 is still in excess of 50 km from the GAB discharge springs in the southeast corner of the study area. As such, Santos Cooper Basin operations in SWQ are expected to have no material impact on GAB mound springs.

As a consequence of this outcome, no spring impact management strategy has been developed.

# 9.2 Vulnerability of Drinking Water and Groundwater Users


Private groundwater use and town water supply are typically sourced from the upper GAB (down to the Hooray Sandstone) and tertiary aquifers.

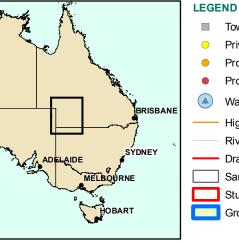
Potential vulnerability from aquifer depletion through extraction of produced water has been assessed in Section 6.0 and the result indicated no material impacts to any of the aquifers used by the community.

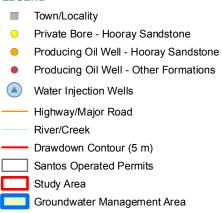
Vulnerability in terms of groundwater quality would potentially only affect bore owners or water supply sources from the Hooray Sandstone which also contains oil reservoirs exploited by Santos (within the Murta Formation mostly and to a lower extend within the Namur Sandstone – refer to Section 6.3.1). The location of Santos activities within the Hooray Sandstone and the groundwater users from the Hooray Sandstone is provided in Figure 69. Note that where no oil is produced from the Hooray Sandstone oil reservoirs, the modelled estimated 5 m drawdown contours are considered conservative as pressure measurements data at two oil fields have demonstrated that the depressurisation does not propagate to overlying layers (refer to Section 8.3.3).

Figure 69 only identifies two private bores (RN23569 and RN6304) in PL33 and PL35 respectively as being within the 5 m drawdown contour. Generic information is available for these bores in the metadata table. These bores should be visited as part of the baseline assessment Santos is undertaking for SWQ and target aquifer should then be confirmed. Make good obligations would be developed as appropriate if necessary in view of the baseline assessment results.









#### SANTOS

# VULNERABILITY OF GROUNDWATER SOURCES OF THE HOORAY SANDSTONE

#### COPYRIGHT

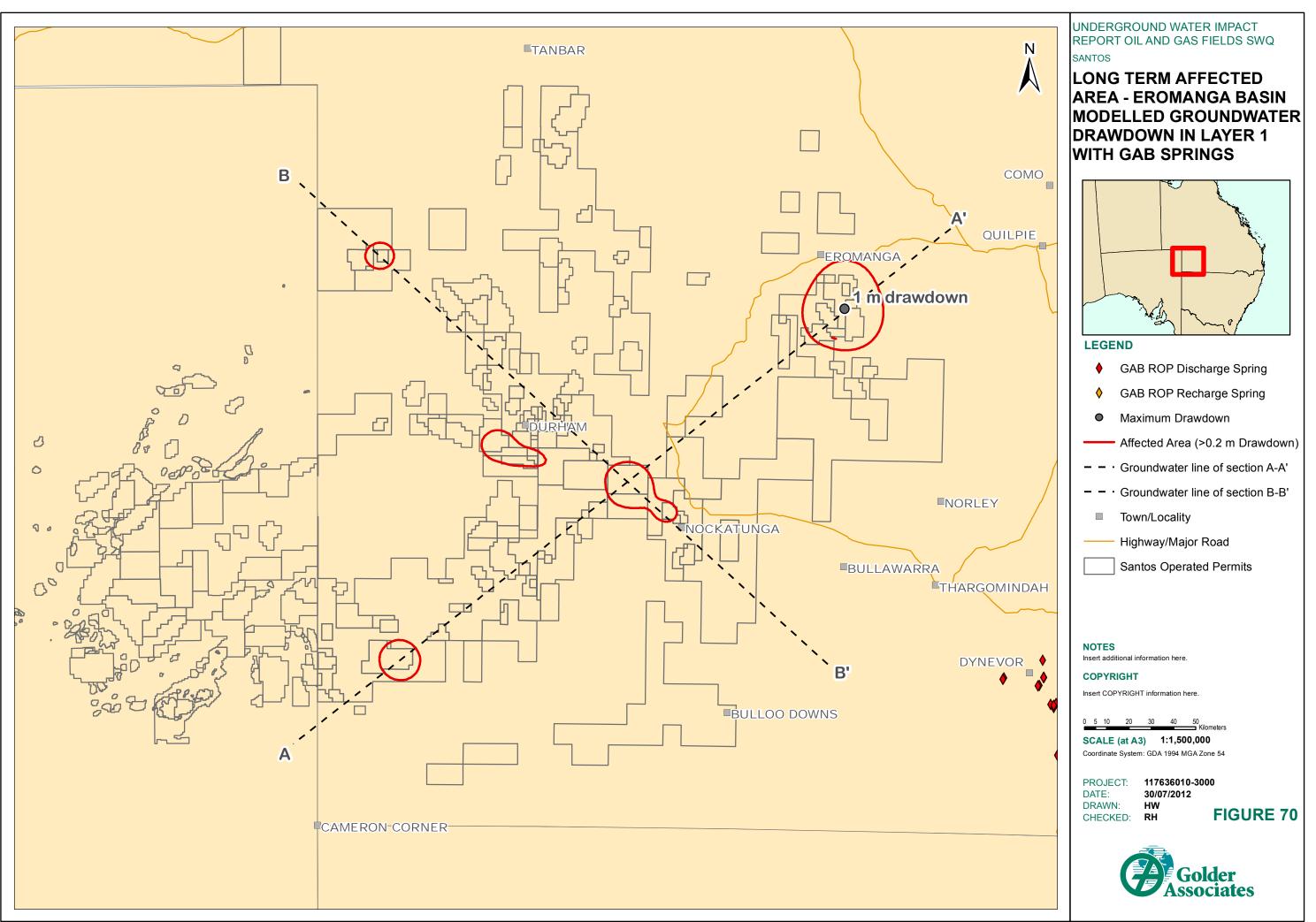
 Base information copyright MapInfo Australia Pty Ltd
 AT P/PL tenure supplied by Santos, August 2011
 Groundwater Management Area supplied by the State of Queensland (Department of Natural Resources & Water), 2008
 Drawdown estimated from analytical modelling. Results are considered conservative.







 SCALE (at A3)
 1:2,000,000


 Coordinate System: GCS GDA 1994

| PROJECT: | 117636010  |
|----------|------------|
| DATE:    | 19/12/2011 |
| DRAWN:   | AJW        |
| CHECKED: | FH         |
|          |            |

FIGURE 69



File Location: J:\hyd\20111117636010 Santos\_Copper Basin O&G & Moonie OII -official folder in BR\SBAN E\GIS\Projects\117636010\_R\_F0039\_CooperBasinVulnerabilityHooraySst.mxd





# 9.3 Vulnerability of GAB Aquifers

The volumes of produced water are not resulting in a basin wide depressurisation of the formations.

The result of the groundwater impact prediction concluded that:

- Groundwater extraction from gas production in the Cooper Basin will have negligible impact to groundwater.
- Groundwater production from oil production would have limited impacts on the Hutton Sandstone over the study area. The spatial extent of drawdown was limited to the direct vicinity of the extraction wells. Heavily utilised groundwater aquifers near the surface (the Quaternary, Tertiary and Winton Formations, show very small impact that is not considered significant and is much lower than the trigger levels defined under the Water Act 2000 (Section 2.2).

With regard to preservation of the water quality, operational procedures are in place to prevent any contamination of the GAB formation resulting either from aquifer cross contamination or contamination through injection of fluids during drilling, stimulation or water flooding.

As a consequence, on the basis of information provided to Golder and discussed in this report, there is negligible risk of impact from the Santos SWQ current level of activities on the GAB aquifers.





# **10.0 GROUNDWATER MONITORING**

In view of the site activities, the result of the risk analysis and groundwater impact assessment, the groundwater resources most at risk from Santos activities are the shallow aquifers and the Hooray Sandstone aquifer where it is also a resource for the community.

This section highlights, for the purposes of a more detailed monitoring strategy, the possible basis for and rationale behind groundwater monitoring. A detailed groundwater monitoring program would provide the location, frequency and monitoring type.

# **10.1 Existing Monitoring**

The current groundwater monitoring programs cover the following:

- Santos deep groundwater monitoring associated with the water flooding activities (refer to Section 8.4.3);
- Monitoring associated with the hydraulic fracturing activities (Section 8.4.1);
- Shallow groundwater monitoring associated with:
  - Ballera evaporation pond (8 monitoring bores); the QLD guidelines for the design of pond now require the establishment of shallow groundwater monitoring networks with all new pond.
  - Jackson refuelling station (3 monitoring bores);
  - Jackson landfarm activities (4 monitoring bores);
- DERM GAB monitoring network spread over the project area and targeting the formations of the Eromanga Basin (refer to Section 5.6).

# 10.2 Groundwater Monitoring Strategy

This section provides the basis for a water monitoring strategy i.e. describe the "why" behind the groundwater monitoring programs and the strategy developed to define the groundwater monitoring programs.

## 10.2.1 Rationale of Monitoring

A priority ranking to each monitoring activity is proposed. Five priority levels are defined (Table 38). These priorities are used to assist in the development of implementation and sampling schedules and to prioritise monitoring activities when required.

Prioritisation ranking is relevant where all monitoring activities are undertaken as part of a regulatory requirement. The proposed priority ranking is considered to be proactive and to address not only the regulatory requirements but also potential community concern and stakeholders' requirements, and the need to establish a minimum of environmental baseline data.





| Rank | Driver/Category                                           | Description                                                                                                                                                                       |
|------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Environmental<br>Incident/Community Complaint<br>Response | Response to an environmental incident (i.e. hydrocarbon spill), or response to a legitimate community complaint.                                                                  |
| 2    | Compliance                                                | Compliance with legislative conditions/monitoring requirements                                                                                                                    |
| 3    | Operational Monitoring                                    | Monitoring of infrastructure facilities which are non-<br>compliance or licence related.                                                                                          |
| 4    | Stakeholder Engagement and Relationship                   | Monitoring of environmental values which are non-<br>compliance or licence related in relation to improving<br>stakeholder relations.                                             |
| 5    | Environmental Improvement and<br>Performance              | Monitoring of parameters and conditions which are non-<br>compliance or licence related to improve environmental<br>performance or lead to further environmental<br>understanding |

#### Table 38: Monitoring Priority Ranking

# **10.2.2 Development of Standard Monitoring Suites**

Standard monitoring suites are proposed to streamline groundwater monitoring and assist with consistency of the monitoring activities and collected dataset.

The monitoring suites may include field measurements and laboratory analysis as monitoring activities vary from general site observation to in-situ measurements and sample collection for laboratory analysis. The following groundwater standard monitoring suites are defined:

- Groundwater field suite;
- Groundwater baseline suite;
- Hydrocarbon suite; and
- Potable water suite.

These suites apply to:

- The establishment of baseline conditions;
- Regional groundwater monitoring;
- Impact monitoring for groundwater in relation to general fields activities and specific programs.

#### Field Water Suite

The field suite comprises of a set of basic physical measurements taken with a calibrated multi-parameter water quality meter, and observations to be made during routine monitoring. The field suite is used in most locations and does not involve laboratory analysis. It is undertaken either on its own or in conjunction with the analytical suites defined in the following sections.

#### **Groundwater Suite**

This suite includes the field suite parameters and a range of basic water chemistry analyses. This monitoring will enable the definition of the basic characteristics of groundwater.

#### Hydrocarbon Suite

The Hydrocarbon Suite will address subsurface contamination due to the spill of oils and fuel from production areas, machinery and storage areas.



# **Potable Water Suite**

This suite will be used to verify routinely the quality of the potable water supplied to camps and facilities and will identify variation to the water quality potentially resulting in short term health effect to individuals. This suite has a limited range of analytes inclusive of major ions, metals and microbiology. The suite has been defined according to the Australian Drinking Water Guidelines 2004 (ADWG, 2004) for facilities accommodating less than 1,000 workers or residents.

#### Table 39: Monitoring Suites Analytes

| Analyte Group                               | Field Water<br>Suite | Groundwater<br>Baseline<br>Suite | Hydrocarbon<br>suite | Potable<br>Water Suite |
|---------------------------------------------|----------------------|----------------------------------|----------------------|------------------------|
| General Parameters                          | -                    | -                                | -                    |                        |
| Colour                                      |                      |                                  |                      | Х                      |
| Flow rate (where applicable)                | х                    | X                                |                      |                        |
| Water level/pressure (where applicable)     | Х                    | X                                |                      |                        |
| Temperature (field)                         | X                    | X                                |                      |                        |
| pH (field)                                  | х                    | X                                |                      | Х                      |
| pH (lab)                                    |                      | X                                |                      | Х                      |
| Electrical Conductivity (field)             | x                    | X                                |                      |                        |
| Electrical Conductivity (lab)               |                      | X                                |                      |                        |
| Turbidity (lab)                             |                      |                                  |                      | Х                      |
| Hardness                                    |                      | X                                |                      | Х                      |
| Total Dissolved Solids - TDS (lab)          |                      | X                                |                      | Х                      |
| Oxygen Reduction Potential (field - manual) | x                    | X                                |                      |                        |
| Major lons                                  | -                    | -                                | -                    |                        |
| Total Alkalinity as CaCO3                   |                      | X                                |                      | Х                      |
| Hydroxide Alkalinity as CaCO3               |                      | X                                |                      | Х                      |
| Carbonate Alkalinity as CaCO3               |                      | X                                |                      | Х                      |
| Bicarbonate Alkalinity as CaCO3             |                      | X                                |                      | Х                      |
| Major Cations – Al, Ca, Mg, Na, K           |                      | X                                |                      | Х                      |
| Sulphate                                    |                      | X                                |                      | Х                      |
| Chloride                                    |                      | X                                |                      | Х                      |
| Minor lons                                  | -                    | -                                | -                    |                        |
| Ammonia as N                                |                      | X                                |                      | Х                      |
| Nitrate                                     |                      | X                                |                      | Х                      |
| Nitrite                                     |                      | X                                |                      | Х                      |
| Total Nitrogen (TKN + NOx)                  |                      | X                                |                      | Х                      |
| Fluoride                                    |                      | X                                |                      | Х                      |
| Total Phosphorus as P                       |                      | X                                |                      |                        |
| Reactive Phosphorus                         |                      | X                                |                      |                        |
| Hydrogen Sulfide                            |                      |                                  |                      | Х                      |





| Analyte Group                                                                                                                                     | Field Water<br>Suite | Groundwater<br>Baseline<br>Suite | Hydrocarbon<br>suite | Potable<br>Water Suite |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|----------------------|------------------------|
| Boron                                                                                                                                             |                      |                                  |                      | Х                      |
| Total Cyanide                                                                                                                                     |                      |                                  |                      | Х                      |
| Other Analytes                                                                                                                                    | -                    | -                                | -                    |                        |
| Total and Dissolved Organic Carbon                                                                                                                |                      | X                                |                      |                        |
| Metals and Metalloids                                                                                                                             |                      |                                  |                      |                        |
| Dissolved/Total Metals (including digest<br>where applicable) - Al, As, B, Ba, Be, Cd,<br>Cr, Co, Cu, Fe, Li, Mn, Mo, Ni, Pb, Se, Sr,<br>U, V, Zn |                      | x                                |                      | x                      |
| Mercury - Hg                                                                                                                                      |                      | X                                |                      | X                      |
| Silver - Ag                                                                                                                                       |                      | X                                |                      |                        |
| Strontium - Sr                                                                                                                                    |                      | X                                |                      |                        |
| Tin - Sn                                                                                                                                          |                      | X                                |                      |                        |
| Zinc - Zn                                                                                                                                         |                      | X                                |                      |                        |
| Iron - Fe                                                                                                                                         |                      | X                                |                      |                        |
| Copper - Cu                                                                                                                                       |                      | X                                |                      |                        |
| Manganese - Mn                                                                                                                                    |                      | X                                |                      |                        |
| Microbiology                                                                                                                                      |                      |                                  |                      |                        |
| E.coli (MF)                                                                                                                                       |                      |                                  |                      | Х                      |
| Standard Plate Count                                                                                                                              |                      |                                  |                      | Х                      |
| Total coliform                                                                                                                                    |                      |                                  |                      | Х                      |
| Thermo-tolerant (faecal) Coliform                                                                                                                 |                      |                                  |                      | Х                      |
| Langeliers Index (calc – EC, Ca, Alky, pH, TDS)                                                                                                   |                      | x                                |                      |                        |
| Calculated Parameters                                                                                                                             |                      |                                  |                      |                        |
| Sodium Absorption Ration – SAR                                                                                                                    |                      | X                                |                      |                        |
| Ionic Balance                                                                                                                                     |                      | X                                |                      |                        |
| Organics                                                                                                                                          | -                    | -                                |                      |                        |
| ТРН (С6-С9),                                                                                                                                      |                      | X                                | Х                    |                        |
| BTEX                                                                                                                                              |                      | X                                | X                    |                        |
| TPH (C10-C36)                                                                                                                                     |                      | x                                | Х                    |                        |
| PAH (including naphthalene and benzo(a)pyrene)                                                                                                    |                      | x                                | x                    |                        |
| Ethanol                                                                                                                                           |                      |                                  |                      |                        |
| Formaldehyde                                                                                                                                      |                      |                                  |                      |                        |



# **10.2.3 Groundwater Monitoring Infrastructures**

Several types of groundwater monitoring infrastructures are proposed in the groundwater monitoring program:

- Dedicated groundwater monitoring bores targeting specific aquifers, water level and water quality. This may include DERM GAB groundwater monitoring bores;
- Private bores identified from the baseline assessment program as suitable for groundwater quality and/or groundwater level monitoring. The selected bores target a single known aquifer; and
- Multi-level VWP measuring the pressure of the surrounding formation at their installed depth. Multi-level installations allow for monitoring of water levels in various units within the same borehole. The piezometers are cement grouted during installation therefore no water sample can be collected from VWPs.

# 10.3 Groundwater Monitoring Program

The groundwater monitoring program applies to the monitoring of:

- Regional groundwater; and
- Shallow groundwater associated with surface activities.

The groundwater monitoring program is designed to collect baseline groundwater information and monitor the potential impacts from the petroleum activities (exploration activities, extraction activities and produced water management activities) on identified groundwater environmental values. A copy of the proposed interim groundwater monitoring strategy is provided as Appendix H.

## 10.3.1 Shallow Groundwater Monitoring

Shallow monitoring programs are site specific and defined within the facility management or monitoring plans.

## 10.3.2 Hydraulic Fracturing Groundwater Monitoring

The monitoring regime for groundwater monitoring associated to hydraulic fracturing is being developed by the hydraulic fracturing team of Santos (Section 8.4.2). Golder recommends the exercise involve a review of the existing hydraulic fluid sample laboratory results dataset and assessment of hydraulic fluid mix.

## 10.3.3 Regional Groundwater Monitoring

Regional groundwater program will initially be defined for oil fields where the target reservoirs are within the Hooray Sandstone and where private bores targeting the Hooray Sandstone aquifers are identified within 5 km of the oil fields.

Regional groundwater monitoring should include:

- The monitoring of groundwater quality through the installation of dedicated groundwater monitoring bores or the use of suitable private bores as will be identified by the baseline assessment.
- The monitoring of groundwater levels / formation pressures using a combination of:
  - Equipment to allow measurement of water level/ formation pressure in different locations across the stratigraphy profile. It is recommended that multi-level Vibrating Wire Piezometers (VWP) are employed to monitor impacts from the extraction of oil from the following formations, the Namur Sandstone, the Murta Formation, the Lower Cadna-Owie and the Upper Cadna-Owie.
  - Dedicated groundwater monitoring bores; and





 Potentially, some private (landholder) groundwater bores identified suitable as a result of the water bore baseline assessment program.

The number of monitoring locations and types of installations selected has not yet been finalised. The following frequency for regional groundwater monitoring is proposed:

- Water levels (pressures) daily where automated (monthly for two years then quarterly otherwise);
- Groundwater quality quarterly using the Groundwater Baseline Suite

#### 10.3.4 Monitoring Reporting

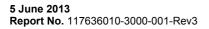
Monitoring data will be reviewed annually and reported internally and as required by regulatory requirements. In view of monitoring results the monitoring strategy and monitoring programs may be updated.





# 11.0 UWIR REVIEW SCHEDULE AND REPORTING PROTOCOL

It is proposed that the UWIR review schedule be linked to the development and review cycle of the water monitoring plan currently being developed by Santos.


A review period of no greater than three years will be undertaken. Site data including the following, will be reviewed:

- Groundwater level data from the water monitoring plan;
- Santos extraction volumes; and
- Santos pressure data.

It is intended that the above data will be reviewed and compared to the assumptions made in this UWIR. Any significant discrepancies between the assumptions in this UWIR and the additional data will trigger a review of the UWIR.

The review cycle will be incorporated in to the water monitoring plan (Appendix H).

In addition to the review schedule, the reporting will be undertaken to the regulator as required. The regulator will be engaged before reporting is undertaken to ensure appropriate procedures are being undertaken for reporting.





# 12.0 CONCLUSION

The impacts to groundwater from Santos oil and gas operations in the Cooper region of SWQ have been assessed in this UWIR through:

- A description of the geological settings of the gas and oil fields by the review of Santos data and literature information and the creation of a conceptual geological cross section and geological contour maps for the top and thicknesses of key formations;
- A review of the hydrogeological settings of the gas and oil fields by the analysis of large dataset of hydrogeological data, the creation of a hydrogeological conceptual model and hydrogeological maps;
- An identification of environmental values related to groundwater system and in particular groundwater dependant ecosystem including GAB artesian discharge springs;
- The description of Santos operations activities in relation to groundwater and the characterisation of produced water volumes;
- An assessment of impacts from groundwater extraction on the target petroleum reservoir and surrounding formations and on potential groundwater users;
- A risk analysis, assessment and discussion of the risk and management procedures and measures in place to reduce and manage the risks; and
- A review of the vulnerability of identified groundwater related environmental values assessed by combining the results of a risk analysis and the groundwater analytical model, and the management and mitigation measures implemented by Santos to manage the risks to groundwater systems.

Santos oil and gas fields in SWQ are located away from any major GDEs, also groundwater extractions associated with the oil and gas productions produce a limited volume of water which do not result in large scale depressurisation of the target aquifers. The groundwater impact assessment has demonstrated that aquifer drawdown is largely anticipated to be confined to the oil fields. As a consequence: Santos current activities are not expected to have any material impact on GAB discharge springs and other GDEs.

Santos oil and gas fields in SWQ are located within the Cooper and Eromanga GAB Basins, groundwater extraction for oil and gas production is carried out at great depths and does not generally compete with groundwater extraction for private use. Two private bores screened with the Hooray Sandstone and located in PL33 and PL35 have a potential for direct impact from groundwater extraction and groundwater contamination from drilling and hydraulic stimulation. The baseline assessment will need to confirm the aquifer targeted by these private bores. Groundwater monitoring at or near these bores is recommended. As a consequence, Santos current activities are expected to have an insignificant material impact on groundwater resources used by the community with the possible exception of localised impacts to two bores screened within the Hooray Sandstone aquifer located within areas of oil production.

The groundwater impact assessment has demonstrated that impacts to GAB aquifers are very local and even then depressurisation is limited and does not propagate across the production formations or though the stratigraphic profile. As a consequence, Santos current activities in SWQ are expected to pose a negligible risk to the integrity of the GAB.

This groundwater impact assessment has also highlighted the following:

- Groundwater extraction volumes from gas production in the formations of the Cooper Basin are relatively small (150 ML/year average over producing years for 191 gas wells);
- Impact of extraction in the Cooper Basin formations does not impact beyond the top of the Cooper Basin;





- The impact on the Tertiary and Quaternary strata is estimated to be less than 4.0 m. Considering the very conservative aspect of a steady state analytical model, this value is considered to be very conservative and to be in reality close to zero or null;
- Field data from two oils fields (Tickalara and Iliad) have demonstrated that depressurisation of oil
  reservoirs do not propagate to overlying formations; and
- Santos has implemented a combination of preventative actions and management options including industry best practices to reduce the likelihood of adverse impacts to groundwater occurring.

A water monitoring strategy has been developed in this UWIR and groundwater monitoring has been proposed to identify potential impacts or monitor to environmental values as mostly expected. The monitoring strategy will further be reviewed over time with the input of new information such as data from the completion of the baseline assessment program and the evolution of the activities of the oil and gas fields.





# **13.0 STANDARD DEFINITIONS**

| Abstraction        | The removal of water from a resource e.g. the pumping of groundwater from an aquifer. Interchangeable with extraction.                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Adsorption         | The attraction and adhesion of ions from an aqueous solution to the surface of solids.                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| ADWG               | Australian drinking water guidelines                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Alluvial           | Of, or pertaining to, material transported by water.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Alluvium           | Sediments deposited by or in conjunction with running water in rivers or streams,                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Analytical model   | A mathematical model that provides an exact or approximate solution of a differential equation (and the associated initial and boundary conditions) for subsurface water movement or transport.                                                                                                                                                                                                                                                                 |  |  |  |
| Anisotropy         | The conditions under which one or more of the hydraulic properties of an aquifer vary with direction. (See also isotropy).                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Anticline          | A fold that is convex upward or had such an attitude at some stage of development. In simple anticlines the beds are oppositely inclined, whereas in more complex types the limbs may dip in the same direction. Some anticlines are of such complicated form that no simple definition can be given. Anticlines may also be defined as folds with older rocks toward the centre of curvature, providing the structural history has not been unusually complex. |  |  |  |
| Aquatic            | Associated with and dependant on water e.g. aquatic vegetation.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Aquatic Ecosystems | The abiotic (physical and chemical) and biotic components, habitats and ecological processes contained within rivers and their riparian zones and reservoirs, lakes, wetlands and their fringing vegetation.                                                                                                                                                                                                                                                    |  |  |  |
| Aquiclude          | A geologic formation which may contain water (sometimes in appreciable quantities), but is incapable of transmitting significant quantities under ordinary field conditions.                                                                                                                                                                                                                                                                                    |  |  |  |
| Aquifer            | A saturated, permeable geological unit that is permeable enough to yield economic quantities of water to boreholes.                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Aquifer system     | Intercalated permeable and poorly permeable materials that comprise two or<br>more permeable units separated by aquitards which impede vertical<br>groundwater movement but do not affect the regional hydraulic continuity of the<br>system.                                                                                                                                                                                                                   |  |  |  |
| Aquitard           | A saturated geological unit with a relatively low permeability that retards and restricts the movement of water, but does not prevent the movement of water; while it may not readily yield water to boreholes and springs, it may act as a storage unit.                                                                                                                                                                                                       |  |  |  |
| Artesian aquifer   | A confined aquifer under hydrostatic pressure.                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Artesian bore      | A 'flowing' bore, where the piezometric head level is at an elevation higher than ground level, such that water freely flows out of the bore without mechanical assistance.                                                                                                                                                                                                                                                                                     |  |  |  |
| Attenuation        | The breakdown or dilution of contaminated water as it passes through the ground.                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Available drawdown | The height of water above the depth at which the pump is set in a borehole at the time of water level measurement.                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Baseflow           | Part of the discharge which enters a stream channel mainly from groundwater (but also from lakes and glaciers) during long periods when no precipitation (or snowmelt) occurs.                                                                                                                                                                                                                                                                                  |  |  |  |
| Basin              | A depression of large size in which sediments have accumulated.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |





| Bedrock                 | A general term for the solid rock that lies underneath the soil and other<br>unconsolidated material. Also referred to basement. When exposed at the<br>surface it is referred to as rock outcrop.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bore                    | <ul> <li>An artificially constructed or improved groundwater cavity which can be used for the purpose of intercepting, collecting or storing water from an aquifer; observing or collecting data and information on water in an aquifer; or recharging an aquifer.</li> <li>In this report, the term 'well' refers to infrastructure used to extract oil or gas an produced water from the subsurface. A 'bore' refers to the structure that is use to extract groundwater for domestic, stock, irrigation, industrial or commercial purposes.</li> </ul>                                                                                    |  |  |  |
| Borehole                | See definition for Bore.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Brackish                | Water that contains between 3,000 and 10,000 mg/l of total dissolved solids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Brine                   | Water that contains more than 35,000 mg/l of dissolved solids, saturated or nearly saturated with a salt – concentrate produced as a by-product of RO process. Also known as RO concentrate.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Brine Containment Ponds | Brine containment pond located downstream of the ROP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Catchment               | <ul> <li>(a) Area of land that collects rainfall and contributes to surface water (streams, rivers, wetlands) or to groundwater.</li> <li>(b) The total area of land potentially contributing to water flowing through a particular point.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Cone of depression      | The piezometric groundwater surface which defines the area of influence of a borehole. The shape of a cone with large diameter at top.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Confined aquifer        | An aquifer overlain by a confining layer of significantly lower hydraulic conductivity in which groundwater is under greater pressure than that of the atmosphere; the aquifer is bounded above and below by an aquiclude.                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Contamination           | The introduction of any substance into the environment by human activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| DERM                    | Department of Environment and Resource Management recently created through a merger of the DNRW and the Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Discharge               | Water that moves from a groundwater body to the ground surface (or into a surface water body such as a lake or the ocean). Discharge typically leaves aquifers directly through seepage (active discharge) or indirectly through capillary rise (passive discharge). The term is also used to describe the process of water movement from a body of groundwater.                                                                                                                                                                                                                                                                             |  |  |  |
| Discharge area          | Where significant amounts of groundwater come to the surface, either as liquid water or as vapour by evaporation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Dissolved solids        | Minerals and organic matter dissolved in water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Drawdown                | The lowering of a watertable resulting from the removal of water from an aquifer or reduction in hydraulic pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Ecosystem               | An organic community of plants, animals and bacteria and the physical and chemical environment they inhabit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Elevation               | A general term for a topographic feature of any size that rises above the adjacent land or the surrounding ocean bottom; a place or station that is elevated. The vertical distance from a datum (usually mean sea level) to a point or object on the Earth's surface; especially the height of a ground point above the level of the sea. The term is used synonymously with altitude in referring to distance above sea level, but in modern surveying practice the term elevation is preferred to indicate heights on the Earth's surface, whereas altitude is used to indicate the heights of points in space above the Earth's surface. |  |  |  |
| EMP                     | Environmental Management Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Epeirogenic             | The slow movements of the Earth's crust leading to the formation of features.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| EPP                     | Environmental Protection (Water) Policy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |





| Equipotential (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A line connecting points of equal hydraulic potential or hydraulic head.                                                                                                                                                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The conversion of a liquid into a vapour. In the hydrological cycle, evaporation involves heat from the sun transforming water (held in surface storages in soil) from a liquid into a gaseous state. This allows the water to move from water bodies or the soil and enter the atmosphere as water vapour. |  |  |
| Fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A zone of displacement in rock formations resulting from forces of tension or compression in the earth's crust.                                                                                                                                                                                             |  |  |
| Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A geographical area under which an oil or gas reservoir lies.                                                                                                                                                                                                                                               |  |  |
| Flow rate<br>Flow rate |                                                                                                                                                                                                                                                                                                             |  |  |
| Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>(a) A unit in stratigraphy defining a succession of rocks of the same type. (b) A body of rock strata that consists of a certain lithology or combination of lithologies.</li> </ul>                                                                                                               |  |  |
| Fresh water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water that contains less than 1,000 mg/L total dissolved solids.                                                                                                                                                                                                                                            |  |  |
| GAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Great Artesian Basin                                                                                                                                                                                                                                                                                        |  |  |
| Gathering system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | all infrastructures required to transfer produced water from oil and gas producing wells to the water management ponds and treatment plants.                                                                                                                                                                |  |  |
| GDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Groundwater Dependant Ecosystem: ecosystems whose ecological processes and biodiversity are wholly or partially reliant on groundwater.                                                                                                                                                                     |  |  |
| GLNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gladstone Liquefied Natural Gas                                                                                                                                                                                                                                                                             |  |  |
| Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water stored below the ground surface that saturates (in available openings) the soil or rock and is at greater than atmospheric pressure and will therefore flow freely into a bore or well. This term is most commonly applied to permanent bodies of water found under the ground.                       |  |  |
| Groundwater Dependent<br>Ecosystems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Terrestrial or aquatic ecosystems whose ecological function and biodiversity are partially or entirely dependent on groundwater.                                                                                                                                                                            |  |  |
| Groundwater flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The movement of water through openings in sediment and rock that occurs in the zone of saturation. Lateral groundwater flow - movement of groundwater in a non-vertical direction. Lateral groundwater flows are usually, although not always, more or less parallel to the ground surface                  |  |  |
| Groundwater<br>Management Areas<br>(GMA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The primary administrative boundaries defining the regions over which the Great Artesian Basin groundwater resources are regulated.                                                                                                                                                                         |  |  |
| Groundwater<br>Management Units<br>(GMU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The administrative subdivision of the aquifer formations that are regulated within each Groundwater Management Area.                                                                                                                                                                                        |  |  |
| Groundwater model A simplified conceptual or mathematical image of a groundwater system, describing the features essential to the purpose for which the model was developed and including various assumptions pertinent to the system. Mathematical groundwater models can include numerical and analytical mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |  |  |





| Groundwater resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All groundwater available for beneficial use, including both human and natural uses.                                                                                                                                                                                                                                                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| HDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Horizontal directional drilling.                                                                                                                                                                                                                                                                                                               |  |  |  |
| Head (hydraulic head,<br>static head)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The energy contained within a column of water resulting from elevation or pressure. The static head is the height at which the surface of a column of water could be supported against the action of atmospheric pressure.                                                                                                                     |  |  |  |
| Hydraulic conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A measure of the ease with which water will pass through earth material. It is defined as the rate of flow through a cross-section of one square metre under a unit hydraulic gradient at right angles to the direction of flow {m/day}.                                                                                                       |  |  |  |
| Hydraulic gradient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (a) The slope of the water table or potentiometric surface. The hydraulic gradient is determined from the decline in groundwater level ( $\delta$ h) at two measuring points divided by the distance between them ( $\delta$ l). (b) The change in hydraulic head with direction.                                                              |  |  |  |
| Hydrology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The study of water and water movement in relation to the land. Deals with the properties, laws, geographical distribution and movement of water on the land or under the Earth's surface.                                                                                                                                                      |  |  |  |
| Infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The process whereby water enters the soil through its surface. The downward movement of water into the soil profile.                                                                                                                                                                                                                           |  |  |  |
| Interstices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Openings or void space in a rock capable of holding water.                                                                                                                                                                                                                                                                                     |  |  |  |
| Isotropic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The condition of having properties that are uniform in all directions, opposite of anisotropic.                                                                                                                                                                                                                                                |  |  |  |
| Km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kilometres                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| L/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Litres per second                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Labile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Constantly undergoing or likely to undergo change; unstable.                                                                                                                                                                                                                                                                                   |  |  |  |
| Lithology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The physical and mineralogical characteristics of a rock. The characteristics, including grain size, of the strata of the subsurface media.                                                                                                                                                                                                    |  |  |  |
| LSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Langelier Saturation Index is a calculated number used to predict the calcium carbonate stability of water. It indicates whether the water will precipitate, dissolve, or be in equilibrium with calcium carbonate.                                                                                                                            |  |  |  |
| Maximum Drawdown<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maximum allowable drawdown defined for each aquifer in order to protect<br>MNES (under the EPBC Act). If reached, it corresponds to an impact to MNES<br>and triggers a series of make good actions. A threshold level has also been<br>defined to provide an early impact warning prior to potentially reaching the<br>Maximum Drawdown level |  |  |  |
| m AHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metres in Australian Height Datum                                                                                                                                                                                                                                                                                                              |  |  |  |
| mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Milligrams per litre                                                                                                                                                                                                                                                                                                                           |  |  |  |
| ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mega litre                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| <ul> <li>(a) The part of a rock formation that appears at the surface of the ground</li> <li>(b) A term used in connection with a vein or lode as an essential part of the definition of apex. It does not necessarily imply the visible presentation of mineral on the surface of the earth, but includes those deposits that are sto to the surface as to be found easily by digging.</li> <li>(c) The part of a geologic formation or structure that appears at the surface the earth; also, bedrock that is covered only by surficial deposits such as alluvium.</li> <li>(d) To appear exposed and visible at the earth's surface; to crop out.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Overburden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Designates material of any nature, consolidated or unconsolidated, that overlies a deposit of useful materials, ores, or coalesp. those deposits that are mined from the surface by open cuts.                                                                                                                                                 |  |  |  |





| Perennial River           | A river which may be dry for part of the year, due to seasonal variations in weather.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Period                    | A geologic timeframe smaller than Eras and subdivided into Epochs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Permeability              | A measure of the capacity of rock or stratum to allow water or other fluids such<br>as oil to pass through it (ie. the relative ease with which a porous medium can<br>transmit a fluid). Typically measured in darcies or millidarcies.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Permeable                 | Materials that liquids flow though with relative ease.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Petroleum Legislation     | The Petroleum and Gas (Production and Safety) Act 2004 (Qld) and the Petroleum Act 1923 (Qld) and associated Regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| рН                        | A measure of the acidity or alkalinity of water. It is related to the free hydrogen ion concentration in solution $pH = 7$ is neutral; $pH < 7$ acidic; $pH > 7$ alkaline. (activity). Used as an indicator of acidity ( $pH < 7$ ) or alkalinity ( $pH > 7$ ).                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Piezometer                | <ul> <li>A pressure measuring device (a tube or pipe, or other device), open to the atmosphere at the top and to water at the bottom, and sealed along its length, used to measure the hydraulic head in a geologic unit. This device typically is an instrument that measures fluid pressure at a given point rather than integrating pressures over a well.</li> <li>(b) a borehole cased and completed with a seal(s) adjacent to the slotted section to observe the groundwater pressure over the slotted interval rather than the elevation of the watertable.</li> </ul>                                                                                        |  |  |
| Piezometric surface       | A surface of equal hydraulic heads or potentials, typically depicted by a map of equipotential contours such as a map of water-table elevations. See potentiometric surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Piper diagram             | A graphical means of displaying the ratios of the principal ionic constituents in water. (modified from Davis and DeWiest, 1966, and Freeze and Cherry, 1979). SMOW is standard mean ocean water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Porosity                  | The volume of the voids divided by the total volume of porous medium (the percentage of a rock or soil that is represented by open voids or spaces): effective - the interconnected porosity which contributes to groundwater flow. Often used synonymously with specific yield although the two terms are not synonymous. fracture - the porosity of the fractures; intergranular - the porosity between the grains of a sediment or sedimentary rock; primary - intergranular porosity formed during the deposition of the sediment or from vesicles in igneous rocks; secondary - porosity formed after the rock is lithified by either dissolution or fracturing. |  |  |
| Potable water             | Water that is safe and palatable for human use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Preferential flow         | The preferential movement of groundwater through more permeable zones in the subsurface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Production bore (or well) | A bore from which abstraction of groundwater may take place, either through pumping or artesian flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| QA/QC                     | Quality Assurance/Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Recharge                  | The water that moves into a groundwater body and therefore replenishes or increases sub-surface storage. Recharge typically enters an aquifer by rainfall infiltrating the soil surface and then percolating through the zone of aeration (unsaturated soil). Recharge can also come via irrigation, the leakage of surface water storage or leakage from other aquifers. Recharge rate is expressed in units of depth per unit time (e.g. mm/year).                                                                                                                                                                                                                  |  |  |
| Recovery                  | The rate at which the water level in a pumped bore rises once abstraction has ceased.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Rehabilitation            | To restore to former condition or status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |





| Risk assessment                                   | The overall process of using available information to predict how often hazards or specified events may occur (likelihood) and the magnitude of their consequences (adapted from AS/NZS 43601999).                                                                                                                                                                                                                                                                                   |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Risk management                                   | The systematic evaluation of the water supply system, the identification of hazards and hazardous events, the assessment of risks, and the development and implementation of preventive strategies to manage the risks.                                                                                                                                                                                                                                                              |  |  |
| River                                             | A physical channel in which runoff will flow; generally larger than a stream, but often used interchangeably.                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Runoff                                            | <ul> <li>(a) That portion of the rainfall that is not absorbed by the deep strata, is used by vegetation or lost by evaporation, or that may find its way into streams as surface flow.</li> <li>(b) Water flowing down slope over the ground surface, also known as overland flow. Precipitation that does not infiltrate into the soil and is not stored in depressions becomes run-off.</li> </ul>                                                                                |  |  |
| RO                                                | Reverse Osmosis – water filtration/desalination method that employs a high pressure differential across a membrane to selectively remove contaminants in the CSG water. As the water is forced across the membrane all molecules larger than water are excluded leaving behind a concentrated waste stream (brine). RO is in widespread use for applications such as desalinisation of seawater, treatment of municipal water supplies and purification of industrial cooling water. |  |  |
| ROP                                               | Reverse Osmosis Plant – Water treatment plant employing treatment using the RO process (located adjacent to Compression Facility, where required).                                                                                                                                                                                                                                                                                                                                   |  |  |
| Saline water                                      | Water that is generally considered unsuitable for human consumption or for irrigation because of its high content of dissolved solids.                                                                                                                                                                                                                                                                                                                                               |  |  |
| Salinity                                          | An accumulation of soluble salts in the soil root zone, at levels where plant growth or land use is adversely affected. Also used to indicate the amounts of various types of salt present in soil or water. (see Total Dissolved Solids).                                                                                                                                                                                                                                           |  |  |
| Sanitation                                        | The treatment and disposal of waste from the human body and grey water generated through household activity.                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| SAR                                               | Sodium Adsorption Ratio the ratio of sodium to calcium and magnesium. For most irrigation schemes a SAR of between 10 and 20 is required to avoid the sodicity of the water degrading the physical structure of the soils                                                                                                                                                                                                                                                            |  |  |
| Screen, slotted section                           | A section of casing, usually steel or PVC, with apertures or slots cut into the tubing to allow groundwater to flow through. Screen usually refers to machined sections with openings that can be sized appropriate to the aquifer matrix and filter pack grading.                                                                                                                                                                                                                   |  |  |
| Sediment                                          | <ul> <li>a) Solid material, both mineral and organic, that is in suspension, is being transported, or has been moved from its site of origin by air, water, gravity, or ice and has come to rest on the Earth's surface either above or below sea level.</li> <li>b) Solid material, whether mineral or organic, which has been moved from its position of origin and redeposited.</li> </ul>                                                                                        |  |  |
| Sedimentary rock                                  | Any rock that has formed from the consolidation of sediment.                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Seep                                              | Point at where seepage occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Sorption                                          | The general process by which solutes, ions, and colloids become attached (sorbed) to solid matter in a porous medium. Sorption includes absorption and adsorption.                                                                                                                                                                                                                                                                                                                   |  |  |
| Specific storage (Ss)                             | The amount of water absorbed, released or expelled from storage in a unit volume (i.e. $1 \times 1 \times 1$ ) of aquifer under a unit change in hydraulic head (i.e. $\delta h = \pm 1$ ).                                                                                                                                                                                                                                                                                          |  |  |
| Standing water level<br>(static water level, SWL) | The depth to groundwater measured at any given time when pumping or recovery is not occurring.                                                                                                                                                                                                                                                                                                                                                                                       |  |  |





| Storativity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The volume of water that a saturated confined aquifer releases from storage per<br>unit surface area of the aquifer per unit decline in the water table. Quantifies the<br>aquifers ability to release water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Stratigraphy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The study of stratified rocks, especially their age, correlation and character.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Subsidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>(a) The vertical movement of the surface, although small-scale horizontal movements may be present. This sinking or settlement of the land surface can be caused by a number of processes, including production of fluids, solution, compaction, or cooling of magmatic bodies.</li> <li>(b) Lowering of the ground surface resulting from removal of hydrostatic pore space pressure (through buoyancy) or collapse of underground mine voids.</li> </ul>                                                                                                                                                                                                                                                        |  |  |  |
| Threshold Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Defined value (measurable criteria such as water level, water quality) that if reached for an environmental or operation monitoring aspect provides an early warning to a potentially upcoming impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Total dissolved solids<br>(TDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | An expression of the total soluble mineral content of water determined by either measuring the residue on evaporation or the sum of analysed chemical constituents. Usually quoted in milligrams per litre (mg/L) or the equivalent parts per million (ppm), TDS may also be approximated from electrical conductivity (EC) measurements using the conversion EC ( $\mu$ S/cm) x 0.68 = TDS (mg/L) (see Electrical Conductivity).                                                                                                                                                                                                                                                                                          |  |  |  |
| Transmissivity (T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The rate of horizontal groundwater flow through the full saturated thickness (b) of an aquifer across a unit width (i.e. an area of b x 1) (ie. through a 1 metre wide slice across the entire depth of an aquifer) under a unit hydraulic gradient (i.e. $\delta h / \delta I = 1$ ). Transmissivity may be quoted as m <sup>3</sup> /day/m [L <sup>3</sup> /T/L], but is more commonly expressed as m <sup>2</sup> /day [L <sup>2</sup> /T]. It provides a better comparison of the possible yield of an aquifer than saturated hydraulic conductivity because it takes into account the saturated thickness of an aquifer. Transmissivity is related to the hydraulic conductivity of the aquifer by the equation T=Kb. |  |  |  |
| Tremie pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A narrow diameter pipe, which keeps the sealing materials from becoming bridged inside the well casing and prevents dissolution of liquid grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Trigger level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Value of an operational or environmental measurable criteria (such as water level or water quality values) that if reached corresponds to the petroleum field activities having an impact on the environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Unconfined aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | An aquifer with no confining layer between the water table and the ground surface where the water table is free to fluctuate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Vibrating Wire<br>Piezometer (VWP)<br>The sensor of the VWP consists of a pressure transducer with an internal t<br>resonating wire connected to a sensitive perpendicular diaphragm. Water<br>pressure exerted against the diaphragm wall causes it to deflect and alter t<br>tension of the wire and this in turn causes the wire to resonate at different<br>frequencies. An electromagnetic field induced from coils adjacent to the<br>vibrating wire causes it to be plucked and resonate at a frequency signal w<br>is sent through the signal cable to a readout unit or logger at the ground<br>surface. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Watertable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>(a) The upper surface of a body of groundwater occurring in an unconfined aquifer. At the watertable, pore water pressure equals the atmospheric pressure.</li> <li>(b) The surface of a body of groundwater within an unconfined aquifer at which the pressure is atmospheric.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Well field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A group of bores in a particular area usually used for groundwater abstraction purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |





| Wild Rivers | DERM defines Wild rivers some river systems which are relatively untouched by development and are therefore in near natural condition, with all, or almost all, of their natural values intact to preserve them these valuable river systems as a part of QLD natural heritage for the benefit of current and future generations |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | Wild River areas include unique ecosystems, rare and threatened plants, birds and marine and estuarine species.                                                                                                                                                                                                                  |  |
| Yield       | The quantity of water removed from a water resource e.g. yield of a borehole.                                                                                                                                                                                                                                                    |  |



# 14.0 REFERENCES

ADWG, 2004. Australian Drinking Water Guideline, National Health and Medical Research Council (NHMRC) and Natural Resource Management Ministerial Council (NRMMC)

Alexander, E.M., 1996a. Reservoirs and Seals. In: Alexander, E.M. and Hibburt, J.E. (Eds), 1996, The petroleum geology of South Australia, Vol. 2: Eromanga Basin. South Australia. Department of Primary Industries and Resources. Petroleum Geology of South Australia Series, pp. 141-147.

ANZECC& ARMCANZ, 2000 (Australian and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand). Australian Water Quality Guidelines for Fresh and Marine Waters, Canberra

AS/NZ Standard 4360, 2004, Risk management - Principles and guideline

Australian Government Department of Environment and Water Resources, 2000, Water Act 2000

Australian Stratigraphic Database, Geosciences Australia, Available at: http://www.ga.gov.au/products-services/data-applications/reference-databases/stratigraphic-units.html

BOM, 2011 (Bureau of Meteorology). Climate Statistics from web-site (www.bom.gov.au), September 2011

BOM, 2011, Flood Warning System for the Thompson & Barcoo Rivers & Cooper Creek Page 1

BRS, 2000, Radke B.M, Ferguson J., Cresswell R.G, Ransley T.R, Habermehl M.A, Hydrochemestry and implied hydrodynamics of the Cadna-Owie-Hooray Aquifer Great Artesian Basin, Bureau of Rural Sciences, Canberra

DERM, 2004 Regulated Dam Guidelines, Manual for Assessing Hazard Categories and Hydraulic Performance of Dams.

DERM, 2005 a, GAB Hydrogeological Framework for the GAB WRP Area, QLD Department of Environment and Resource Management

DERM, 2010, The Cooper Creek Basin Wild River Area Summary: Natural Values Assessment, QLD Department of Environment and Resource Management

DERM, 2011, Groundwater Database, 2011 Version 6

Draper, J.J. (Editor), 2002, Geology of the Cooper and Eromanga Basins, Queensland. Queensland Mineral and Energy Review Series, Queensland Department of Natural Resources and Mines

Fensham and Fairfax, 2005, The Great Artesian Basin Water Resource Plan: Ecological Assessment of GAB springs in Queensland

Fensham, R.J. and Fairfax, R.J. 2009 Development and trial of a spring wetland monitoring methodology in the Great Artesian Basin, Queensland. Department of Environment and Resource Management.

Government of South Australia, Primary Industeris and Resources, SA, 2009, Petroleum and Geothermal in South Australia – Cooper Basin

Gravestock, D., Callen, R.A., Alexander, E.M. and Hill, A.J., 1995. STRZLECKI, South Australia, sheet SH54-2. South Australia Geological Survey, 1:250,000 Series – Explanatory notes.

Herczeg A. L., Love A. J., 2007, Review of Recharge Mechanisms for the Great Artesian Basin, CSIRO

Herczeg A.L., 2008, Background report on the Great Artesian Basin. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Australia. 18pp.





Lowe-Young B.S., Mackie S.L, Heath RS., May 1997, The Cooper-Eromanga petroleum system, Australia: investigation of essential elements and processes, Indonesian Petroleum Association (IPA), Proceedings of the Petroleum Systems of SE Asia and Australasia Conference

Petroleum and Geothermal Group, 2008, Cooper Basin fact sheet

PIRSA, Cooper Basin, 1998, The petroleum geology of South Australia, Volume 4, Cooper Basin (Gravestock)

PIRSA, Eromanga Basin, 2006, The petroleum geology of South Australia, Eromanga Basin, Volume 2, PIRSA

Primary Industry and Resources South Australia, 1998, Cooper-Eromanga Basin Exploration Opportunities Block CO98-A to K

QLD Water Act 2000 (Reprinted in June 2011) Office of the Queensland Parliamentary Counsel

Queensland Department of Environment, 1994, Environmental Protection Act 1994.

Queensland Department of Environment, 2009, Environmental Protection (Water) Policy 2009, under the Environmental Protection Act 1994.

Queensland Department of Mines and Energy, 2004, Petroleum and Gas (Production and Safety) Act 2004.

Queensland Department of Natural Resources and Mines, 2005, Hydrogeological Framework Report for the Great Artesian Basin Water Resource Plan Area.

Queensland Department of Natural Resources and Water, 2006, Great Artesian Basin Water Resource Plan 2006 (GAB WRP).

Queensland Department of Natural Resources and Water, 2007, Great Artesian Basin Resource Operations Plan (GAB ROP)

Queensland Government Water Resource Plan 2003. Office of the Queensland Parliamentary Counsel, Brisbane. Available at: http://www.legislation.qld.gov.au/LEGISLTN/CURRENT/W/WaterReMooP03.pdf

QWQG 2006, Queensland Water Quality Guidelines 2006 Available at: http://www.derm.qld.gov.au/environmental\_management/water/queensland\_water\_quality\_guidelines/

Reynolds, S.D., Mildren, S.D., Hillis, R.R., and Meyer, J.J., 2004, The in situ stress field of the Cooper Basin and its implications for hot dry rock geothermal energy development: PESA Eastern Australian Basins Symposium II, p. 431-440

Santos 2004, Cooper Basin, Review of Regional Petroleum Potential

Santos 2005, Santos Engineering Standard, DESIGN PRACTICE 1515-10-G008-0, Rev 2, 2005

Santos 2010 a, Commencement of proposed amendment to Environmental Protection Act 1994:

Santos 2010 b, Response to DERM Re: Use of fracture fluids containing BTEX, Santos 2010b

Santos 2011 a, Extract from DEEDI Presentation, Power Point Presentation, 28 July 2010

Santos 2011 b, Environmental Management Plan for the South West Queensland Eastern Project Area, 2011

Santos 2011 c, Environmental Management Plan for the South West Queensland Central Project Area, 2011





Santos 2011 d, Environmental Management Plan for the South West Queensland Western Project Area, 2011

Santos, 2011, EHSMS09 Hazard Identification, Risk Assessment & Control

SKM, 2001 (Sinclair Knight Merz Pty Ltd). Environmental Water Requirements of Groundwater Dependent Ecosystems, Environmental Flows Initiative Technical Report Number 2, Commonwealth of Australia, Canberra

URS, 2010, Water Flooding Impact Assessment: Further Information to Support Assessment of Potential Impacts of Water Flooding in PL295





# **15.0 LIMITATIONS OF THIS REPORT**

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

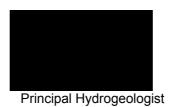
In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document. Legislative Framework






# **Report Signature Page**

#### **GOLDER ASSOCIATES PTY LTD**





HW,FH,IL/RKH;LJ/fh:hw/eo

A.B.N.

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

c:\users\eoakey\desktop\117636010-3000-001-rev3-cooper basin uwir\_lbj.docx





# **APPENDIX A** DERM: Amend or Modify Notice

5 June 2013 Report No. 117636010-3000-001-Rev3





8 May 2012

| Santos Ltd |  |
|------------|--|
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |

Dear Mr

Please find attached an amend and resubmit notice for Santos Ltd's (Santos) Underground Water Impact Report (UWIR) for the Cooper Basin Oil and Gas Fields, South West Queensland.

According to section 384(2) of the *Water Act 2000*, Santos must modify the report in the way stated in the notice and give the amended report to the department no later than 40 business days after receiving this notice. Alternatively, Santos can make a submission to the chief executive as to why the report should not be modified by 8 June 2012.

The department would like to meet with Santos to discuss the notice at a mutually agreeable time. Should you have any questions in relation to this letter please contact **sector** from the department on telephone

Yours Sincerely

Manager – Energy Implementation Energy Resources Environment and Natural Resource Regulation



This statutory notice is issued by the chief executive pursuant to section 384 of the Water Act 2000, to advise you of the need to modify the Underground Water Impact Report you submitted.





Your reference : UWIR- Cooper Basin Oil and Gas Fields, SWQ

Our reference : 489261

Attention:

#### Dear Mr

#### Re: Direction to amend an Underground Water Impact Report

The chief executive requires you to amend and resubmit the Underground Water Impact Report (UWIR) for the Santos Cooper Basin Oil and Gas Fields, SW QLD. The UWIR should be amended in the following ways:

#### Water quantity produced or taken (previous rights and 3 year forecast)

- 1. Provide a description of the methodology for measuring the quantity of water extraction because of the exercise of previous underground water rights. This description of methodology is necessary to assess whether the quantity of water estimated in the report is accurate.
- 2. Divide the estimate of water extraction into target formations and provide a description about the methodology for estimating the quantity of water to be extracted for a three year period, starting on the consultation day for the report. This description of methodology is necessary to assess whether the quantity of water estimated in the report is accurate.
- 3. Provide the following:
  - the quantity of water to be produced each year over the next three years for each formation and the methodology used to determine these estimates;
  - data in an appendix from Figures 33 and Figures 34 in tabular format (the data presented in these figures lack meaning if number values are not provided);
  - the number of production wells for each tenure;
  - clarification about which graph relates to both Central and Warrego West in Figure 34 of the report.



This information is necessary to ensure the accuracy of the information provided about previous and future water production and take.

#### Description of aquifer/s affected or likely to be affected

- 4. Accurately describe each affected aquifer affected or likely to be affected by:
  - discussing the influence of the faults identified in Figure 14 on the hydrogeology of the area;
  - clarifying if water level data can be derived from production wells e.g through reservoir pressure data;
  - amending symbols in Figure 27 to provide distinct colour for each formation;
  - providing a supporting table for Figure 27 indicating the number of bores for each formation within the report area;
  - clarifying the estimated water extraction of the bores identified including those with volumetric water entitlements;
  - amending Table 10 to remove the repeated listing of RN18144 and RN23349 and amend the first paragraph in section 5.4 accordingly.
  - including static head data from the groundwater database for artesian monitoring bores;
  - clarifying the extent of the data available to provide justification for not providing an analysis of the trends in water level change for aquifers because of the exercise of underground water rights.

This information is necessary to properly understand the structural framework of the affected aquifers, and to assess the accuracy of how they are described in the report.

#### Predicted impacts – Immediately and Long Term Affected Areas

- 8. Provide additional map or maps of the Cooper Basin Oil and Gas Fields' immediately affected area that clearly shows the areas of the aquifer where the water level is predicted to decline by more than the bore trigger threshold within three years after the consultation date. The maps should clearly demonstrate:
  - a. detailed groundwater contours; and
  - b. yearly drawdown predictions.
- 9. Provide additional map or maps at a smaller scale to clearly demonstrate the groundwater contours within the affected areas (Figures 39-41 and Figure 43) where the water level is predicted to decline by more than the bore trigger threshold at any time after the consultation date.
- 10. Indicate the tenure and lot and plan on which the bores in the immediately/long term affected area are located. This is necessary to properly understand the predicted impacts, and the bores which will be potentially impacted.

#### Modelling approach and methodology



- 11. Provide the following description of methods and techniques in relation to the information provided about affected aquifers.
  - Clarify the rationale for the selection of the hydraulic parameters (i.e. how were the parameters inferred or derived from supporting reports) and include comment on any uncertainties that are associated with the selection of these parameters.
  - Provide justification and explanation of the footnote on page 85 about the shifting of water extraction between model layers 4 & 5.
  - Amend Table 25 to clarify which column refers to observed groundwater level (both columns state modelled groundwater level).
  - Provide a sensitivity analysis for the aquifer parameters listed on page 49 to provide guidance on the uncertainty in the predicted impacts associated with the assumptions of the parameter values. Include details on the selection of sensitivity run parameters, the technique used and a discussion of the results or conclusions (relevant plots or lists of sensitive parameters).
  - Discuss the role data from departmental monitoring bores have in model development, calibration and review.
  - Include estimates of predictive uncertainty for the modelled results and detail the method used and reasons for reaching these conclusions. This should include discussion on:
    - a. the potential for water extraction from Santos' South Australian operations to contribute to groundwater impacts in Queensland; and
    - b. the relevance of the recognition of hydraulic interaction between the Cooper and Eromanga Basins in water resource models of the Great Artesian Basin, particularly in South Australia.

This information is necessary to ensure the accuracy of the information provided about affected aquifers.

#### Review & Reporting on UWIR

- 12. Provide a program for review of the report which includes milestones for updating model inputs, calibrating the model and producing updated maps.
- 13. Provide a program for giving the chief executive a summary of the outcome of each review, including a statement of whether there has been a material change in the information or predictions used to prepare maps.

#### Water Monitoring Strategy

- 14. Provide further detail on the monitoring network design; namely, the number of monitoring locations and types of installations, and demonstrate how this design fills critical data gaps and will improve the understanding of impacts of underground water extraction.
- 15. Amend the report to state monthly monitoring only. The report can later be amended to require quarterly monitoring once a review of the initial two years of data has been conducted.



16. A program for reporting to the Queensland Water Commission about the implementation of the monitoring strategy.

#### Spring Impact Management Strategy

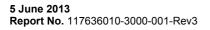
17. Provide a map indicating the 0.2m trigger threshold and clarify whether or not this trigger is exceeded for the springs identified outside of the tenement boundaries (e.g. the GAB discharge springs in the vicinity of the Eulo). This information is necessary to ensure the accuracy of the information provided about potentially affected springs.

#### Conclusion

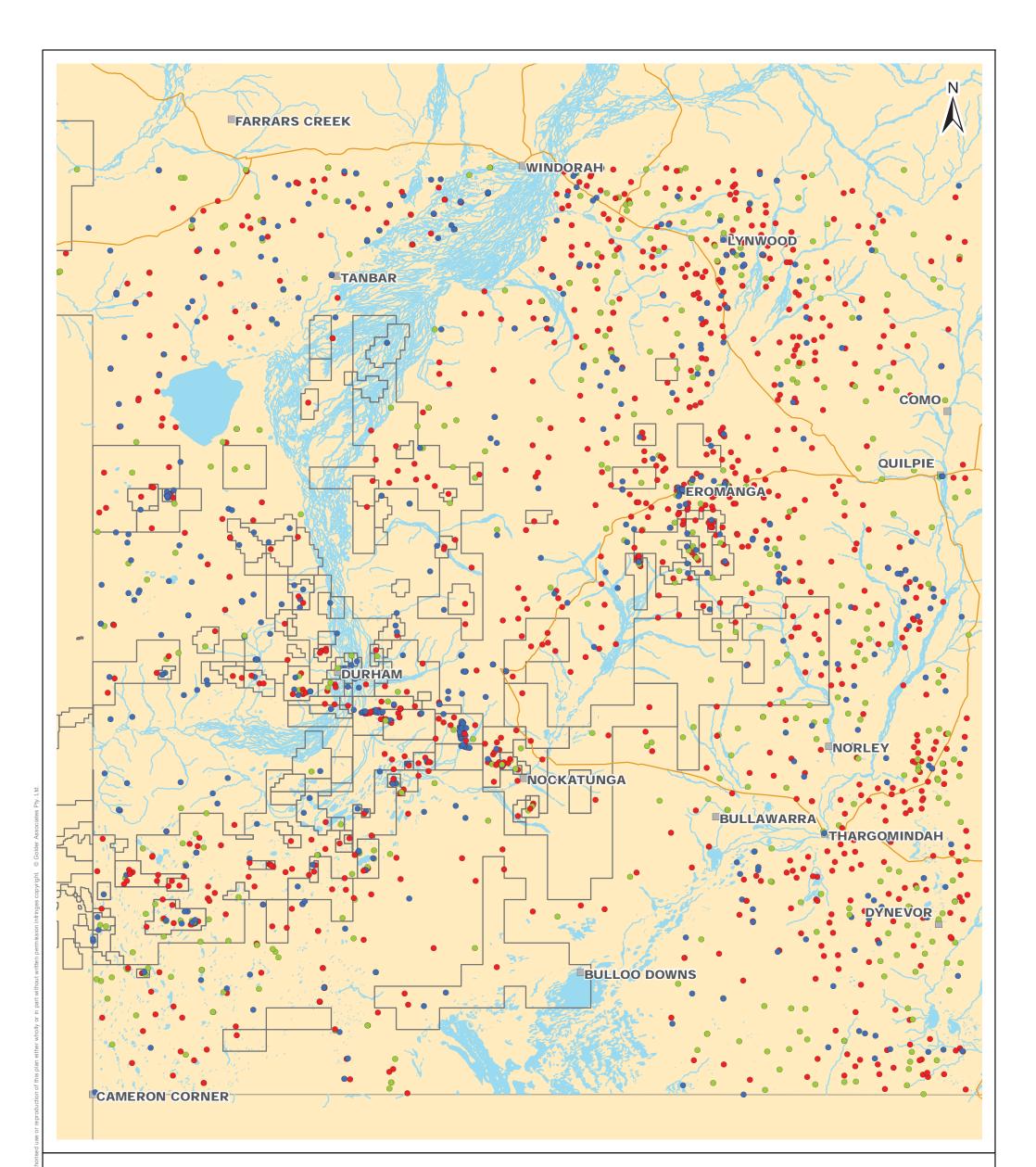
You must either:

- 1. submit the amended Underground Water Impact Report by no later than 40 business days after receiving this notice; or
- 2. make a submission to the chief executive by 8 June 2012 as to why the report should not be modified.

If you require more information, please contact Janet Menzies, on the telephone number listed below.


Delegate of the chief executive *Water Act 2000* 

| 8 May 2012 |  |  |
|------------|--|--|
| Date       |  |  |
| Enquiries: |  |  |
| Ph:        |  |  |
| Fax:       |  |  |
| Email:     |  |  |




# APPENDIX B

**Bore Metadata** 







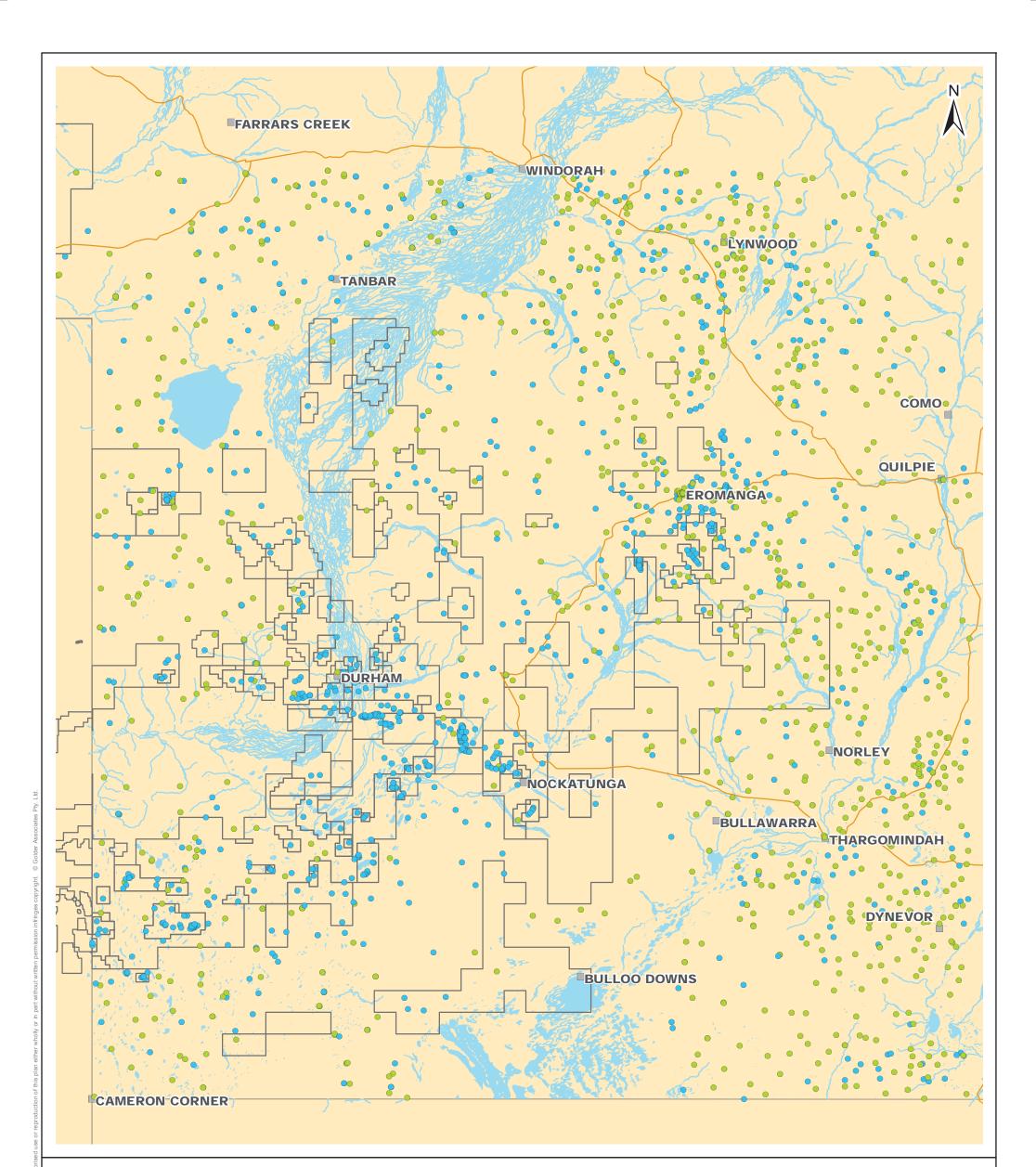
#### SANTOS

# **METADATA MAP: BORE STRATIGRAPHY**

#### COPYRIGHT

1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011




|           |                                                                                                                                                                   | 0 | 5 10                | 20                  | 30  | 40                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|---------------------|-----|------------------------------------|
|           | <b>ND</b><br>Town/Locality<br>Highway/Major Road                                                                                                                  |   |                     | E (at A<br>te Syste | · · | <b>1:1,5</b><br>S GDA <sup>2</sup> |
| Stratigra | River/Creek<br>Santos Operated Permits<br>aphy Score<br>1 - Good stratigraphy information<br>2 - Partial stratigraphy information available<br>3 - No information | D | ROJE<br>ATE:<br>RAW | N:                  |     |                                    |
|           |                                                                                                                                                                   |   |                     |                     |     |                                    |

50 Kilometres ,500,000 A 1994 010 012

## **APPENDIX B1**



File Location: J:/hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE/GIS/Projects/117636010\_R\_F0006\_CooperBasinMetadata\_Stratigraphy.mxd



#### SANTOS

# METADATA MAP: BORE CONSTRUCTION

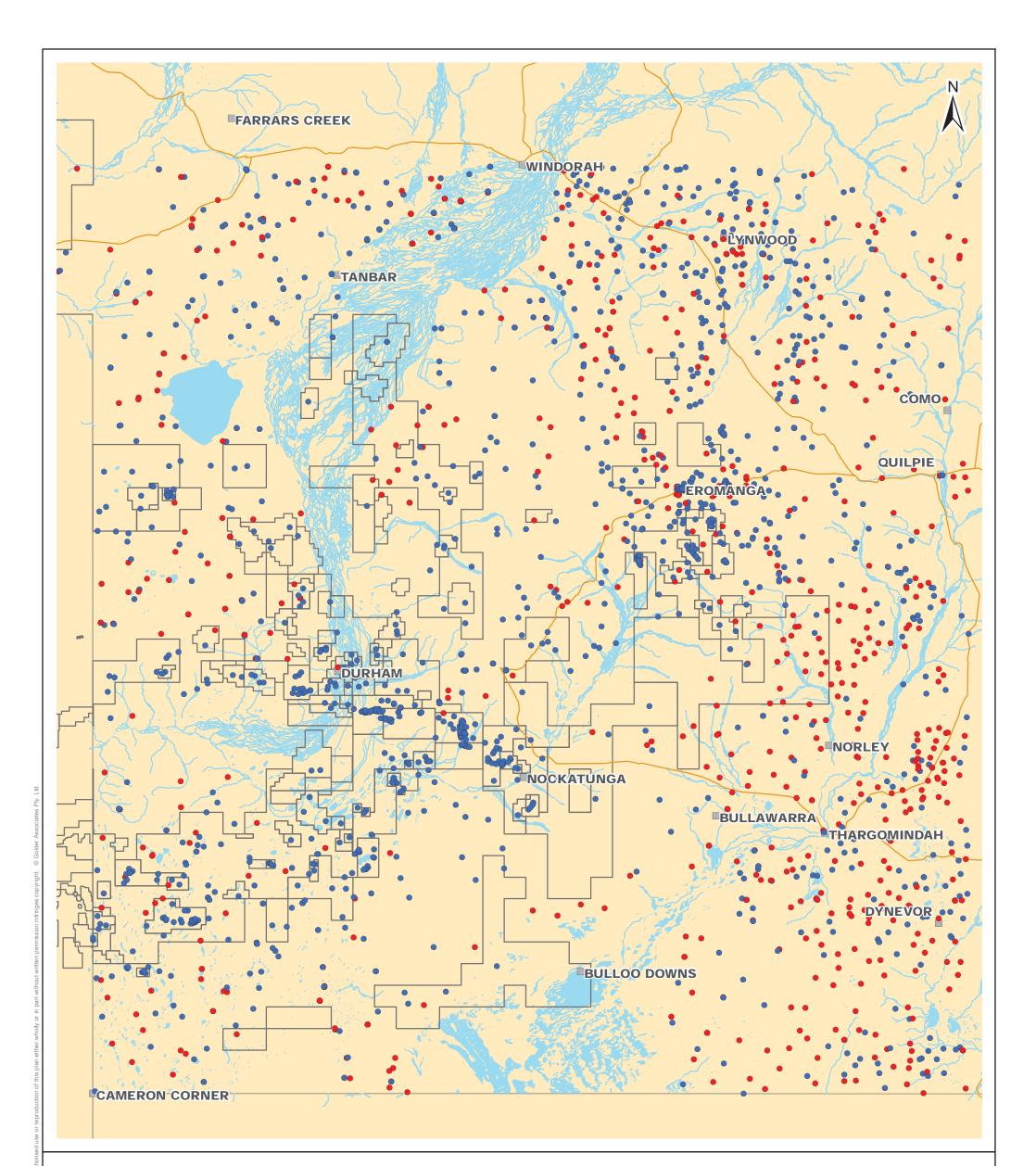
#### COPYRIGHT

1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011



# LEGEND Town/Locality Highway/Major Road River/Creek Santos Operated Permits Bore Construction Score 1 - Good bore construction practises 2 - Bore construction practice in doubt 3 - No information/ bad bore construction

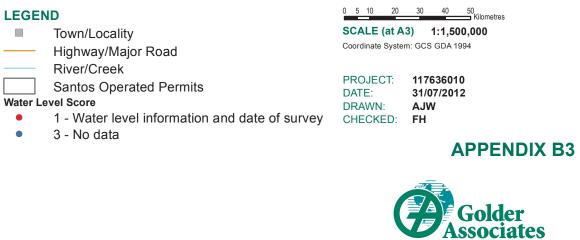



**SCALE (at A3)** 1:1,500,000 Coordinate System: GCS GDA 1994

| PROJECT: | 117636010  |
|----------|------------|
| DATE:    | 31/07/2012 |
| DRAWN:   | AJW        |
| CHECKED: | FH         |

# **APPENDIX B2**

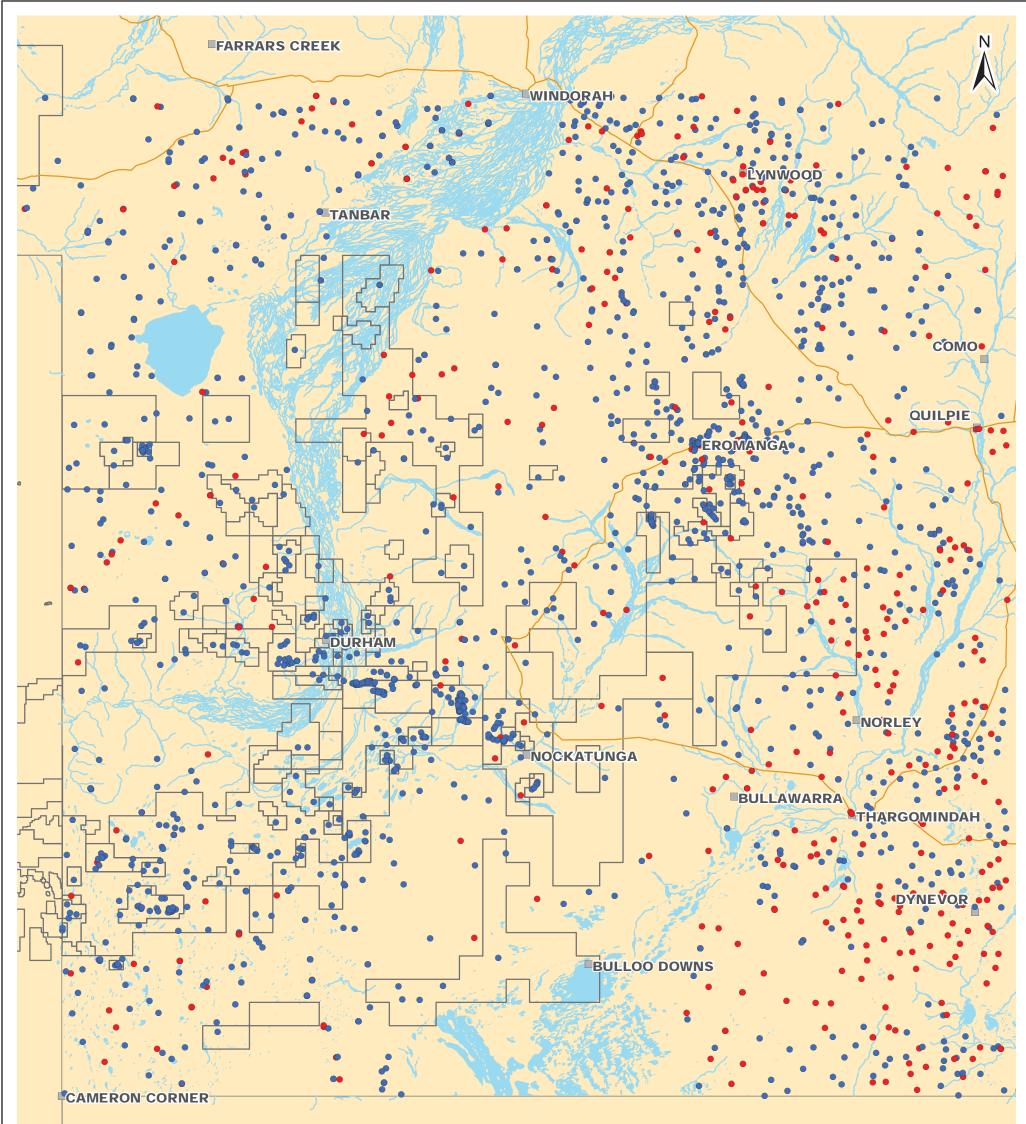



File Location: J:\hyd\2011\117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0005\_CooperBasinMetadata\_BoreConstruction.mxd



#### SANTOS

# METADATA MAP: WATER LEVEL

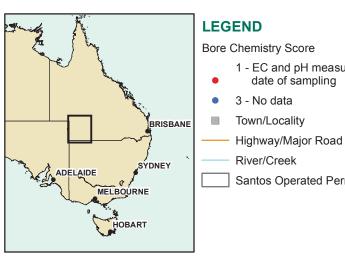


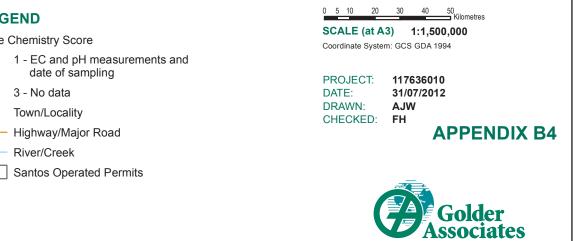



#### COPYRIGHT

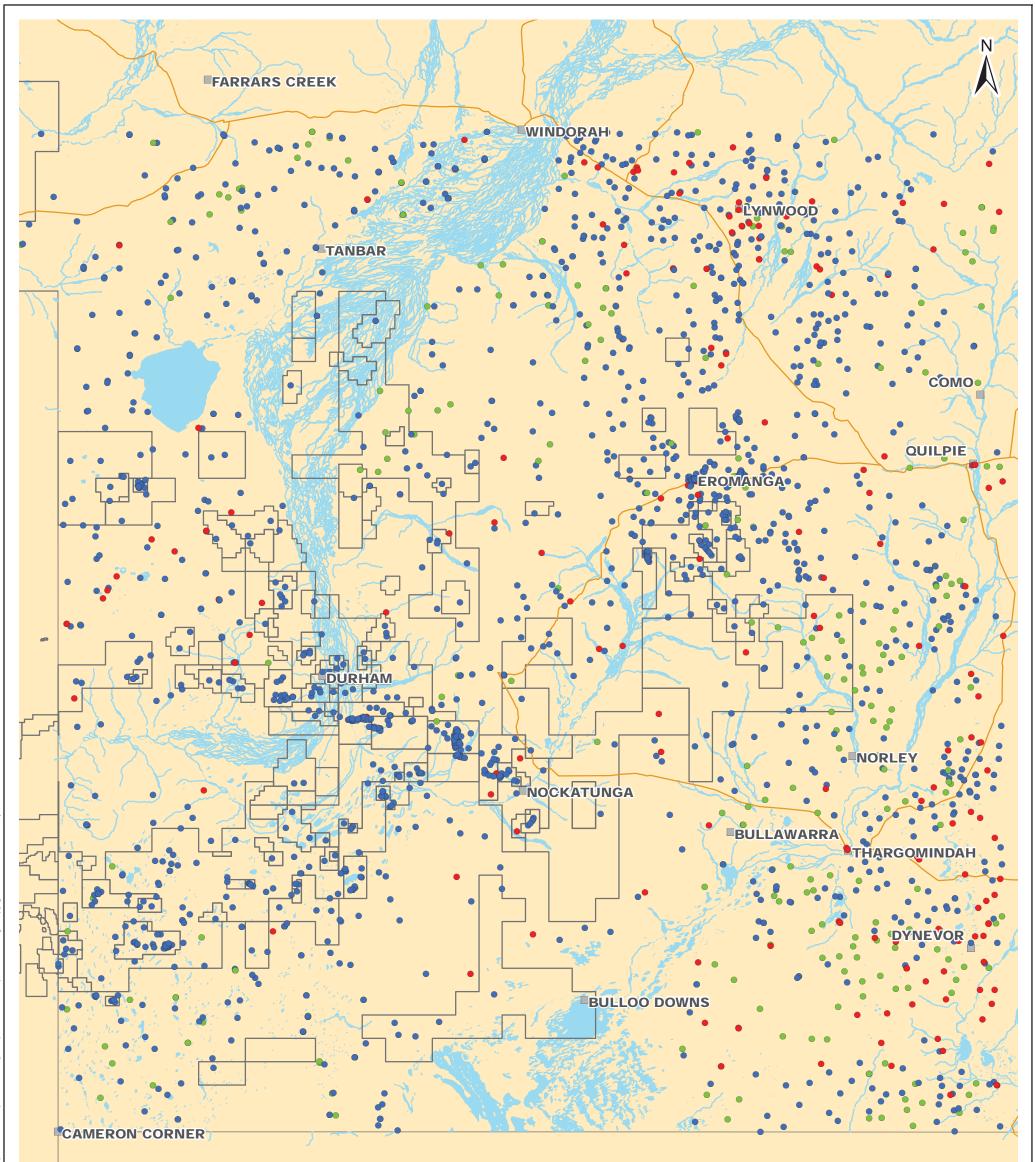
1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011

File Location: J:hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0007\_CooperBasinMetadata\_WaterLevel.mxd





#### SANTOS

# METADATA MAP: BORE CHEMISTRY


#### COPYRIGHT

1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011





File Location: J:\hyd/2011\117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0034\_CooperBasinMetadata\_BoreChemistry.mxd



#### SANTOS

COPYRIGHT

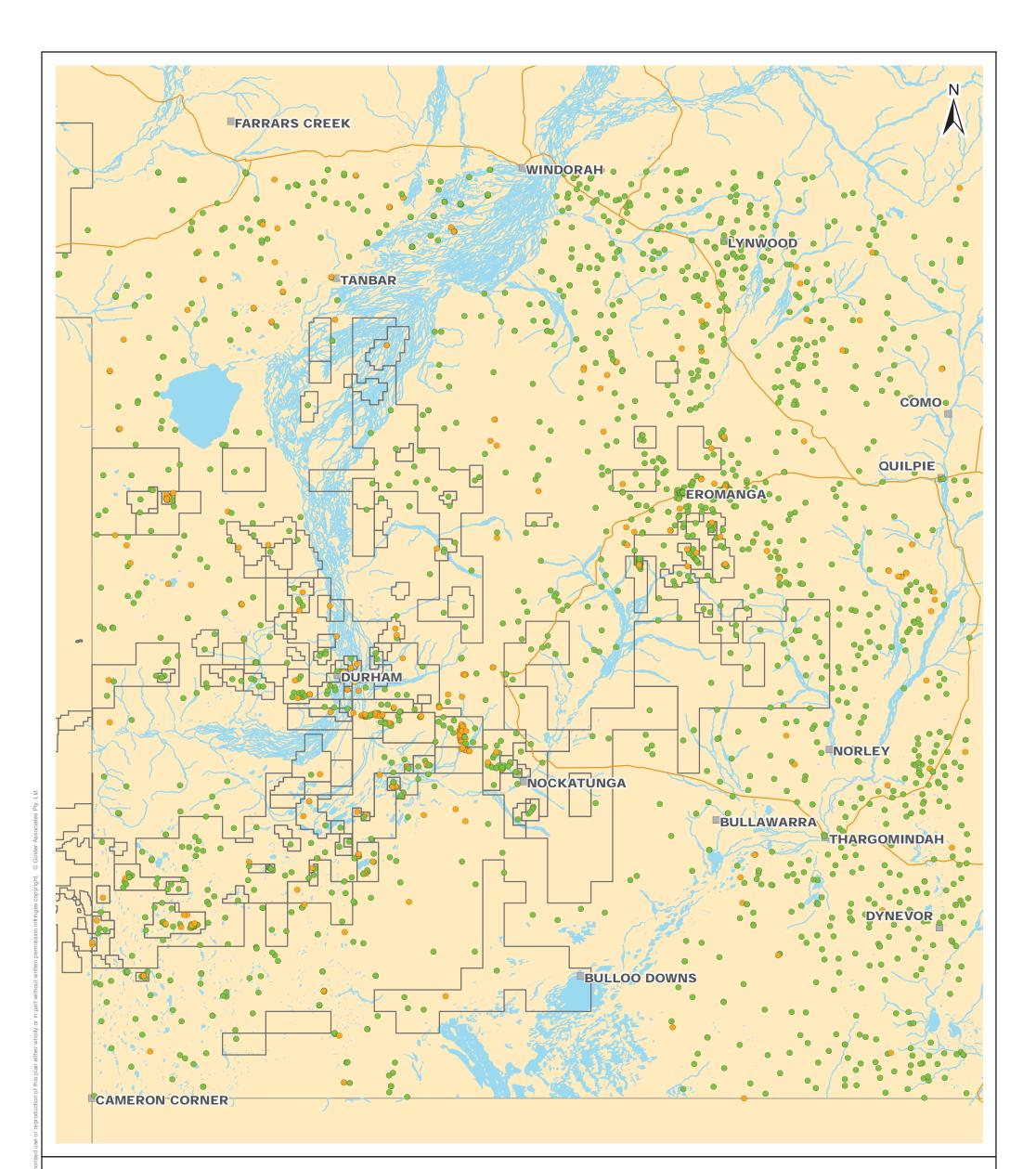
# METADATA MAP: WATER QUALITY

1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011





| 0 5 | 10 | 20 | 30 | 40 | 50<br>Kilometres |
|-----|----|----|----|----|------------------|
|     | _  |    |    |    | - Kilometres     |


**SCALE (at A3)** 1:1,500,000 Coordinate System: GCS GDA 1994

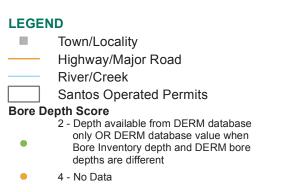
| PROJECT: | 117636010  |
|----------|------------|
| DATE:    | 31/07/2012 |
| DRAWN:   | AJW        |
| CHECKED: | FH         |

### **APPENDIX B5**



File Location: J:\hyd/2011\117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0008\_CooperBasinMetadata\_WaterQuality.mxd




#### SANTOS

# METADATA MAP: BORE DEPTH

#### COPYRIGHT

1. Base information copyright MapInfo Australia Pty Ltd 2. ATP/PL tenure supplied by Santos, August 2011

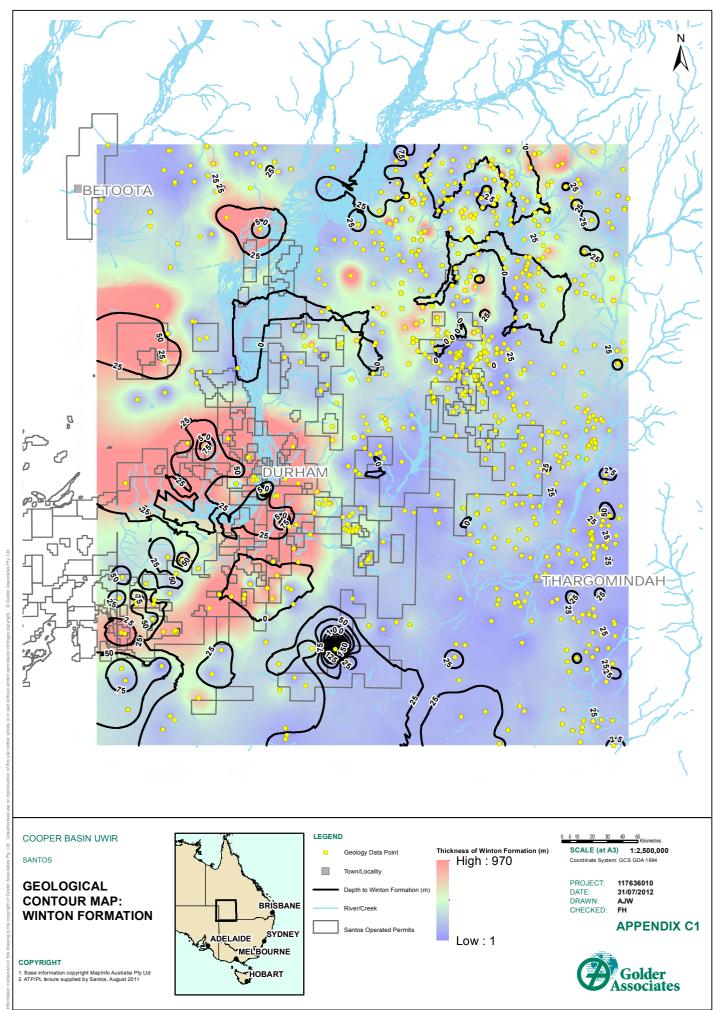






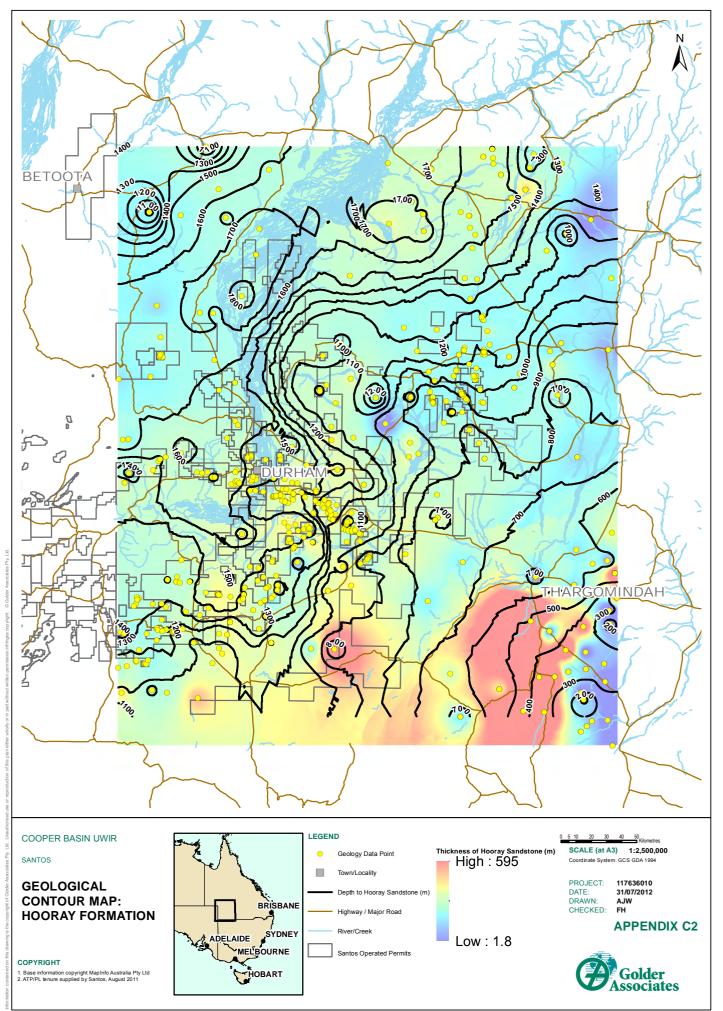
**SCALE (at A3)** 1:1,500,000 Coordinate System: GCS GDA 1994

| DATE: 31/07/2012 |
|------------------|
|                  |
| DRAWN: AJW       |
| CHECKED: FH      |
| APPENDIX B6      |

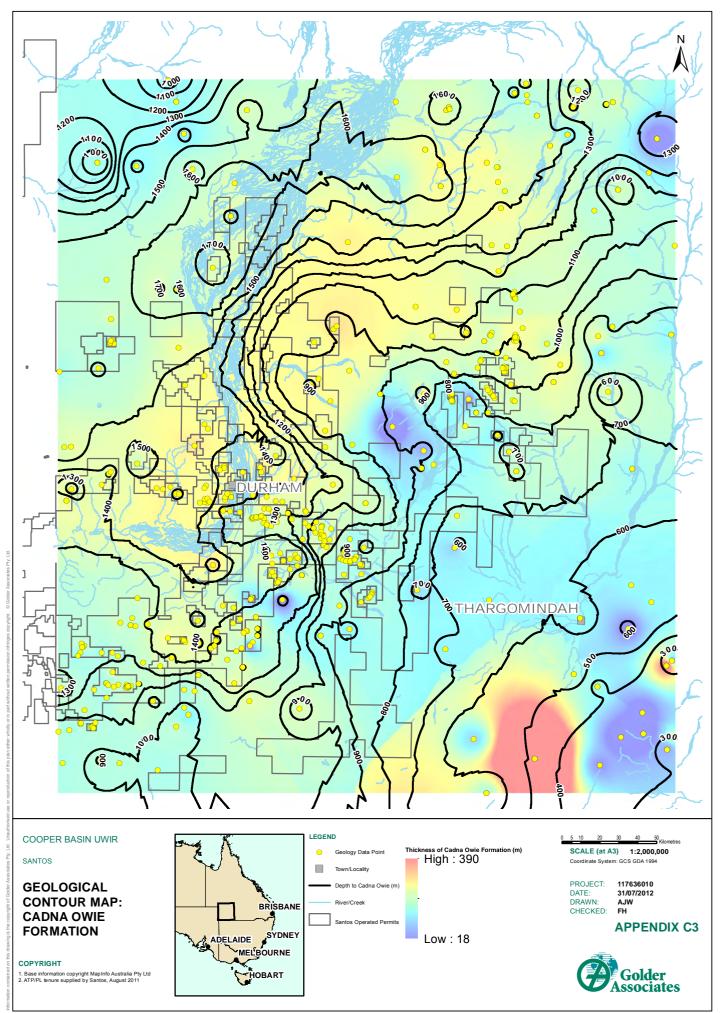



File Location: J:\hyd/2011\117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0009\_CooperBasinMetadata\_BoreDepth.mxd



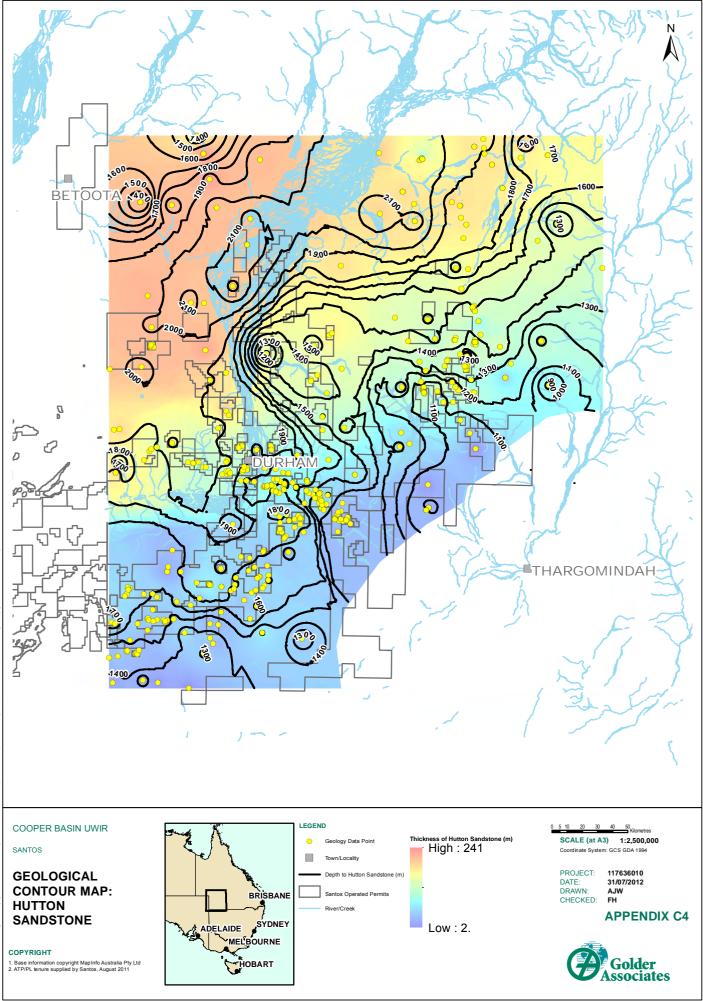




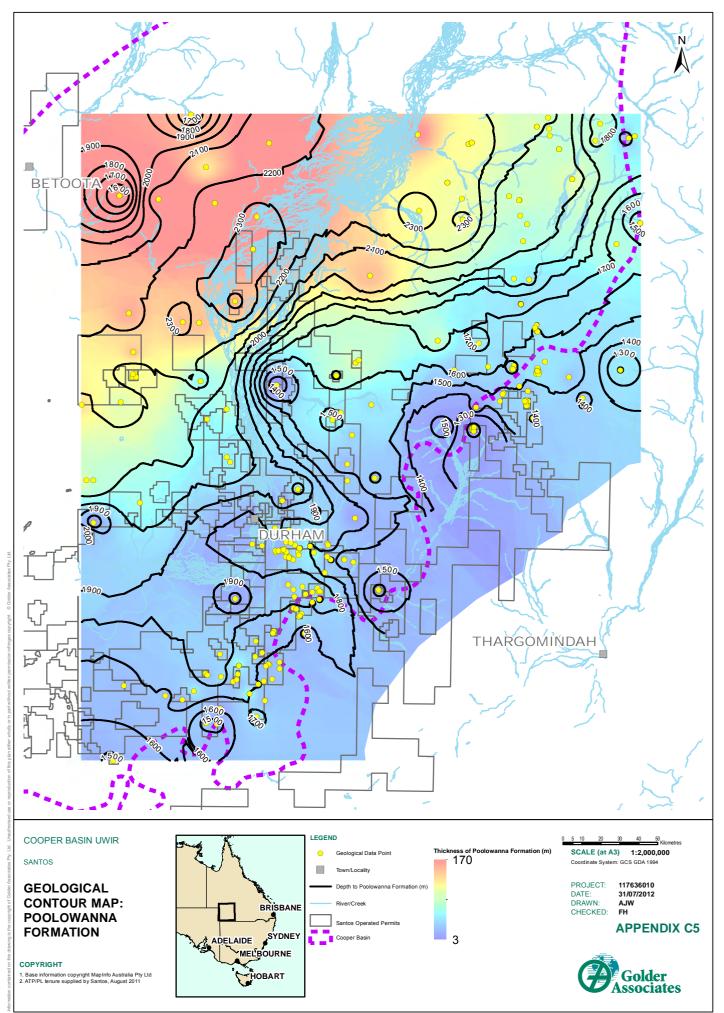




ation: J.hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE/G/SiProjects/117636010\_R\_F0040\_CooperBasinGeologicalMap\_WintonFormation.mxd

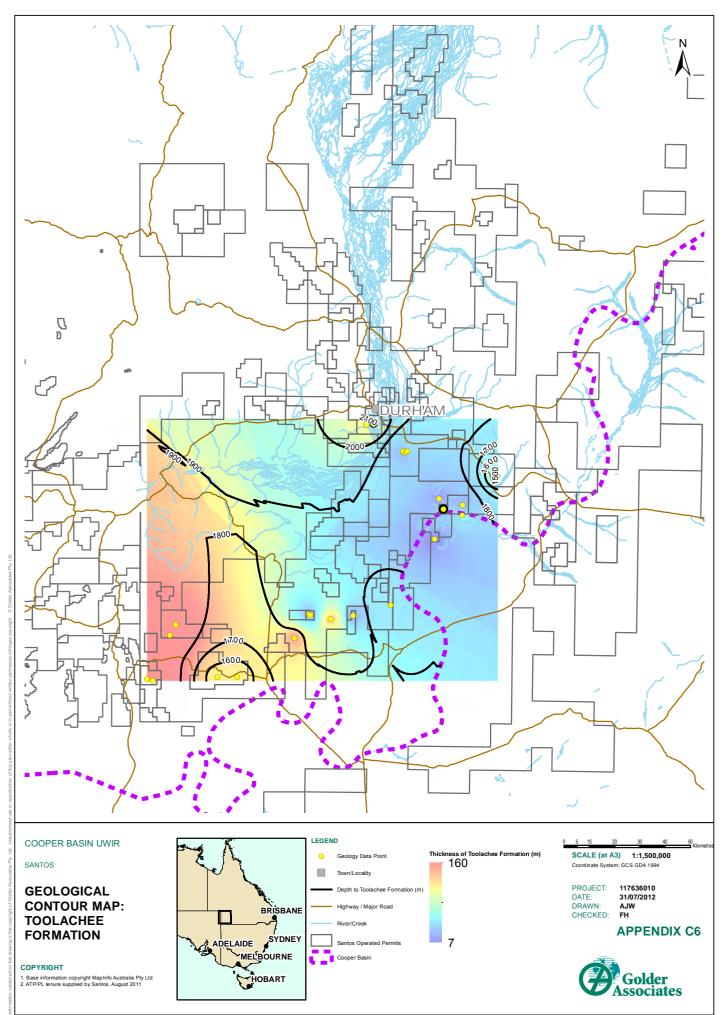
 $\square$ 




tion: J:hydl2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0041\_CooperBasinGeologicalMap\_HoorayFormation.n



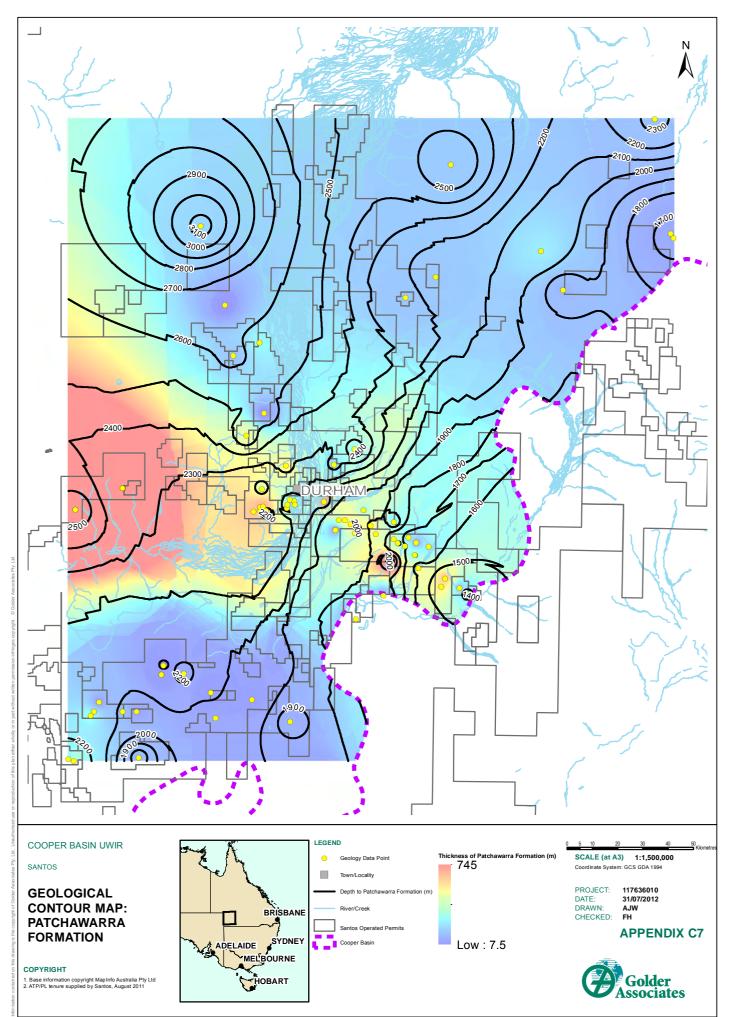

ion: J:hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil-official folder in BRISBANE/GISI/Projects/117636010\_R\_F0042\_CooperBasinGeologicalMap\_CadnaOwieFormation


L



cation: J\hyd/2011\117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE\GIS\Projects\117636010\_R\_F0043\_CooperBasinGeologicalMap\_HuttonSst.mxr

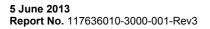



on: J\hydl2011\1117636010 Santos\_Cooper Basin O&G & Moonie Oil-official folder in BRISBANE\GIS\Projects\117636010\_R\_F0044\_CooperBasinGeologicalMap\_PoolawannaFormation.mo



on: J:hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANEIGISIProjects/117636010\_R\_F0045\_CooperBasinGeologicalMap\_ToolacheeFormation.

 $\square$ 


٦



ation: J:hyd/2011/11/17636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE/GIS/Projects/11/7636010\_R\_F0046\_CooperBasinGeologicalMap\_PatchawarraFormation.mx

٦







# ASSET REGISTER OF DAMS (INCLUDING PRODUCED FORMATION WATER EVAPORATION PONDS)

Data from Santos, 2011.

| PL<br>or<br>ATP | Name of Dam/Pond                  | Latitude<br>(WGS84) | Longitude<br>(WGS84) | Max<br>Surface<br>Area (ha) | Max<br>Operational<br>Volume<br>(ML) | Dam/Pond<br>Purpose                      | Hazard<br>Category |
|-----------------|-----------------------------------|---------------------|----------------------|-----------------------------|--------------------------------------|------------------------------------------|--------------------|
| 61              | Ballera plant interceptor pond 1  | -27.392833          | 141.809081           | 0.14                        | 2.1                                  | Separation                               | Low                |
| 61              | Ballera plant holding pond 1      | -27.3927528         | 141.80925            | 0.15                        | 2.25                                 | Secondary<br>separation /<br>Evaporation | Low                |
| 61              | Ballera plant interceptor pond 2  | -27.3931194         | 141.8083417          | 0.088                       | 1.76                                 | Separation                               | Low                |
| 61              | Ballera plant holding pond 2      | -27.3930611         | 141.8084694          | 0.1                         | 2                                    | Evaporation                              | Low                |
| 61              | Ballera evaporation pond          | -27.3917556         | 141.8103333          | 0.49                        | 4.9                                  | Evaporation                              | Significant        |
| 61              | Ballera freeform evaporation pond | -27.3921083         | 141.8130167          | 29.2                        | 292                                  | Evaporation                              | Significant        |
| 61              | Ballera airport pond              | -27.39435           | 141.8074556          | 1                           | 10                                   | Evaporation                              | TBD                |
| 26              | Bogala interceptor pond           | -27.5175694         | 142.2575222          | 0.0625                      | 0.94                                 | Separation                               | Low                |
| 26              | Bogala evaporation pond 1         | -27.5171972         | 142.2572972          | 0.275                       | 4.125                                | Evaporation                              | Significant        |
| 26              | Bogala evaporation pond 2         | -27.5307194         | 142.2577222          | 0.3                         | 4.5                                  | Evaporation                              | Significant        |
| 76              | Bolan interceptor pond            | -27.7817778         | 142.1605583          | 0.0576                      | 0.864                                | Separation                               | Low                |
| 76              | Bolan evaporation pond            | -27.7813556         | 142.1604139          | 0.81                        | 12.15                                | Evaporation                              | TBD                |
| 78              | Bowen interceptor pond            | -27.9124806         | 142.0543278          | 0.04                        | 0.6                                  | Separation                               | Low                |
| 78              | Bowen evaporation pond            | -27.9121278         | 142.0550417          | 2.1                         | 21                                   | Evaporation                              | TBD                |
| 97              | Cook interceptor pond             | -26.7001667         | 141.2874722          | 0.09                        | 1.35                                 | Separation                               | Low                |
| 97              | Cook evaporation pond             | -26.6999694         | 141.2866083          | 2.25                        | 22.5                                 | Evaporation                              | Low                |
| 36              | Cooroo interceptor pond           | -27.7141111         | 142.2875972          | 0.0484                      | 0.726                                | Separation                               | Low                |
| 36              | Cooroo evaporation pond           | -27.7124111         | 142.287475           | 9                           | 90                                   | Evaporation                              | Significant        |
| 76              | Echuburra interceptor pond 1      | -27.8364778         | 142.1847194          | 0.0225                      | 0.338                                | Separation                               | Low                |
| 76              | Echuburra interceptor pond 2      | -27.8362917         | 142.1847194          | 0.0324                      | 0.338                                | Separation                               | Low                |
| 76              | Echuburra evaporation pond        | -27.8359194         | 142.1854278          | 2.25                        | 33.75                                | Evaporation                              | Significant        |
| 63              | Epsilon interceptor pond          | -28.1595556         | 141.1331944          | 0.03                        | 0.36                                 | Separation                               | Low                |
| 63              | Epsilon evaporation pond          | -28.1599639         | 141.1330194          | 0.64                        | 6.4                                  | Evaporation                              | TBD                |
| 68              | Genoa interceptor pond            | -28.1416361         | 141.8502167          | 0.09                        | 1.35                                 | Separation                               | Low                |
| 68              | Genoa holding pond                | -28.1419528         | 141.8498             | 0.04                        | 0.6                                  | Evaporation                              | Low                |
| 68              | Genoa evaporation pond            | -28.1419528         | 141.8486417          | 5.4                         | 54                                   | Evaporation                              | TBD                |
| 68              | Genoa freeform evaporation pond   | -28.1441917         | 141.8495694          | 10                          | 50                                   | Evaporation                              | TBD                |
| 23              | Jackson interceptor pond          | -27.6155194         | 142.4108028          | 0.175                       | 2.035                                | Separation                               | Low                |
| 23              | Jackson evaporation pond 1        | -27.6152667         | 142.4102528          | 1.35                        | 13.5                                 | Evaporation                              | Significant        |
| 23              | Jackson evaporation pond 2        | -27.6146            | 142.4094167          | 2.34                        | 23.4                                 | Evaporation                              | Significant        |
| 23              | Jackson evaporation pond 3        | -27.6207722         | 142.4079722          | 6                           | 60                                   | Evaporation                              | Significant        |
| 23              | Gunna interceptor pond            | -27.5740806         | 142.3782694          | 0.0025                      | 0.34                                 | Separation                               | Low                |
| 23              | Gunna evaporation pond            | -27.574975          | 142.3778556          | 0.2304                      | 3.5                                  | Evaporation                              | TBD                |
| 23              | Tinpilla interceptor pond         | -27.5648556         | 142.3497167          | 0.0324                      | 0.49                                 | Separation                               | Low                |
| 23              | Tinpilla evaporation pond         | -27.564775          | 142.3493833          | 0.2025                      | 3                                    | Evaporation                              | TBD                |
| 259P            | Jarrah interceptor pond           | -27.7114083         | 142.229175           | 0.04                        | 0.6                                  | Separation                               | Low                |
| 259P            | Jarrah evaporation pond 1         | -27.7109611         | 142.2282806          | 0.81                        | 12.15                                | Evaporation                              | Significant        |
| 259P            | Jarrah evaporation pond 2         | -27.710275          | 142.2273583          | 1.12                        | 20.25                                | Evaporation                              | Significant        |
| 259P            | Jarrah pump-out pond              | -27.7107167         | 142.2290389          | 0.09                        | 1.35                                 | Pump-out                                 | Low                |
| 55              | Munro interceptor pond            | -28.5323806         | 141.1985611          | 0.0625                      | 0.94                                 | Separation                               | Low                |

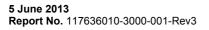




| PL<br>or<br>ATP | Name of Dam/Pond                       | Latitude<br>(WGS84) | Longitude<br>(WGS84) | Max<br>Surface<br>Area (ha) | Max<br>Operational<br>Volume<br>(ML) | Dam/Pond<br>Purpose | Hazard<br>Category |
|-----------------|----------------------------------------|---------------------|----------------------|-----------------------------|--------------------------------------|---------------------|--------------------|
| 55              | Munro holding pond                     | -28.532125          | 141.1988222          | 0.5                         | 7.5                                  | Evaporation         | TBD                |
| 55              | Munro evaporation pond                 | -28.5324722         | 141.1969472          | 14.1                        | 141                                  | Evaporation         | TBD                |
| 55              | Munro freeform evaporation pond        | -28.5314722         | 141.1993583          | 1.89                        | 9.45                                 | Evaporation         | TBD                |
| 25              | Naccowlah 2 interceptor pond           | -27.484475          | 142.1368472          | 0.0576                      | 0.864                                | Separation          | Low                |
| 25              | Naccowlah 2 evaporation pond           | -27.4845444         | 142.1364194          | 0.59                        | 8.9                                  | Evaporation         | TBD                |
| 25              | Naccowlah interceptor pond             | -27.5195194         | 142.1327639          | 0.175                       | 2.625                                | Separation          | Low                |
| 25              | Naccowlah evaporation pond 1           | -27.51975           | 142.1320028          | 1.08                        | 10.8                                 | Evaporation         | Significant        |
| 25              | Naccowlah evaporation pond 2           | -27.5200222         | 142.1307667          | 2.7                         | 40.5                                 | Evaporation         | Significant        |
| 25              | Naccowlah freeform evaporation pond    | -27.5414028         | 142.1037833          | 28.52                       | 142.6                                | Evaporation         | Significant        |
| 75              | Patroclus interceptor pond             | -28.1105278         | 141.6831972          | 0.09                        | 1.35                                 | Separation          | Low                |
| 75              | Patroclus holding pond                 | -28.1102056         | 141.683              | 0.0625                      | 1.25                                 | Evaporation         | Low                |
| 75              | Patroclus freeform evaporation<br>pond | -28.1093528         | 141.6847833          | 12                          | 60                                   | Evaporation         | TBD                |
| 25              | Pitchery interceptor pond              | -27.4982472         | 142.1569694          | 0.0625                      | 0.5                                  | Separation          | Low                |
| 25              | Pitchery holding pond                  | -27.4979056         | 142.1568333          | 0.095                       | 0.95                                 | Evaporation         | Low                |
| 25              | Pitchery evaporation pond 1            | -27.4981167         | 142.1563556          | 0.35                        | 3.5                                  | Evaporation         | Significant        |
| 25              | Pitchery evaporation pond 2            | -27.4979972         | 142.1555417          | 0.36                        | 3.6                                  | Evaporation         | TBD                |
| 84              | Stokes interceptor pond                | -28.3457194         | 141.0318889          | 0.06                        | 0.6                                  | Separation          | Low                |
| 84              | Stokes evaporation pond                | -28.3466639         | 141.0310417          | 5.18                        | 51.8                                 | Evaporation         | TBD                |
| 34              | Tickalara 2 interceptor pond           | -28.3346944         | 141.3969722          | 0.09                        | 0.9                                  | Separation          | TBD                |
| 34              | Tickalara interceptor pond             | -28.3424639         | 141.3841667          | 0.04                        | 0.4                                  | Separation          | Low                |
| 34              | Tickalara holding pond 1               | -28.3421778         | 141.3836806          | 0.16                        | 1.6                                  | Evaporation         | Low                |
| 34              | Tickalara holding pond 2               | -28.3427194         | 141.3834917          | 0.34                        | 3.4                                  | Evaporation         | Significant        |
| 34              | Tickalara evaporation pond             | -28.3425194         | 141.3798             | 6                           | 60                                   | Evaporation         | Significant        |
| 34              | Tickalara freeform evaporation<br>pond | -28.3421417         | 141.3694306          | 12                          | 60                                   | Evaporation         | TBD                |
| 35              | Watson interceptor pond                | -28.0909639         | 142.0813472          | 0.175                       | 2.625                                | Separation          | Low                |
| 35              | Watson holding pond 1                  | -28.0906917         | 142.0808472          | 0.176                       | 1.76                                 | Evaporation         | Low                |
| 35              | Watson holding pond 2                  | -28.0911            | 142.0806028          | 0.24                        | 2.4                                  | Evaporation         | Low                |
| 35              | Watson evaporation pond 1              | -28.0939722         | 142.0745944          | 2.25                        | 22.5                                 | Evaporation         | Significant        |
| 35              | Watson evaporation pond 2              | -28.0951083         | 142.0897167          | 11.0088                     | 110.088                              | Evaporation         | Significant        |
| 35              | Watson evaporation pond 3              | -28.0923556         | 142.0729222          | 9.338                       | 93.38                                | Evaporation         | Significant        |
| 35              | Watson South interceptor pond          | -28.1358611         | 142.0536444          | 0.04                        | 0.4                                  | Separation          | Low                |
| 35              | Watson South evaporation pond          | -28.1355861         | 142.0549889          | 4                           | 40                                   | Evaporation         | Significant        |
| 51              | Muthero interceptor pond               | -27.7112194         | 142.6114028          | 0.04                        | 0.6                                  | Separation          | Low                |
| 51              | Muthero holding pond 1                 | -27.7115389         | 142.6115361          | 0.2                         | 2                                    | Evaporation         | Low                |
| 51              | Muthero holding pond 2                 | -27.7123278         | 142.6102306          | 0.16                        | 1.6                                  | Evaporation         | TBD                |
| 51              | Muthero evaporation pond               | -27.7137611         | 142.6094833          | 0.99                        | 59.4                                 | Evaporation         | Significant        |
| 33              | Nockatunga interceptor pond            | -27.7169611         | 142.524275           | 0.0625                      | 0.5                                  | Separation          | Low                |
| 33              | Nockatunga holding pond 1              | -27.7161528         | 142.5253444          | 0.04                        | 0.4                                  | Evaporation         | Low                |
| 33              | Nockatunga holding pond 2              | -27.7160639         | 142.525475           | 0.0375                      | 0.375                                | Evaporation         | Low                |
| 33              | Nockatunga evaporation pond 1          | -27.7158167         | 142.5250361          | 0.36                        | 3.6                                  | Evaporation         | Significant        |
| 33              | Nockatunga evaporation pond 2          | -27.7159222         | 142.5257389          | 0.15                        | 1.5                                  | Evaporation         | Low                |
| 33              | Nockatunga evaporation pond 3          | -27.7164667         | 142.5255444          | 0.2                         | 2                                    | Evaporation         | Low                |
| 51              | Thungo interceptor pond                | -27.5799472         | 142.5799472          | 0.054                       | 0.54                                 | Separation          | Low                |
| 51              |                                        | 21.0100412          | 172.0100412          | 0.004                       | 0.04                                 | Separation          | LOW                |






| PL<br>or<br>ATP | Name of Dam/Pond               | Latitude<br>(WGS84) | Longitude<br>(WGS84) | Max<br>Surface<br>Area (ha) | Max<br>Operational<br>Volume<br>(ML) | Dam/Pond<br>Purpose | Hazard<br>Category |
|-----------------|--------------------------------|---------------------|----------------------|-----------------------------|--------------------------------------|---------------------|--------------------|
| 51              | Thungo holding pond            | -27.7287528         | 142.5807611          | 0.63                        | 6.3                                  | Evaporation         | Significant        |
| 51              | Thungo evaporation pond 1      | -27.7275861         | 142.5817167          | 1.04                        | 10.4                                 | Evaporation         | Significant        |
| 51              | Thungo evaporation pond 2      | -27.7267556         | 142.5828056          | 1.485                       | 14.85                                | Evaporation         | Significant        |
| 50              | Maxwell interceptor pond       | -27.8806611         | 142.6971028          | 0.08                        | 1.2                                  | Separation          | Low                |
| 50              | Maxwell holding pond           | -27.880275          | 142.6969306          | 0.1                         | 1.5                                  | Evaporation         | Low                |
| 50              | Maxwell evaporation pond       | -27.8798444         | 142.6967056          | 0.16                        | 3.2                                  | Evaporation         | TBD                |
| 50              | Maxwell South evaporation pond | -27.9042333         | 142.6770694          | 0.06                        | 0.78                                 | Evaporation         | Low                |
| 33              | Winna interceptor pond         | -27.7270583         | 142.5541             | 0.04                        | 0.32                                 | Separation          | Low                |
| 33              | Winna holding pond             | -27.7268833         | 142.5544694          | 0.06                        | 0.48                                 | Evaporation         | Low                |
| 33              | Winna evaporation pond 1       | -27.7268917         | 142.554875           | 0.12                        | 1.2                                  | Evaporation         | Low                |
| 33              | Winna evaporation pond 2       | -27.7268361         | 142.5554861          | 0.3                         | 3                                    | Evaporation         | Significant        |
| 33              | Winna evaporation pond 3       | -27.7243556         | 142.5624861          | 0.6                         | 6                                    | Evaporation         | TBD                |
| 170             | Kooroopa evaporation pond      | -27.0011861         | 143.2303278          | 0.09                        | 0.9                                  | Evaporation         | Low                |
| 95              | Monler interceptor pond        | -26.7573639         | 143.2595361          | 0.0625                      | 1.25                                 | Separation          | Low                |
| 95              | Monler evaporation pond 1      | -26.7571083         | 143.2600194          | 0.3                         | 3                                    | Evaporation         | TBD                |
| 95              | Monler evaporation pond 2      | -26.7575056         | 143.2602972          | 0.25                        | 2.5                                  | Evaporation         | TBD                |
| 170             | Takyah interceptor pond        | -27.0104861         | 143.3010944          | 0.0091                      | 0.046                                | Separation          | Low                |
| 170             | Takyah evaporation pond        | -27.0104639         | 143.3013111          | 0.168                       | 1.68                                 | Evaporation         | Low                |
| 52              | Tarbat interceptor pond        | -26.8976167         | 143.3062889          | 0.0784                      | 1.176                                | Separation          | Low                |
| 52              | Tarbat holding pond            | -26.8979917         | 143.3069222          | 0.4                         | 4                                    | Evaporation         | Low                |
| 52              | Tarbat evaporation pond 1      | -26.8982194         | 143.3080028          | 3.6                         | 36                                   | Evaporation         | Significant        |
| 52              | Tarbat evaporation pond 2      | -26.8975861         | 143.3094             | 5.4                         | 54                                   | Evaporation         | Significant        |
| 29              | Tintaburra interceptor pond    | -26.9320694         | 143.1020333          | 0.108                       | 1.62                                 | Separation          | Low                |
| 29              | Tintaburra holding pond 1a     | -26.9318028         | 143.1021667          | 0.135                       | 2.025                                | Evaporation         | Low                |
| 29              | Tintaburra holding pond 1b     | -26.9315389         | 143.1022389          | 0.115                       | 1.725                                | Evaporation         | Low                |
| 29              | Tintaburra holding pond 1c     | -26.9311611         | 143.1023722          | 0.3                         | 4.5                                  | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 2  | -26.9312361         | 143.1017917          | 0.575                       | 5.75                                 | Evaporation         | Low                |
| 29              | Tintaburra evaporation pond 3  | -26.9311139         | 143.1012333          | 0.6                         | 6                                    | Evaporation         | Low                |
| 29              | Tintaburra evaporation pond 4  | -26.9308111         | 143.1001194          | 1.925                       | 19.25                                | Evaporation         | Significant        |
| 29              | Tintaburra evaporation pond 5  | -26.9304833         | 143.0983167          | 3.173                       | 31.73                                | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 6  | -26.9300722         | 143.0961361          | 4.2                         | 42                                   | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 7  | -26.9314528         | 143.0958222          | 4.0015                      | 40.015                               | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 8  | -26.9318639         | 143.0980139          | 2.9                         | 29                                   | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 9  | -26.9322889         | 143.0995139          | 2.225                       | 22.25                                | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 10 | -26.9323972         | 143.1009556          | 2.1307                      | 21.307                               | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 11 | -26.9342139         | 143.1012694          | 2                           | 20                                   | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 12 | -26.9345056         | 143.0997556          | 1.7                         | 17                                   | Evaporation         | TBD                |
| 29              | Tintaburra evaporation pond 13 | -26.9338639         | 143.0966083          | 10.75                       | 107.5                                | Evaporation         | TBD                |
| 145             | Toby interceptor pond          | -26.6846333         | 142.3695472          | 0.0324                      | 0.486                                | Separation          | Low                |
| 145             | Toby evaporation pond          | -26.6841917         | 142.3683417          | 0.2                         | 3                                    | Evaporation         | TBD                |





# **APPENDIX E**

Produced Water and Well Oil/Gas Field Data





| and the second |    |
|----------------|----|
|                |    |
|                |    |
| 14.            | li |

### PRODUCED WATER PER OIL/GAS FIELD

Data from Santos, 2011

| Field Name   | ne RMU Formation PL Number Production years |                | Total Water<br>Produced | Average<br>Annual Rate | Peak water production |        |         |        |
|--------------|---------------------------------------------|----------------|-------------------------|------------------------|-----------------------|--------|---------|--------|
|              |                                             |                |                         | Years                  |                       | ML     | ML/year | ML/day |
| BOWEN        | AD                                          | Adori          | PL78                    | 1990-2007              | 17                    | 215.07 | 1.000   | 0.150  |
| MOOLIAMPAH   | AD                                          | Adori          | PL 34                   | 1985-2011              | 26                    | 146.74 | 0.470   | 0.131  |
| TALGEBERRY   | AD                                          | Adori          | PL 39                   | 2007-2011              | 4                     | 43.08  | 1.026   | 0.056  |
| ECHUBURRA    | BBI                                         | Basal Birkhead | PL 76                   | 1991-2011              | 20                    | 67.56  | 0.277   | 0.034  |
| TOBY         | BH                                          | Basal Hutton   | PL 145                  | 1987-1988              | 1                     | 0.07   | 0.012   | 0.001  |
| BOGALA       | BI                                          | Birkhead       | PL 26                   | 1997-2011              | 14                    | 105.44 | 0.606   | 0.039  |
| BOWEN        | BI                                          | Birkhead       | PL78                    | 1990-2011              | 21                    | 39.37  | 0.157   | 0.109  |
| CHANCETT     | BI                                          | Birkhead       | PL 169                  | 2006-2011              | 5                     | 0.32   | 0.006   | 0.005  |
| CRANSTOUN    | BI                                          | Birkhead       | PL 57                   | 1987-2011              | 24                    | 78.91  | 0.277   | 0.064  |
| ENDEAVOUR    | BI                                          | Birkhead       | PL 57                   | 1989-2011              | 22                    | 148.49 | 0.569   | 0.137  |
| GIMBOOLA     | BI                                          | Birkhead       | PL 169                  | 1992-2011              | 19                    | 0.15   | 0.037   | 34.084 |
| JACKSON      | BI                                          | Birkhead       | PL 23, PL24             | 2008-2011              | 3                     | 32.98  | 0.804   | 0.035  |
| JACKSON STH  | BI                                          | Birkhead       | PL 23, PL24             | 1985-2011              | 26                    | 119.41 | 0.375   | 0.062  |
| KOORA        | BI                                          | Birkhead       | PL 33                   | 1985-2010              | 25                    | 1.62   | 0.005   | 0.031  |
| KOOROOPA     | BI                                          | Birkhead       | PL 170                  | 1985-2011              | 26                    | 12.21  | 0.039   | 0.004  |
| MINNI RITCHI | BI                                          | Birkhead       | PL 57                   | 2006-2011              | 5                     | 1.67   | 0.029   | 0.005  |
| MINOS        | BI                                          | Birkhead       | PL 301                  | 2011                   | 0                     | 0.00   | 0.000   | 0.000  |



|     |    | -  |      |   |  |  |
|-----|----|----|------|---|--|--|
| 100 | -0 |    |      | 2 |  |  |
| -   | 2  |    | 1    |   |  |  |
| -   |    | 21 |      |   |  |  |
|     |    | -  | - 26 |   |  |  |

| Field Name    | RMU | Formation      | PL Number        | Production y | ears | Total Water<br>Produced | Average<br>Annual Rate | Peak water production |
|---------------|-----|----------------|------------------|--------------|------|-------------------------|------------------------|-----------------------|
| MULBERRY      | BI  | Birkhead       | PL 295, PL<br>39 | 2004-2011    | 7    | 414.78                  | 4.660                  | 0.423                 |
| MUTHERO       | BI  | Birkhead       | PL 51            | 1989-2011    | 22   | 487.21                  | 1.853                  | 0.294                 |
| NOCKATUNGA    | BI  | Birkhead       | PL 33            | 1985-2011    | 26   | 50.51                   | 0.163                  | 0.020                 |
| ТАКҮАН        | BI  | Birkhead       | PL 170           | 1986-2011    | 25   | 23.41                   | 0.076                  | 0.017                 |
| TALGEBERRY    | BI  | Birkhead       | PL 39            | 1985-2011    | 26   | 53.92                   | 0.173                  | 0.061                 |
| TENNAPERRA    | BI  | Birkhead       | PL 78            | 1996-2011    | 15   | 3.43                    | 0.019                  | 0.044                 |
| TOOBUNYAH     | BI  | Birkhead       | PL 38            | 1985-2011    | 26   | 71.33                   | 0.232                  | 0.038                 |
| ZEUS          | BI  | Birkhead       | PL 301           | 2011         | 0    | 2.04                    | 0.682                  | 0.048                 |
| BOWEN         | BJ  | Basal Jurassic | PL78             | 1992-1996    | 4    | 74.60                   | 1.865                  | 0.167                 |
| СНООКОО       | BJ  | Basal Jurassic | PL 25, PL 26     | 1987-1993    | 6    | 170.71                  | 2.439                  | 0.206                 |
| COOROO        | BJ  | Basal Jurassic | PL 36            | 1986-2011    | 25   | 363.31                  | 1.227                  | 0.097                 |
| KARRI         | BJ  | Basal Jurassic | PL 26            | 1990-2004    | 14   | 0.25                    | 0.001                  | 0.005                 |
| NACCOWLAH STH | BJ  | Basal Jurassic | PL 25            | 1989-2008    | 19   | 81.10                   | 0.356                  | 0.107                 |
| ТОВҮ          | BJ  | Basal Jurassic | PL 145           | 1987-2008    | 21   | 20.32                   | 0.083                  | 0.080                 |
| KERCUMMURRA   | CD  | Cadna-Owie     |                  | 1985-2009    | 24   | 0.00                    | 0.000                  | 0.000                 |
| TOBY          | CD  | Cadna-Owie     | PL 145           | 2007-2010    | 3    | 2.48                    | 0.071                  | 0.032                 |
| YANDA         | CD  | Cadna-Owie     | PL 61            | 1995-2009    | 14   | 4.71                    | 0.029                  | 0.008                 |
| BOLAN         | HU  | Hutton         | PL 76            | 1990-2010    | 20   | 231.80                  | 0.978                  | 0.103                 |
| СНООКОО       | HU  | Hutton         | PL 25, PL 26     | 1984-1997    | 13   | 165.10                  | 0.995                  | 0.320                 |
| СООК          | HU  | Hutton         | PL 97            | 1985-2011    | 26   | 481.79                  | 1.549                  | 0.214                 |



| - | - California |  |
|---|--------------|--|
| - | 1            |  |
| - |              |  |
|   | No. No.      |  |
| 1 | A. 26        |  |

| Field Name     | RMU | Formation | PL Number   | Production y | ears | Total Water<br>Produced | Average<br>Annual Rate | Peak water production |
|----------------|-----|-----------|-------------|--------------|------|-------------------------|------------------------|-----------------------|
| CORELLA        | HU  | Hutton    | PL 76       | 1989-1996    | 7    | 136.57                  | 1.821                  | 0.164                 |
| ECHUBURRA      | HU  | Hutton    | PL 76       | 1992-2011    | 19   | 131.03                  | 0.565                  | 0.069                 |
| GENOA          | HU  | Hutton    | PL 68       | 1992-2011    | 19   | 3524.44                 | 15.126                 | 1.333                 |
| GENOA NTH      | HU  | Hutton    | PL 68       | 1993-1995    | 2    | 41.79                   | 1.741                  | 0.342                 |
| GRAHAM         | HU  | Hutton    | PL23        | 2007-2011    | 4    | 53.88                   | 1.122                  | 0.124                 |
| IPUNDU NTH     | HU  | Hutton    | PL 52       | 2007-2011    | 4    | 4.42                    | 0.092                  | 0.027                 |
| JACKSON #30    | HU  | Hutton    | PL 23, PL24 | 1987-1989    | 2    | 1.43                    | 0.060                  | 0.006                 |
| JACKSON EAST   | HU  | Hutton    | PL 23, PL24 | 2009-2011    | 2    | 49.79                   | 1.844                  | 0.074                 |
| JACKSON        | HU  | Hutton    | PL 23, PL24 | 1982-2011    | 29   | 66799.57                | 193.622                | 11.020                |
| JACKSON STH    | HU  | Hutton    | PL 23, PL24 | 1987-2011    | 24   | 239.58                  | 0.838                  | 0.154                 |
| JARRAR         | HU  | Hutton    | PL 77       | 1990-2011    | 21   | 1156.93                 | 4.665                  | 0.334                 |
| MARCOOLA       | HU  | Hutton    | PL 38       | 2007-2011    | 4    | 2.15                    | 0.049                  | 0.004                 |
| MONLER         | HU  | Hutton    | PL 95       | 1994-2011    | 17   | 5.17                    | 0.025                  | 0.020                 |
| MUNRO          | HU  | Hutton    | PL 55       | 1988-2011    | 23   | 971.71                  | 3.521                  | 0.564                 |
| NACCOWLAH STH  | HU  | Hutton    | PL 25       | 1984-2011    | 27   | 2609.92                 | 7.933                  | 0.680                 |
| NACCOWLAH WEST | HU  | Hutton    | PL 25       | 1984-2011    | 27   | 34467.77                | 107.043                | 8.634                 |
| NATAN          | HU  | Hutton    | PL 76       | 1988-1992    | 4    | 4.13                    | 0.084                  | 0.011                 |
| PATROCLUS      | HU  | Hutton    | PL 75       | 1991-2011    | 20   | 1133.70                 | 4.784                  | 0.617                 |
| PINAROO        | HU  | Hutton    | PL 35       | 1989-1999    | 10   | 33.09                   | 0.290                  | 0.076                 |
| TARBAT         | HU  | Hutton    | PL 52       | 1995-2011    | 16   | 620.13                  | 3.230                  | 0.403                 |
| TINTABURRA     | HU  | Hutton    | PL 29       | 1983-2011    | 28   | 8500.80                 | 25.682                 | 2.404                 |



| - | - California |  |
|---|--------------|--|
| - | 1            |  |
| - |              |  |
|   | No. No.      |  |
| 1 | A. 26        |  |

| Field Name     | RMU   | Formation       | PL Number | Production y | ears | Total Water<br>Produced | Average<br>Annual Rate | Peak water production |
|----------------|-------|-----------------|-----------|--------------|------|-------------------------|------------------------|-----------------------|
| TOOBUNYAH      | HU    | Hutton          | PL 38     | 1985-2011    | 26   | 3599.04                 | 11.685                 | 1.199                 |
| TOSTADA        | HU    | Hutton          | PL 23     | 2007-2011    | 4    | 20.13                   | 0.411                  | 0.039                 |
| WATKINS        | HU    | Hutton          | PL 35     | 2009-2011    | 2    | 0.70                    | 0.024                  | 0.006                 |
| WATSON         | HU    | Hutton          | PL 35     | 1986-2011    | 25   | 1792.39                 | 5.857                  | 1.161                 |
| WATSON STH     | HU    | Hutton          | PL 35     | 1985-2011    | 26   | 6400.12                 | 20.448                 | 1.756                 |
| WILSON         | HU    | Hutton          | PL 23     | 1986-2011    | 25   | 30.66                   | 0.102                  | 0.049                 |
| YANDA          | HU    | Hutton          | PL 61     | 2006-2011    | 5    | 19.27                   | 0.332                  | 0.030                 |
| COOROO         | HU/BI | Hutton/Birkhead | PL 36     | 1986-2011    | 25   | 1254.69                 | 4.239                  | 0.347                 |
| WANDILO        | HU/BI | Hutton/Birkhead | PL 35     | 1989-2011    | 22   | 494.35                  | 1.887                  | 0.577                 |
| ILIAD          | MCK   | McKinlay        | PL 34     | 2009-2011    | 2    | 1.01                    | 0.050                  | 0.003                 |
| MOOLIAMPAH     | MCK   | McKinlay        | PL 34     | 1990-2011    | 21   | 1.95                    | 0.008                  | 0.004                 |
| PATROCLUS      | MCK   | McKinlay        | PL 75     | 1993-2011    | 18   | 3.53                    | 0.017                  | 0.004                 |
| TICKALARA      | MCK   | McKinlay        | PL 34     | 2009         | 0    | 0.02                    | 0.012                  | 0.001                 |
| GENOA NTH      | MNM   | Mid Namur       | PL 68     | 1994-1995    | 1    | 0.16                    | 0.041                  | 0.003                 |
| MOOLIAMPAH     | MNM   | Mid Namur       | PL 34     | 1989-2011    | 22   | 32.30                   | 0.122                  | 0.013                 |
| PATROCLUS      | MNM   | Mid Namur       | PL 75     | 1992-2011    | 19   | 113.56                  | 0.505                  | 0.133                 |
| TICKALARA      | MNM   | Mid Namur       | PL 34     | 1988-2011    | 23   | 4069.66                 | 14.483                 | 2.234                 |
| BOGALA CENTRAL | MU    | Murta           | PL 26     | 2007-2010    | 3    | 0.30                    | 0.008                  | 0.001                 |
| BOGALA         | MU    | Murta           | PL 26     | 1984-2011    | 27   | 594.86                  | 1.830                  | 0.125                 |
| CHALLUM 1      | MU    | Murta           | PL58      | 1985-2011    | 26   | 4.80                    | 0.015                  | 0.010                 |
| CHALLUM 30     | MU    | Murta           | PL58      | 2008-2011    | 3    | 4.52                    | 0.116                  | 0.026                 |



| - | - Califica - |  |
|---|--------------|--|
|   |              |  |
| 1 |              |  |
|   | 1 Mar        |  |
| 1 | A. 16        |  |

| Field Name     | RMU | Formation | PL Number   | Production y | ears | Total Water<br>Produced | Average<br>Annual Rate | Peak water production |
|----------------|-----|-----------|-------------|--------------|------|-------------------------|------------------------|-----------------------|
| CHILLA         | MU  | Murta     | PL 25       | 2007-2011    | 4    | 36.35                   | 0.826                  | 0.098                 |
| CUISINIER      | MU  | Murta     | PL 303      | 2010-2011    | 1    | 0.02                    | 0.001                  | 0.000                 |
| CURRAMBAR      | MU  | Murta     | PL 244      | 2006-2011    | 5    | 34.96                   | 0.530                  | 0.038                 |
| DILKERA        | MU  | Murta     | PL 51       | 1989-2011    | 22   | 82.22                   | 0.313                  | 0.076                 |
| GUNNA          | MU  | Murta     | PL 23       | 1984-2011    | 27   | 56.09                   | 0.170                  | 0.011                 |
| ILIAD          | MU  | Murta     | PL 34       | 2005-2011    | 6    | 55.23                   | 0.778                  | 0.049                 |
| JACKSON        | MU  | Murta     | PL 23, PL24 | 1983-2011    | 28   | 511.43                  | 1.540                  | 0.157                 |
| KAMEL          | MU  | Murta     | PL 51       | 2007-2011    | 4    | 1.14                    | 0.025                  | 0.002                 |
| KIHEE          | MU  | Murta     | PL 33       | 1988-2007    | 19   | 0.07                    | 0.000                  | 0.000                 |
| KOORA          | MU  | Murta     | PL 33       | 1991-2010    | 19   | 84.35                   | 0.360                  | 0.037                 |
| MAXWELL/STH    | MU  | Murta     | PL 50       | 1987-2011    | 24   | 90.66                   | 0.312                  | 0.021                 |
| MOOLIAMPAH     | MU  | Murta     | PL 34       | 1989-2011    | 22   | 70.41                   | 0.266                  | 0.031                 |
| MUTHERO        | MU  | Murta     | PL 51       | 1989-2011    | 22   | 121.11                  | 0.461                  | 0.113                 |
| NACCOWLAH      | MU  | Murta     | PL 25       | 1989-2011    | 22   | 257.55                  | 0.979                  | 0.059                 |
| NACCOWLAH WEST | MU  | Murta     | PL 25       | 1984-1990    | 6    | 42.16                   | 0.602                  | 0.038                 |
| NOCKATUNGA     | MU  | Murta     | PL 33       | 1985-2011    | 26   | 135.08                  | 0.427                  | 0.028                 |
| ORIENTOS       | MU  | Murta     |             | 1990-2010    | 20   | 1.72                    | 0.007                  | 0.013                 |
| PATROCLUS      | MU  | Murta     | PL 75       | 1994-2011    | 17   | 11.82                   | 0.057                  | 0.042                 |
| PITCHERY       | MU  | Murta     | PL 62       | 1988-2011    | 23   | 408.24                  | 1.453                  | 0.283                 |
| SIGMA          | MU  | Murta     | PL 34       | 1985-2011    | 26   | 43.08                   | 0.136                  | 0.019                 |
| ТАКҮАН         | MU  | Murta     | PL 170      | 1986-2011    | 25   | 29.20                   | 0.095                  | 0.024                 |



| - | - Califica - |  |
|---|--------------|--|
| - | 1            |  |
| - |              |  |
|   | No. No.      |  |
| 1 | A. 26        |  |

| Field Name     | RMU    | Formation                       | PL Number | Production y | ears | Total Water<br>Produced | Average<br>Annual Rate | Peak water production |
|----------------|--------|---------------------------------|-----------|--------------|------|-------------------------|------------------------|-----------------------|
| TALGEBERRY     | MU     | Murta                           | PL 39     | 1985-2011    | 26   | 39.43                   | 0.127                  | 0.036                 |
| THUNGO         | MU     | Murta                           | PL 51     | 1986-2011    | 25   | 649.34                  | 2.143                  | 0.276                 |
| TICKALARA      | MU     | Murta                           | PL 34     | 1988-2011    | 23   | 21.56                   | 0.078                  | 0.045                 |
| TINPILLA       | MU     | Murta                           | PL 23     | 1984-2011    | 27   | 24.66                   | 0.075                  | 0.018                 |
| WILSON         | MU     | Murta                           | PL 23     | 1988-2011    | 23   | 113.11                  | 0.707                  | 0.032                 |
| WINNA          | MU     | Murta                           | PL 33     | 1985-2011    | 26   | 219.70                  | 0.709                  | 0.081                 |
| YANDA          | MU     | Murta                           | PL 61     | 1985-2011    | 26   | 9.16                    | 0.029                  | 0.016                 |
| BOWEN          | NM     | Namur                           | PL78      | 1994-2011    | 17   | 1.34                    | 0.006                  | 0.001                 |
| COOK           | NM     | Namur                           | PL 97     | 2005-2010    | 5    | 0.03                    | 0.0005                 | 0.001                 |
| EPSILON        | NM     | Namur                           | PL 63     | 1988-1989    | 1    | 0.00                    | 0.000                  | 0.000                 |
| GENOA          | NM     | Namur                           | PL 68     | 1992-1996    | 4    | 0.31                    | 0.006                  | 0.009                 |
| GENOA NTH      | NM     | Namur                           | PL 68     | 1994-1995    | 1    | 0.10                    | 0.020                  | 0.002                 |
| ILIAD          | NM     | Namur                           | PL 34     | 1994-2011    | 17   | 393.44                  | 1.929                  | 0.179                 |
| RHEIMS         | NM     | Namur                           | PL 34     | 1990-1991    | 1    | 0.39                    | 0.078                  | 0.009                 |
| SIGMA          | NM     | Namur                           | PL 34     | 1985-2011    | 26   | 23.24                   | 0.075                  | 0.010                 |
| TENNAPERRA     | NM     | Namur                           | PL 78     | 1996-1997    | 1    | 0.67                    | 0.042                  | 0.005                 |
| WILSON         | NM     | Namur                           | PL 23     | 1984-2011    | 27   | 353.60                  | 1.075                  | 0.076                 |
| WALLAWANNY NTH | PO     | Poolowanna                      | PL 77     | 1991         | 0    | 4.50                    | 0.562                  | 0.074                 |
| NACCOWLAH STH  | то     | Toolachee                       | PL 25     | 1988-2010    | 22   | 101.22                  | 0.382                  | 0.059                 |
| YANDA          | TO/UPA | Toolachee/Uppe<br>r Patchawarra | PL 61     | 1990-2011    | 21   | 34.43                   | 0.136                  | 0.021                 |



| -   |     |       |      |      |
|-----|-----|-------|------|------|
|     |     |       |      |      |
|     |     |       |      |      |
| 1   |     |       |      |      |
| 100 |     |       |      |      |
|     | il. | 1× se | N.S. | 14.5 |

| Field Name   | RMU   | Formation      | PL Number   | Production y | ears | Total Water<br>Produced | Average<br>Annual Rate | Peak water production |
|--------------|-------|----------------|-------------|--------------|------|-------------------------|------------------------|-----------------------|
| ECHUBURRA    | UBI   | Upper Birkhead | PL 76       | 1991-2011    | 20   | 12.44                   | 0.051                  | 0.007                 |
| MUTHERO      | UBI   | Upper Birkhead | PL 51       | 2007-2008    | 1    | 67.68                   | 5.640                  | 0.252                 |
| PATROCLUS    | UNM   | Upper Namur    | PL 75       | 1993-2011    | 18   | 418.17                  | 1.927                  | 0.168                 |
| TICKALARA    | UNM   | Upper Namur    | PL 34       | 1985-2011    | 26   | 1700.80                 | 5.365                  | 1.060                 |
| BOWEN        | WB    | Westbourne     | PL78        | 1992-2011    | 19   | 8.21                    | 0.036                  | 0.015                 |
| COOLUM       | WB    | Westbourne     | PL 295      | 2005-2011    | 6    | 1.36                    | 0.0183                 | 0.002                 |
| COOROO NTH   | WB    | Westbourne     | PL 36       | 1987-1988    | 1    | 0.24                    | 0.017                  | 0.003                 |
| DINGERA      | WB    | Westbourne     | PL 51       | 1988-2005    | 17   | 0.33                    | 0.002                  | 0.007                 |
| ENDEAVOUR    | WB    | Westbourne     | PL 57       | 2007-2011    | 4    | 0.25                    | 0.005                  | 0.003                 |
| JACKSON STH  | WB    | Westbourne     | PL 23, PL24 | 1982-2011    | 29   | 438.62                  | 1.275                  | 0.273                 |
| JACKSON      | WB    | Westbourne     | PL 23, PL24 | 1982-2011    | 29   | 3342.80                 | 9.746                  | 0.958                 |
| MONLER       | WB    | Westbourne     | PL 95       | 1987-2011    | 24   | 104.10                  | 0.363                  | 0.054                 |
| MOOLIAMPAH   | WB    | Westbourne     | PL 34       | 1990-2006    | 16   | 7.86                    | 0.108                  | 0.017                 |
| TALGEBERRY   | WB    | Westbourne     | PL 39       | 1994-2011    | 17   | 0.00                    | 0.000                  | 0.000                 |
| TICKALARA    | WB    | Westbourne     | PL 34       | 1987-2011    | 24   | 632.71                  | 2.197                  | 0.780                 |
| WILSON       | WB    | Westbourne     | PL 23       | 1984-2011    | 27   | 292.90                  | 0.890                  | 0.065                 |
| KOOROOPA NTH | WY    | Wyandra        | PL 170      | 1995-2011    | 16   | 15.91                   | 0.084                  | 0.009                 |
| KOOROOPA     | WY    | Wyandra        | PL 170      | 2007-2011    | 4    | 9.44                    | 0.197                  | 0.014                 |
| TALGEBERRY   | WY    | Wyandra        | PL 39       | 1985-2011    | 26   | 91.77                   | 0.295                  | 0.042                 |
| TINTABURRA   | WY    | Wyandra        | PL 29       | 1984-2011    | 27   | 0.84                    | 0.003                  | 0.013                 |
| IPUNDU NTH   | WY/MU | Wyandra/ Murta | PL 52       | 1989-2011    | 22   | 176.86                  | 0.678                  | 0.101                 |



|   | 1.200   |   |  |
|---|---------|---|--|
|   | 1       | - |  |
| - | ~       |   |  |
|   | 10 10 - |   |  |
| 1 | 4. 10   |   |  |

| Field Name | RMU   | Formation      | PL Number | Production ye | ears | Total Water<br>Produced | Average<br>Annual Rate | Peak water production |
|------------|-------|----------------|-----------|---------------|------|-------------------------|------------------------|-----------------------|
| IPUNDU     | WY/MU | Wyandra/ Murta | PL 52     | 1986-2011     | 25   | 258.43                  | 0.847                  | 0.099                 |
| TARBAT     | WY/MU | Wyandra/ Murta | PL 52     | 1988-2011     | 23   | 311.33                  | 1.120                  | 0.127                 |

### TARGET FORMATIONS FOR KNOWN WELLS IN THE PROJECT AREA

#### Data from Santos, 2011

| RN     | Facility Type              | Status   | Target Aquifer      | Drilled Depth (m) |
|--------|----------------------------|----------|---------------------|-------------------|
| 5523   | sub-artesian               | Existing | Allaru Mudtone      | 258.47            |
| 13240  | sub-artesian               | Existing | Allaru Mudtone      | 188.10            |
| 13595  | sub-artesian               | Existing | Allaru Mudtone      | 185.93            |
| 5124   | Artesian - cease to flow   | Existing | Coreena Member      | 285.10            |
| 5174   | sub-artesian               | Existing | Coreena Member      | 242.40            |
| 5298   | sub-artesian               | Existing | Coreena Member      | 259.10            |
| 5299   | sub-artesian               | Existing | Coreena Member      | 170.80            |
| 6685   | sub-artesian               | Existing | Coreena Member      | 145.70            |
| 6968   | sub-artesian               | Existing | Coreena Member      | 81.84             |
| 8911   | sub-artesian               | Existing | Coreena Member      | 80.20             |
| 8912   | sub-artesian               | Existing | Coreena Member      | 230.50            |
| 13330  | sub-artesian               | Existing | Coreena Member      | 103.63            |
| 16017  | sub-artesian               | Existing | Coreena Member      | 265.30            |
| 33245  | sub-artesian               | Existing | Coreena Member      | 86.00             |
| 33395  | sub-artesian               | Existing | Coreena Member      | 243.80            |
| 5260   | sub-artesian               | Existing | Glendower Formation | 36.00             |
| 12246  | sub-artesian               | Existing | Glendower Formation | 24.10             |
| 12522  | sub-artesian               | Existing | Glendower Formation | 29.60             |
| 13544  | sub-artesian               | Existing | Glendower Formation | 31.70             |
| 13549  | sub-artesian               | Existing | Glendower Formation | 31.70             |
| 13550  | sub-artesian               | Existing | Glendower Formation | 31.70             |
| 13615  | sub-artesian               | Existing | Glendower Formation | 36.60             |
| 13713  | sub-artesian               | Existing | Glendower Formation | 42.70             |
| 13743  | sub-artesian               | Existing | Glendower Formation | 36.90             |
| 13935  | sub-artesian               | Existing | Glendower Formation | 30.50             |
| 14291  | sub-artesian               | Existing | Glendower Formation | 63.40             |
| 14292  | sub-artesian               | Existing | Glendower Formation | 84.40             |
| 14555  | sub-artesian               | Existing | Glendower Formation | 61.90             |
| 14955  | sub-artesian               | Existing | Glendower Formation | 94.80             |
| 16379  | sub-artesian               | Existing | Glendower Formation | 25.00             |
| 16536  | sub-artesian               | Existing | Glendower Formation | 30.50             |
| 16546  | sub-artesian               | Existing | Glendower Formation | 32.00             |
| 16576  | sub-artesian               | Existing | Glendower Formation | 22.90             |
| 16577  | sub-artesian               | Existing | Glendower Formation | 22.90             |
| 24721  | sub-artesian               | Existing | Glendower Formation | 38.71             |
| 26167  | sub-artesian               | Existing | Glendower Formation | 13.70             |
| 32403  | sub-artesian               | Existing | Glendower Formation | 53.30             |
| 35651  | sub-artesian               | Existing | Glendower Formation | 86.30             |
| 36306  | sub-artesian               | Existing | Glendower Formation | 37.80             |
| 36307  | sub-artesian               | Existing | Glendower Formation | 37.50             |
| 36499  | sub-artesian               | Existing | Glendower Formation | 52.40             |
| 50030  | sub-artesian               | Existing | Glendower Formation | 49.50             |
| 50309  | sub-artesian               | Existing | Glendower Formation | 38.70             |
| 50353  | sub-artesian               | Existing | Glendower Formation | 26.21             |
| 51006  | sub-artesian               | Existing | Glendower Formation | 42.06             |
| 116254 | artesian - controlled flow | Existing | Hooray Sandstone    | 586.60            |
| 116266 | artesian - controlled flow | Existing | Hooray Sandstone    | 966.30            |



| RN    | Facility Type              | Status   | Target Aquifer        | Drilled Depth (m) |
|-------|----------------------------|----------|-----------------------|-------------------|
| 23426 | artesian - controlled flow | Existing | Hutton Sandstone      | 2104.30           |
| 7677  | sub-artesian               | Existing | Mackunda Formation    | 182.90            |
| 9070  | sub-artesian               | Existing | Mackunda Formation    | 289.70            |
| 10283 | sub-artesian               | Existing | Mackunda Formation    | 234.80            |
| 11922 | sub-artesian               | Existing | Mackunda Formation    | 245.80            |
| 11924 | sub-artesian               | Existing | Mackunda Formation    | 217.10            |
| 13568 | sub-artesian               | Existing | Mackunda Formation    | 216.41            |
| 13629 | sub-artesian               | Existing | Mackunda Formation    | 197.90            |
| 13835 | sub-artesian               | Existing | Mackunda Formation    | 287.60            |
| 16304 | sub-artesian               | Existing | Mackunda Formation    | 192.02            |
| 16459 | sub-artesian               | Existing | Mackunda Formation    | 213.50            |
| 34797 | sub-artesian               | Existing | Mackunda Formation    | 264.30            |
| 6694  | sub-artesian               | Existing | Quaternary            | 21.30             |
| 10970 | sub-artesian               | Existing | Tertiary Sediments    | 51.82             |
| 14543 | sub-artesian               | Existing | Tertiary Sediments    | 122.80            |
| 15058 | sub-artesian               | Existing | Tertiary Sediments    | 25.60             |
| 15059 | sub-artesian               | Existing | Tertiary Sediments    | 31.70             |
| 15553 | sub-artesian               | Existing | Tertiary Sediments    | 32.90             |
| 15589 | sub-artesian               | Existing | Tertiary Sediments    | 125.00            |
| 16062 | sub-artesian               | Existing | Tertiary Sediments    | 29.30             |
| 16483 | sub-artesian               | Existing | Wallumbilla Formation | 114.30            |
| 50001 | sub-artesian               | Existing | Wallumbilla Formation | 600.00            |
| 1265  | sub-artesian               | Existing | Winton Formation      | 144.80            |
| 1954  | sub-artesian               | Existing | Winton Formation      | 56.40             |
| 5217  | sub-artesian               | Existing | Winton Formation      | 222.00            |
| 5222  | sub-artesian               | Existing | Winton Formation      | 139.00            |
| 5295  | sub-artesian               | Existing | Winton Formation      | 13.70             |
| 5323  | sub-artesian               | Existing | Winton Formation      | 137.20            |
| 5379  | sub-artesian               | Existing | Winton Formation      | 164.00            |
| 5519  | sub-artesian               | Existing | Winton Formation      | 73.20             |
| 5520  | sub-artesian               | Existing | Winton Formation      | 141.80            |
| 5521  | sub-artesian               | Existing | Winton Formation      | 197.60            |
| 5579  | sub-artesian               | Existing | Winton Formation      | 177.80            |
| 6112  | sub-artesian               | Existing | Winton Formation      | 186.30            |
| 6212  | sub-artesian               | Existing | Winton Formation      | 57.30             |
| 6267  | sub-artesian               | Existing | Winton Formation      | 160.02            |
| 6380  | sub-artesian               | Existing | Winton Formation      | 157.00            |
| 6680  | sub-artesian               | Existing | Winton Formation      | 62.80             |
| 6713  | sub-artesian               | Existing | Winton Formation      | 75.60             |
| 6733  | sub-artesian               | Existing | Winton Formation      | 96.00             |
| 6893  | sub-artesian               | Existing | Winton Formation      | 167.03            |
| 7128  | sub-artesian               | Existing | Winton Formation      | 115.80            |
| 7461  | sub-artesian               | Existing | Winton Formation      | 19.50             |
| 7896  | sub-artesian               | Existing | Winton Formation      | 128.02            |
| 7935  | sub-artesian               | Existing | Winton Formation      | 152.40            |
| 8065  | sub-artesian               | Existing | Winton Formation      | 80.20             |
| 8067  | sub-artesian               | Existing | Winton Formation      | 102.10            |
| 8245  | sub-artesian               | Existing | Winton Formation      | 144.20            |
| 9096  | sub-artesian               | Existing | Winton Formation      | 129.60            |
| 9183  | sub-artesian               |          | Winton Formation      | 129.00            |
| 9100  | SUD-altesiali              | Existing |                       | 191.20            |



| RN    | Facility Type | Status   | Target Aquifer   | Drilled Depth (m) |
|-------|---------------|----------|------------------|-------------------|
| 9345  | sub-artesian  | Existing | Winton Formation | 143.30            |
| 9489  | sub-artesian  | Existing | Winton Formation | 119.80            |
| 9689  | sub-artesian  | Existing | Winton Formation | 118.90            |
| 9817  | sub-artesian  | Existing | Winton Formation | 84.80             |
| 9894  | sub-artesian  | Existing | Winton Formation | 149.70            |
| 10301 | sub-artesian  | Existing | Winton Formation | 252.10            |
| 10424 | sub-artesian  | Existing | Winton Formation | 61.00             |
| 10502 | sub-artesian  | Existing | Winton Formation | 146.30            |
| 10508 | sub-artesian  | Existing | Winton Formation | 124.40            |
| 10560 | sub-artesian  | Existing | Winton Formation | 156.40            |
| 10629 | sub-artesian  | Existing | Winton Formation | 215.00            |
| 10637 | sub-artesian  | Existing | Winton Formation | 387.40            |
| 10784 | sub-artesian  | Existing | Winton Formation | 253.00            |
| 11040 | sub-artesian  | Existing | Winton Formation | 162.60            |
| 11452 | sub-artesian  | Existing | Winton Formation | 89.00             |
| 11467 | sub-artesian  | Existing | Winton Formation | 294.30            |
| 11469 | sub-artesian  | Existing | Winton Formation | 176.80            |
| 11904 | sub-artesian  | Existing | Winton Formation | 207.00            |
| 11993 | sub-artesian  | Existing | Winton Formation | 304.80            |
| 12036 | sub-artesian  | Existing | Winton Formation | 209.80            |
| 12055 | sub-artesian  | Existing | Winton Formation | 113.10            |
| 12060 | sub-artesian  | Existing | Winton Formation | 211.84            |
| 12066 | sub-artesian  | Existing | Winton Formation | 3360.12           |
| 12087 | sub-artesian  | Existing | Winton Formation | 177.20            |
| 12091 | sub-artesian  | Existing | Winton Formation | 141.20            |
| 12092 | sub-artesian  | Existing | Winton Formation | 136.90            |
| 12105 | sub-artesian  | Existing | Winton Formation | 621.00            |
| 12137 | sub-artesian  | Existing | Winton Formation | 294.30            |
| 12138 | sub-artesian  | Existing | Winton Formation | 325.40            |
| 12154 | sub-artesian  | Existing | Winton Formation | 822.00            |
| 12242 | sub-artesian  | Existing | Winton Formation | 220.50            |
| 12252 | sub-artesian  | Existing | Winton Formation | 72.54             |
| 12259 | sub-artesian  | Existing | Winton Formation | 170.10            |
| 12377 | sub-artesian  | Existing | Winton Formation | 243.84            |
| 12470 | sub-artesian  | Existing | Winton Formation | 244.60            |
| 12525 | sub-artesian  | Existing | Winton Formation | 114.91            |
| 12598 | sub-artesian  | Existing | Winton Formation | 185.60            |
| 12685 | sub-artesian  | Existing | Winton Formation | 152.10            |
| 12733 | sub-artesian  | Existing | Winton Formation | 71.90             |
| 12734 | sub-artesian  | Existing | Winton Formation | 111.30            |
| 12756 | sub-artesian  | Existing | Winton Formation | 79.25             |
| 12844 | sub-artesian  | Existing | Winton Formation | 229.82            |
| 12850 | sub-artesian  | Existing | Winton Formation | 199.70            |
| 12860 | sub-artesian  | Existing | Winton Formation | 304.00            |
| 12962 | sub-artesian  | Existing | Winton Formation | 170.10            |
| 12968 | sub-artesian  | Existing | Winton Formation | 195.70            |
| 12998 | sub-artesian  | Existing | Winton Formation | 262.90            |
| 13021 | sub-artesian  | Existing | Winton Formation | 61.90             |
| 13062 | sub-artesian  | Existing | Winton Formation | 208.50            |
| 13074 | sub-artesian  | Existing | Winton Formation | 73.20             |



| RN    | Facility Type | Status   | Target Aquifer   | Drilled Depth (m) |
|-------|---------------|----------|------------------|-------------------|
| 13075 | sub-artesian  | Existing | Winton Formation | 182.00            |
| 13076 | sub-artesian  | Existing | Winton Formation | 307.24            |
| 13142 | sub-artesian  | Existing | Winton Formation | 122.00            |
| 13292 | sub-artesian  | Existing | Winton Formation | 134.70            |
| 13339 | sub-artesian  | Existing | Winton Formation | 98.50             |
| 13345 | sub-artesian  | Existing | Winton Formation | 157.30            |
| 13346 | sub-artesian  | Existing | Winton Formation | 74.70             |
| 13348 | sub-artesian  | Existing | Winton Formation | 144.80            |
| 13565 | sub-artesian  | Existing | Winton Formation | 143.60            |
| 13569 | sub-artesian  | Existing | Winton Formation | 143.60            |
| 13575 | sub-artesian  | Existing | Winton Formation | 78.60             |
| 13650 | sub-artesian  | Existing | Winton Formation | 91.50             |
| 13657 | sub-artesian  | Existing | Winton Formation | 154.80            |
| 13742 | sub-artesian  | Existing | Winton Formation | 69.50             |
| 13804 | sub-artesian  | Existing | Winton Formation | 281.80            |
| 14039 | sub-artesian  | Existing | Winton Formation | 164.00            |
| 14147 | sub-artesian  | Existing | Winton Formation | 97.50             |
| 14507 | sub-artesian  | Existing | Winton Formation | 838.20            |
| 14559 | sub-artesian  | Existing | Winton Formation | 74.70             |
| 14560 | sub-artesian  | Existing | Winton Formation | 89.90             |
| 14566 | sub-artesian  | Existing | Winton Formation | 131.10            |
| 14567 | sub-artesian  | Existing | Winton Formation | 161.60            |
| 14587 | sub-artesian  | Existing | Winton Formation | 168.60            |
| 14653 | sub-artesian  | Existing | Winton Formation | 274.32            |
| 14791 | sub-artesian  | Existing | Winton Formation | 133.20            |
| 14792 | sub-artesian  | Existing | Winton Formation | 229.51            |
| 14877 | sub-artesian  | Existing | Winton Formation | 353.30            |
| 14929 | sub-artesian  | Existing | Winton Formation | 171.84            |
| 14941 | sub-artesian  | Existing | Winton Formation | 203.30            |
| 15012 | sub-artesian  | Existing | Winton Formation | 219.50            |
| 15013 | sub-artesian  | Existing | Winton Formation | 39.10             |
| 15120 | sub-artesian  | Existing | Winton Formation | 128.10            |
| 15186 | sub-artesian  | Existing | Winton Formation | 150.90            |
| 15295 | sub-artesian  | Existing | Winton Formation | 149.40            |
| 15477 | sub-artesian  | Existing | Winton Formation | 281.80            |
| 15690 | sub-artesian  | Existing | Winton Formation | 186.00            |
| 15808 | sub-artesian  | Existing | Winton Formation | 32.00             |
| 15809 | sub-artesian  | Existing | Winton Formation | 24.40             |
| 15968 | sub-artesian  | Existing | Winton Formation | 161.50            |
| 16127 | sub-artesian  | Existing | Winton Formation | 57.91             |
| 16146 | sub-artesian  | Existing | Winton Formation | 62.50             |
| 16345 | sub-artesian  | Existing | Winton Formation | 159.80            |
| 16489 | sub-artesian  | Existing | Winton Formation | 122.30            |
| 16522 | sub-artesian  | Existing | Winton Formation | 243.00            |
| 16526 | sub-artesian  | Existing | Winton Formation | 224.40            |
| 16545 | sub-artesian  | Existing | Winton Formation | 33.22             |
| 16700 | sub-artesian  | Existing | Winton Formation | 154.20            |
| 16701 | sub-artesian  | Existing | Winton Formation | 82.30             |
| 16847 | sub-artesian  | Existing | Winton Formation | 35.70             |
| 16936 | sub-artesian  | Existing | Winton Formation | 61.00             |



| RN     | Facility Type | Status   | Target Aquifer   | Drilled Depth (m) |
|--------|---------------|----------|------------------|-------------------|
| 16989  | sub-artesian  | Existing | Winton Formation | 155.45            |
| 17059  | sub-artesian  | Existing | Winton Formation | 86.90             |
| 17261  | sub-artesian  | Existing | Winton Formation | 60.40             |
| 31989  | sub-artesian  | Existing | Winton Formation | 183.00            |
| 32952  | sub-artesian  | Existing | Winton Formation | 169.50            |
| 33326  | sub-artesian  | Existing | Winton Formation | 70.10             |
| 33336  | sub-artesian  | Existing | Winton Formation | 152.50            |
| 34039  | sub-artesian  | Existing | Winton Formation | 144.50            |
| 34799  | sub-artesian  | Existing | Winton Formation | 216.50            |
| 35973  | sub-artesian  | Existing | Winton Formation | 67.10             |
| 35974  | sub-artesian  | Existing | Winton Formation | 107.90            |
| 36475  | sub-artesian  | Existing | Winton Formation | 107.90            |
| 50079  | sub-artesian  | Existing | Winton Formation | 128.00            |
| 50106  | sub-artesian  | Existing | Winton Formation | 18.30             |
| 50111  | sub-artesian  | Existing | Winton Formation | 12.20             |
| 50182  | sub-artesian  | Existing | Winton Formation | 15.42             |
| 50364  | sub-artesian  | Existing | Winton Formation | 173.70            |
| 50384  | sub-artesian  | Existing | Winton Formation | 161.50            |
| 50385  | sub-artesian  | Existing | Winton Formation | 121.20            |
| 50386  | sub-artesian  | Existing | Winton Formation | 179.80            |
| 50388  | sub-artesian  | Existing | Winton Formation | 459.40            |
| 50389  | sub-artesian  | Existing | Winton Formation | 140.20            |
| 50444  | sub-artesian  | Existing | Winton Formation | 152.00            |
| 50469  | sub-artesian  | Existing | Winton Formation | 61.00             |
| 69503  | sub-artesian  | Existing | Winton Formation | 109.00            |
| 69504  | sub-artesian  | Existing | Winton Formation | 128.10            |
| 116166 | sub-artesian  | Existing | Winton Formation | 62.00             |
| 116209 | sub-artesian  | Existing | Winton Formation | 149.00            |

# NUMBER OF OIL AND GAS PRODUCTION WELLS IN THE COOPER AND EROMANGA BASINS

| DI              | Total Number of          | Purpose |     |             |  |  |  |
|-----------------|--------------------------|---------|-----|-------------|--|--|--|
| PL<br>Reference | Total Number of<br>Wells | Gas     | Oil | Oil and gas |  |  |  |
| PL 107          | 1                        | 1       | 0   | 0           |  |  |  |
| PL 108          | 3                        | 3       | 0   | 0           |  |  |  |



|        |          |    | - |   |
|--------|----------|----|---|---|
| PL 109 | 1        | 1  | 0 | 0 |
| PL 110 | 1        | 1  | 0 | 0 |
| PL 111 | 2        | 2  | 0 | 0 |
| PL 112 | 10       | 10 | 0 | 0 |
| PL 113 | 7        | 7  | 0 | 0 |
| PL 114 | 3        | 3  | 0 | 0 |
| PL 117 | 0        | 0  | 0 | 0 |
| PL 129 | 4        | 4  | 0 | 0 |
| PL 130 | 3        | 1  | 0 | 2 |
| PL 131 | 32       | 32 | 0 | 0 |
| PL 132 | 2        | 2  | 0 | 0 |
| PL 133 | 0        | 0  | 0 | 0 |
| PL 134 | 1        | 1  | 0 | 0 |
| PL 135 | 0        | 0  | 0 | 0 |
| PL 136 | 0        | 0  | 0 | 0 |
| PL 137 | 2        | 2  | 0 | 0 |
| PL 138 | 0        | 0  | 0 | 0 |
| PL 139 | 1        | 1  | 0 | 0 |
| PL 140 | 3        | 3  | 0 | 0 |
| PL 141 | 0        | 0  | 0 | 0 |
| PL 142 | 1        | 1  | 0 | 0 |
| PL 143 | 0        | 0  | 0 | 0 |
| PL 144 | 3        | 3  | 0 | 0 |
| PL 145 | 0        | 0  | 0 | 0 |
| PL 146 | 5        | 3  | 2 | 0 |
| PL 147 | 1        | 1  | 0 | 0 |
| PL 148 | 1        | 1  | 0 | 0 |
| PL 149 | 1        | 1  | 0 | 0 |
| PL 150 | 9        | 8  | 0 | 1 |
| PL 151 | 4        | 4  | 0 | 0 |
| PL 152 | 4        | 4  | 0 | 0 |
| PL 153 | 1        | 1  | 0 | 0 |
| PL 154 | 0        | 0  | 0 | 0 |
| PL 155 | 3        | 3  | 0 | 0 |
| PL 156 | 0        | 0  | 0 | 0 |
| PL 157 | 1        | 1  | 0 | 0 |
| PL 158 | 1        | 1  | 0 | 0 |
| PL 159 | 1        | 1  | 0 | 0 |
| PL 168 | 1        | 0  | 1 | 0 |
| PL 169 | 8        | 0  | 8 | 0 |
| PL 170 | 7        | 0  | 7 | 0 |
| PL 175 | 2        | 2  | 0 | 0 |
|        | <u> </u> | _  | - |   |

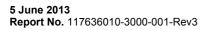
| PL 178 | 0  | 0 | 0  | 0 |
|--------|----|---|----|---|
|        | -  | 0 | 0  | 0 |
| PL 181 | 1  | 1 | 0  | 0 |
| PL 182 | 2  | 2 | 0  | 0 |
| PL 186 | 4  | 4 | 0  | 0 |
| PL 187 | 2  | 2 | 0  | 0 |
| PL 188 | 2  | 2 | 0  | 0 |
| PL 189 | 1  | 1 | 0  | 0 |
| PL 193 | 0  | 0 | 0  | 0 |
| PL 205 | 2  | 2 | 0  | 0 |
| PL 207 | 1  | 1 | 0  | 0 |
| PL 208 | 1  | 1 | 0  | 0 |
| PL 23  | 41 | 1 | 40 | 0 |
| PL 24  | 9  | 0 | 9  | 0 |
| PL 241 | 2  | 2 | 0  | 0 |
| PL 244 | 1  | 0 | 1  | 0 |
| PL 245 | 0  | 0 | 0  | 0 |
| PL 249 | 0  | 0 | 0  | 0 |
| PL 25  | 34 | 3 | 31 | 0 |
| PL 254 | 1  | 0 | 0  | 1 |
| PL 255 | 0  | 0 | 0  | 0 |
| PL 26  | 8  | 3 | 4  | 1 |
| PL 287 | 3  | 3 | 0  | 0 |
| PL 288 | 2  | 2 | 0  | 0 |
| PL 29  | 0  | 0 | 0  | 0 |
| PL 293 | 2  | 0 | 2  | 0 |
| PL 294 | 1  | 0 | 1  | 0 |
| PL 295 | 19 | 0 | 19 | 0 |
| PL 298 | 1  | 0 | 1  | 0 |
| PL 301 | 4  | 0 | 4  | 0 |
| PL 302 | 2  | 0 | 2  | 0 |
| PL 303 | 4  | 0 | 4  | 0 |
| PL 33  | 5  | 0 | 4  | 0 |
| PL 34  | 32 | 0 | 31 | 1 |
| PL 35  | 9  | 0 | 9  | 0 |
| PL 36  | 5  | 0 | 5  | 0 |
| PL 37  | 4  | 4 | 0  | 0 |
| PL 38  | 1  | 0 | 1  | 0 |
| PL 39  | 60 | 0 | 60 | 0 |
| PL 409 | 1  | 1 | 0  | 0 |
| PL 410 | 1  | 1 | 0  | 0 |
| PL 411 | 1  | 1 | 0  | 0 |
| PL 460 | 1  | 0 | 1  | 0 |
| PL 50  | 2  | 0 | 2  | 0 |

|         |    | -  |    | • |
|---------|----|----|----|---|
| PL 51   | 14 | 0  | 14 | 0 |
| PL 52   | 38 | 0  | 38 | 0 |
| PL 55   | 3  | 0  | 3  | 0 |
| PL 57   | 31 | 0  | 31 | 0 |
| PL 58   | 14 | 12 | 2  | 0 |
| PL 59   | 18 | 17 | 1  | 0 |
| PL 60   | 9  | 9  | 0  | 0 |
| PL 61   | 24 | 10 | 12 | 1 |
| PL 62   | 3  | 3  | 0  | 0 |
| PL 63   | 8  | 7  | 1  | 0 |
| PL 68   | 4  | 0  | 4  | 0 |
| PL 75   | 4  | 0  | 3  | 1 |
| PL 76   | 4  | 0  | 4  | 0 |
| PL 77   | 2  | 0  | 2  | 0 |
| PL 78   | 2  | 0  | 2  | 0 |
| PL 79   | 1  | 1  | 0  | 0 |
| PL 80   | 4  | 4  | 0  | 0 |
| PL 81   | 5  | 5  | 0  | 0 |
| PL 82   | 0  | 0  | 0  | 0 |
| PL 83   | 2  | 2  | 0  | 0 |
| PL 84   | 15 | 15 | 0  | 0 |
| PL 85   | 2  | 2  | 0  | 0 |
| PL 86   | 2  | 2  | 0  | 0 |
| PL 87   | 0  | 0  | 0  | 0 |
| PL 88   | 4  | 4  | 0  | 0 |
| PL 95   | 0  | 0  | 0  | 0 |
| PL 97   | 20 | 0  | 20 | 0 |
| PPL 10  | 0  | 0  | 0  | 0 |
| PPL 100 | 1  | 0  | 1  | 0 |
| PPL 101 | 0  | 0  | 0  | 0 |
| PPL 102 | 0  | 0  | 0  | 0 |
| PPL 103 | 1  | 1  | 0  | 0 |
| PPL 104 | 1  | 1  | 0  | 0 |
| PPL 105 | 1  | 1  | 0  | 0 |
| PPL 106 | 0  | 0  | 0  | 0 |
| PPL 107 | 0  | 0  | 0  | 0 |
| PPL 108 | 0  | 0  | 0  | 0 |
| PPL 109 | 1  | 1  | 0  | 0 |
| PPL 11  | 44 | 31 | 11 | 2 |
| PPL 110 | 2  | 2  | 0  | 0 |
| PPL 111 | 0  | 0  | 0  | 0 |
| PPL 113 | 2  | 2  | 0  | 0 |
| PPL 114 | 1  | 1  | 0  | 0 |

|         | -  | -  |    |   |
|---------|----|----|----|---|
| PPL 115 | 0  | 0  | 0  | 0 |
| PPL 116 | 0  | 0  | 0  | 0 |
| PPL 117 | 0  | 0  | 0  | 0 |
| PPL 118 | 0  | 0  | 0  | 0 |
| PPL 119 | 0  | 0  | 0  | 0 |
| PPL 12  | 54 | 41 | 11 | 2 |
| PPL 120 | 0  | 0  | 0  | 0 |
| PPL 121 | 2  | 0  | 2  | 0 |
| PPL 122 | 1  | 1  | 0  | 0 |
| PPL 123 | 0  | 0  | 0  | 0 |
| PPL 124 | 0  | 0  | 0  | 0 |
| PPL 125 | 1  | 1  | 0  | 0 |
| PPL 126 | 0  | 0  | 0  | 0 |
| PPL 127 | 0  | 0  | 0  | 0 |
| PPL 128 | 0  | 0  | 0  | 0 |
| PPL 129 | 0  | 0  | 0  | 0 |
| PPL 13  | 7  | 7  | 0  | 0 |
| PPL 130 | 0  | 0  | 0  | 0 |
| PPL 131 | 19 | 19 | 0  | 0 |
| PPL 132 | 0  | 0  | 0  | 0 |
| PPL 133 | 1  | 1  | 0  | 0 |
| PPL 134 | 0  | 0  | 0  | 0 |
| PPL 135 | 4  | 4  | 0  | 0 |
| PPL 136 | 3  | 3  | 0  | 0 |
| PPL 137 | 0  | 0  | 0  | 0 |
| PPL 138 | 0  | 0  | 0  | 0 |
| PPL 139 | 5  | 5  | 0  | 0 |
| PPL 14  | 40 | 40 | 0  | 0 |
| PPL 140 | 0  | 0  | 0  | 0 |
| PPL 143 | 0  | 0  | 0  | 0 |
| PPL 144 | 0  | 0  | 0  | 0 |
| PPL 145 | 0  | 0  | 0  | 0 |
| PPL 146 | 3  | 3  | 0  | 0 |
| PPL 147 | 0  | 0  | 0  | 0 |
| PPL 148 | 0  | 0  | 0  | 0 |
| PPL 149 | 9  | 0  | 9  | 0 |
| PPL 15  | 20 | 20 | 0  | 0 |
| PPL 150 | 0  | 0  | 0  | 0 |
| PPL 151 | 5  | 5  | 0  | 0 |
| PPL 152 | 0  | 0  | 0  | 0 |
| PPL 153 | 0  | 0  | 0  | 0 |
| PPL 154 | 0  | 0  | 0  | 0 |
| PPL 155 | 0  | 0  | 0  | 0 |

| PPL 156            | 0  | 0  | 0 | 0 |
|--------------------|----|----|---|---|
| PPL 156<br>PPL 158 | 3  | 3  | 0 | 0 |
|                    | 0  | 0  | 0 | 0 |
| PPL 159            | 0  | 0  | 0 | 0 |
| PPL 16             | 0  | 0  | 0 | 0 |
| PPL 160            | 0  | 0  | 0 | 0 |
| PPL 161            |    |    |   |   |
| PPL 162            | 0  | 0  | 0 | 0 |
| PPL 163            | 1  | 1  | 0 | 0 |
| PPL 164            | 0  | 0  | 0 | 0 |
| PPL 165            | 0  | 0  | 0 | 0 |
| PPL 166            | 0  | 0  | 0 | 0 |
| PPL 167            | 0  | 0  | 0 | 0 |
| PPL 17             | 0  | 0  | 0 | 0 |
| PPL 172            | 0  | 0  | 0 | 0 |
| PPL 174            | 1  | 0  | 0 | 1 |
| PPL 175            | 0  | 0  | 0 | 0 |
| PPL 176            | 0  | 0  | 0 | 0 |
| PPL 177            | 0  | 0  | 0 | 0 |
| PPL 178            | 0  | 0  | 0 | 0 |
| PPL 179            | 0  | 0  | 0 | 0 |
| PPL 18             | 0  | 0  | 0 | 0 |
| PPL 180            | 0  | 0  | 0 | 0 |
| PPL 182            | 2  | 0  | 2 | 0 |
| PPL 187            | 2  | 2  | 0 | 0 |
| PPL 189            | 1  | 1  | 0 | 0 |
| PPL 19             | 0  | 0  | 0 | 0 |
| PPL 190            | 0  | 0  | 0 | 0 |
| PPL 193            | 0  | 0  | 0 | 0 |
| PPL 194            | 4  | 0  | 4 | 0 |
| PPL 195            | 1  | 1  | 0 | 0 |
| PPL 196            | 0  | 0  | 0 | 0 |
| PPL 20             | 0  | 0  | 0 | 0 |
| PPL 201            | 0  | 0  | 0 | 0 |
| PPL 206            | 0  | 0  | 0 | 0 |
| PPL 208            | 0  | 0  | 0 | 0 |
| PPL 215            | 0  | 0  | 0 | 0 |
| PPL 22             | 42 | 34 | 5 | 3 |
| PPL 225            | 7  | 0  | 7 | 0 |
| PPL 226            | 3  | 0  | 3 | 0 |
| PPL 227            | 1  | 0  | 1 | 0 |
| PPL 228            | 14 | 14 | 0 | 0 |
| PPL 229            | 0  | 0  | 0 | 0 |
|                    | 3  | 3  | 0 | 0 |
| PPL 23             | 3  | ు  | U | U |




| PPL 230 | 0  | 0  | 0  | 0 |
|---------|----|----|----|---|
| PPL 231 | 4  | 4  | 0  | 0 |
| PPL 232 | 2  | 2  | 0  | 0 |
| PPL 232 | 0  | 0  | 0  | 0 |
| PPL 234 | 13 | 0  | 13 | 0 |
| PPL 235 | 0  | 0  | 0  | 0 |
| PPL 236 | 1  | 1  | 0  | 0 |
| PPL 237 | 3  | 2  | 1  | 0 |
| PPL 238 | 0  | 0  | 0  | 0 |
| PPL 24  | 14 | 14 | 0  | 0 |
| PPL 25  | 8  | 0  | 8  | 0 |
| PPL 26  | 1  | 1  | 0  | 0 |
| PPL 27  | 0  | 0  | 0  | 0 |
| PPL 29  | 0  | 0  | 0  | 0 |
| PPL 30  | 23 | 0  | 23 | 0 |
| PPL 30  | 0  | 0  | 0  | 0 |
| PPL 32  | 0  | 0  | 0  | 0 |
| PPL 33  | 4  | 4  | 0  | 0 |
| PPL 35  | 0  | 0  | 0  | 0 |
| PPL 36  | 45 | 0  | 45 | 0 |
| PPL 37  | 0  | 0  | 0  | 0 |
| PPL 38  | 0  | 0  | 0  | 0 |
| PPL 39  | 0  | 0  | 0  | 0 |
| PPL 40  | 1  | 1  | 0  | 0 |
| PPL 41  | 7  | 7  | 0  | 0 |
| PPL 42  | 2  | 2  | 0  | 0 |
| PPL 43  | 1  | 1  | 0  | 0 |
| PPL 44  | 3  | 2  | 0  | 1 |
| PPL 45  | 0  | 0  | 0  | 0 |
| PPL 46  | 0  | 0  | 0  | 0 |
| PPL 47  | 0  | 0  | 0  | 0 |
| PPL 48  | 0  | 0  | 0  | 0 |
| PPL 51  | 0  | 0  | 0  | 0 |
| PPL 52  | 0  | 0  | 0  | 0 |
| PPL 53  | 0  | 0  | 0  | 0 |
| PPL 54  | 0  | 0  | 0  | 0 |
| PPL 55  | 0  | 0  | 0  | 0 |
| PPL 56  | 0  | 0  | 0  | 0 |
| PPL 57  | 0  | 0  | 0  | 0 |
| PPL 58  | 6  | 6  | 0  | 0 |
| PPL 59  | 0  | 0  | 0  | 0 |
| PPL 6   | 0  | 0  | 0  | 0 |
| PPL 60  | 0  | 0  | 0  | 0 |



| PPL 61         0         0         0         0           PPL 63         0         0         0         0         0           PPL 63         0         0         0         0         0           PPL 64         0         0         0         0         0           PPL 65         0         0         0         0         0           PPL 66         0         0         0         0         0           PPL 67         0         0         0         0         0           PPL 68         0         0         0         0         0           PPL 69         4         4         0         0         0           PPL 70         0         0         0         0         0           PPL 70         0         0         0         0         0           PPL 73         4         1         3         0         0           PPL 75         0         0         0         0         0           PPL 76         2         0         2         0         0           PPL 78         1         1         0         0         0                                                                                                                                               |        |    |    |   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----|---|---|
| PPL 64         0         0         0         0           PPL 65         0         0         0         0           PPL 65         0         0         0         0           PPL 66         0         0         0         0           PPL 67         0         0         0         0           PPL 68         0         0         0         0           PPL 69         4         4         0         0           PPL 70         0         0         0         0           PPL 70         0         0         0         0           PPL 72         3         3         0         0           PPL 73         4         1         3         0           PPL 74         1         1         0         0           PPL 75         0         0         0         0           PPL 76         2         0         2         0           PPL 79         1         1         0         0           PPL 79         1         1         0         0           PPL 80         0         0         0         0                                                                                                                                                                         | PPL 61 | 0  | 0  | 0 | 0 |
| PPL 65         0         0         0         0           PPL 66         0         0         0         0         0           PPL 67         0         0         0         0         0           PPL 68         0         0         0         0         0           PPL 69         4         4         0         0           PPL 7         13         12         0         1           PPL 70         0         0         0         0           PPL 72         3         3         0         0           PPL 73         4         1         3         0           PPL 74         1         1         0         0           PPL 75         0         0         0         0           PPL 76         2         0         2         0           PPL 77         3         0         3         0           PPL 76         2         0         2         0           PPL 78         1         1         0         0           PPL 79         1         1         0         0           PPL 80         0         0 <td< td=""><td>PPL 63</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>                                                                                     | PPL 63 | 0  | 0  | 0 | 0 |
| PPL 66         0         0         0         0           PPL 67         0         0         0         0         0           PPL 68         0         0         0         0         0           PPL 69         4         4         0         0           PPL 7         13         12         0         1           PPL 70         0         0         0         0           PPL 72         3         3         0         0           PPL 73         4         1         3         0           PPL 74         1         1         0         0           PPL 75         0         0         0         0           PPL 76         2         0         2         0           PPL 77         3         0         3         0           PPL 78         1         1         0         0           PPL 78         1         1         0         0           PPL 79         1         1         0         0           PPL 80         0         0         0         0           PPL 83         0         0         0 <td< td=""><td>PPL 64</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>                                                                                     | PPL 64 | 0  | 0  | 0 | 0 |
| PPL 67         0         0         0         0         0           PPL 68         0         0         0         0         0           PPL 69         4         4         0         0           PPL 7         13         12         0         1           PPL 70         0         0         0         0           PPL 72         3         3         0         0           PPL 72         3         3         0         0           PPL 73         4         1         3         0           PPL 74         1         1         0         0           PPL 75         0         0         0         0           PPL 76         2         0         2         0           PPL 77         3         0         3         0           PPL 78         1         1         0         0           PPL 79         1         1         0         0           PPL 80         0         0         0         0           PPL 81         0         0         0         0           PPL 83         0         0         0 <td< td=""><td>PPL 65</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>                                                                                     | PPL 65 | 0  | 0  | 0 | 0 |
| PPL 68         0         0         0         0           PPL 69         4         4         0         0           PPL 7         13         12         0         1           PPL 70         0         0         0         0           PPL 72         3         3         0         0           PPL 72         3         3         0         0           PPL 73         4         1         3         0           PPL 73         4         1         0         0           PPL 74         1         1         0         0           PPL 75         0         0         0         0           PPL 76         2         0         2         0           PPL 77         3         0         3         0           PPL 78         1         1         0         0           PPL 78         1         1         0         0           PPL 80         0         0         0         0           PPL 81         0         0         0         0           PPL 83         0         0         0         0 <td< td=""><td>PPL 66</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>                                                                                               | PPL 66 | 0  | 0  | 0 | 0 |
| PPL 69         4         4         0         0           PPL 7         13         12         0         1           PPL 70         0         0         0         0         0           PPL 70         3         3         0         0         0           PPL 72         3         3         0         0         0           PPL 72         3         3         0         0         0           PPL 72         3         3         0         0         0           PPL 73         4         1         3         0         0           PPL 74         1         1         0         0         0           PPL 75         0         0         0         0         0           PPL 76         2         0         2         0           PPL 77         3         0         3         0           PPL 78         1         1         0         0           PPL 79         1         1         0         0           PPL 80         0         0         0         0           PPL 83         0         0         0         0 <td>PPL 67</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                     | PPL 67 | 0  | 0  | 0 | 0 |
| PPL 7       13       12       0       1         PPL 70       0       0       0       0       0         PPL 70       0       0       0       0       0         PPL 72       3       3       0       0         PPL 72       3       3       0       0         PPL 72       3       3       0       0         PPL 73       4       1       3       0         PPL 73       4       1       0       0         PPL 74       1       1       0       0         PPL 75       0       0       0       0         PPL 76       2       0       2       0         PPL 76       2       0       2       0         PPL 77       3       0       3       0         PPL 78       1       1       0       0         PPL 79       1       1       0       0         PPL 80       0       0       0       0         PPL 81       0       0       0       0         PPL 83       0       0       0       0         PPL 84                                                                                                                                                                                                                                                                  | PPL 68 | 0  | 0  | 0 | 0 |
| PPL 70       0       0       0       0         PPL 70       3       3       0       0         PPL 72       3       3       0       0         PPL 72       3       4       1       3       0         PPL 73       4       1       3       0       0         PPL 73       4       1       0       0       0         PPL 74       1       1       0       0       0         PPL 75       0       0       0       0       0         PPL 76       2       0       2       0       0         PPL 77       3       0       3       0       0         PPL 78       1       1       0       0       0         PPL 79       1       1       0       0       0         PPL 80       0       0       0       0       0         PPL 81       0       0       0       0       0         PPL 83       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                               | PPL 69 | 4  | 4  | 0 | 0 |
| PPL 72       3       3       0       0         PPL 73       4       1       3       0         PPL 73       4       1       3       0         PPL 73       4       1       3       0         PPL 73       4       1       0       0         PPL 74       1       1       0       0         PPL 75       0       0       0       0         PPL 76       2       0       2       0         PPL 76       2       0       3       0         PPL 77       3       0       3       0         PPL 78       1       1       0       0         PPL 79       1       1       0       0         PPL 80       0       0       0       0         PPL 80       0       0       0       0         PPL 83       0       0       0       0         PPL 84       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                | PPL 7  | 13 | 12 | 0 | 1 |
| PPL 73       4       1       3       0         PPL 73       4       1       3       0         PPL 73       4       1       0       0         PPL 74       1       1       0       0         PPL 75       0       0       0       0         PPL 75       0       0       2       0         PPL 76       2       0       2       0         PPL 76       2       0       3       0         PPL 77       3       0       3       0         PPL 78       1       1       0       0         PPL 79       1       1       0       0         PPL 80       0       0       0       0         PPL 80       0       0       0       0         PPL 81       0       0       0       0         PPL 83       0       0       0       0         PPL 84       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                | PPL 70 | 0  | 0  | 0 | 0 |
| PPL 74       1       1       0       0         PPL 75       0       0       0       0       0         PPL 75       0       0       0       0       0         PPL 76       2       0       2       0         PPL 76       2       0       3       0         PPL 76       2       0       3       0         PPL 77       3       0       3       0         PPL 78       1       1       0       0         PPL 79       1       1       0       0         PPL 80       0       0       0       0         PPL 81       0       0       0       0         PPL 83       0       0       0       0         PPL 84       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PPL 72 | 3  | 3  | 0 | 0 |
| PPL 75       0       0       0       0         PPL 75       2       0       2       0         PPL 76       2       0       2       0         PPL 76       2       0       3       0         PPL 77       3       0       3       0         PPL 78       1       1       0       0         PPL 79       1       1       0       0         PPL 80       0       0       0       0         PPL 80       0       0       0       0         PPL 81       0       0       0       0         PPL 83       0       0       0       0         PPL 84       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PPL 73 | 4  | 1  | 3 | 0 |
| PPL 76       2       0       2       0         PPL 76       2       0       3       0         PPL 77       3       0       3       0         PPL 78       1       1       0       0         PPL 79       1       1       0       0         PPL 80       0       0       0       0         PPL 81       0       0       0       0         PPL 83       0       0       0       0         PPL 84       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 74 | 1  | 1  | 0 | 0 |
| PPL 77       3       0       3       0         PPL 78       1       1       0       0         PPL 79       1       1       0       0         PPL 8       0       0       0       0         PPL 80       0       0       0       0         PPL 81       0       0       0       0         PPL 83       0       0       0       0         PPL 84       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 75 | 0  | 0  | 0 | 0 |
| PPL 78         1         1         0         0           PPL 79         1         1         0         0           PPL 8         0         0         0         0           PPL 80         0         0         0         0           PPL 81         0         0         0         0           PPL 83         0         0         0         0           PPL 84         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PPL 76 | 2  | 0  | 2 | 0 |
| PPL 79       1       1       0       0         PPL 8       0       0       0       0       0         PPL 80       0       0       0       0       0         PPL 81       0       0       0       0       0         PPL 83       0       0       0       0       0         PPL 84       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PPL 77 | 3  | 0  | 3 | 0 |
| PPL 8       0       0       0       0         PPL 80       0       0       0       0       0         PPL 81       0       0       0       0       0         PPL 83       0       0       0       0       0         PPL 84       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PPL 78 | 1  | 1  | 0 | 0 |
| PPL 80         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>PPL 79</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> | PPL 79 | 1  | 1  | 0 | 0 |
| PPL 81         0         0         0         0           PPL 83         0         0         0         0           PPL 84         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PPL 8  | 0  | 0  | 0 | 0 |
| PPL 83         0         0         0         0           PPL 84         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PPL 80 | 0  | 0  | 0 | 0 |
| PPL 84 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 81 | 0  | 0  | 0 | 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PPL 83 | 0  | 0  | 0 | 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PPL 84 | 0  | 0  | 0 | 0 |
| PPL 86 2 0 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 86 | 2  | 0  | 2 | 0 |
| PPL 87 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 87 | 0  | 0  | 0 | 0 |
| PPL 88 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 88 | 0  | 0  | 0 | 0 |
| PPL 89 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 89 | 0  | 0  | 0 | 0 |
| PPL 9 7 7 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PPL 9  | 7  | 7  | 0 | 0 |
| PPL 90 18 15 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 18 | 15 | 1 | 2 |
| PPL 91 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 0  | 0  | 0 | 0 |
| PPL 92 1 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 92 | 1  | 1  | 0 | 0 |
| PPL 94 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 94 | 0  | 0  | 0 | 0 |
| PPL 95 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 95 | 0  | 0  | 0 | 0 |
| PPL 98 2 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPL 98 | 2  | 1  | 0 | 1 |
| PPL 99 2 2 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 2  | 2  | 0 | 0 |











### **RISK ANALYSIS**

| Operational Area                            | Risk Issue                                       | Cause                                                                                                                     | Impact                                                                                      | Consequence | Likelihood | Inherent<br>Risk Rating | Control Measures /Mitigation/Site<br>Operations                                                                                                                                                                                | Consequence with mitigation & controls | Likelihood with mitigation<br>& controls | Current Residual<br>Rating inclusive<br>of Mitigation and<br>Controls |
|---------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------------------------------------|
|                                             | Passage of water between aquifers                | Poor design, Construction technique, Poor closure technique                                                               | Contamination, Pressure<br>Loss, Non-compliance                                             | IV          | С          | 3                       | Petroleum Licence conditions. Santos well completion procedures.                                                                                                                                                               | IV                                     | D                                        | 2                                                                     |
|                                             | Leakage of<br>introduced fluids<br>including mud | Inappropriate muds or<br>drilling technique                                                                               | Contamination of aquifers and/or surface water                                              | IV          | D          | 2                       | Licence. Bore drilling techniques and design. Environmental assessment studies.                                                                                                                                                | 111                                    | E                                        | 1                                                                     |
| Bore Drilling,<br>Design,<br>Completion,    | Artesian Flows                                   | Over pressure/poor mud<br>control/incorrect drilling<br>assumptions                                                       | Erosion, loss of reputation                                                                 | I           | D          | 1                       | Implement erosion controls. Licences.                                                                                                                                                                                          | I                                      | D                                        | 1                                                                     |
| Integrity                                   | Hydraulic fracturing<br>Fluids                   | Use of hydraulic fracturing<br>fluids to increase<br>connectivity and enhance<br>the production of oil& gas<br>reservoirs | Contamination of deep<br>aquifers and/or surface<br>water , soil and shallow<br>groundwater | IV          | С          | 3                       | Environmental assessment studies.<br>Monitoring programs for hydraulic<br>fracturing fluid. Disposal and treatment<br>of backflow water. Mechanical integrity<br>of wellbores regularly checked<br>(quarterly).                |                                        | E                                        | 1                                                                     |
|                                             | Leakage between<br>aquifers                      | Associated water production<br>(limited volumes for gas<br>production, larger volumes<br>for oil production)              | Loss of available<br>drawdown in bores                                                      | IV          | С          | 3                       | Bore Inventory. Groundwater Impact<br>Assessment. No/limited groundwater<br>usage from and below target beds.<br>Stratigraphy                                                                                                  |                                        | D                                        | 2                                                                     |
|                                             |                                                  |                                                                                                                           | Subsidence                                                                                  | IV          | E          | 2                       | Groundwater impact assessment, no<br>large scale depressurisation of<br>formations.                                                                                                                                            | 111                                    | E                                        | 1                                                                     |
| Oil and Gas Wells -                         |                                                  |                                                                                                                           | Water quality changes                                                                       | IV          | С          | 3                       | Abandonments of old/unused wells .<br>Licence requirements. Monitoring of<br>water quality parameters.                                                                                                                         |                                        | D                                        | 2                                                                     |
| Groundwater<br>extraction from the<br>wells |                                                  |                                                                                                                           | Loss of baseflow<br>(watercourse springs)                                                   | IV          | D          | 2                       | Appropriate design. Collection systems.<br>Groundwater Impact Assessment. No<br>baseflow contributing to stream                                                                                                                | Ι                                      | E                                        | 1                                                                     |
|                                             |                                                  |                                                                                                                           | Impacts on GAB<br>discharge springs (incl.<br>mound springs) and GAB<br>recharge springs    | III         | E          | 1                       | GAB discharge springs within 150 and<br>350 km of Oil&Gas fields. The closest<br>springs are GAB recharge springs<br>located 35 km away, however the gas<br>well target is deep and will not affect a<br>GAB recharge springs. | 111                                    | E                                        | 1                                                                     |
|                                             |                                                  |                                                                                                                           | Oil flows, well head splits/leaks and gas flows                                             | IV          | С          | 3                       | Monitoring and active leakage control.<br>Storage leaks/splits. Appropriate design<br>of the wells                                                                                                                             | IV                                     | E                                        | 1                                                                     |
|                                             | Discharge of<br>associated water to              | Leak of water pipe or controls, system failure                                                                            | Soil/Shallow GW contamination                                                               | I           | С          | 1                       | Monitoring program. Collection systems.                                                                                                                                                                                        | I                                      | D                                        | 1                                                                     |
|                                             | environment                                      |                                                                                                                           | Contamination of local SW                                                                   | II          | С          | 2                       | Pipeline maintenance and monitoring                                                                                                                                                                                            | II                                     | D                                        | 1                                                                     |
| Gathering Systems                           |                                                  | Break in pipeline                                                                                                         | Soil/Shallow GW contamination                                                               | III         | С          | 3                       | Monitoring program. Optimally located (to minimise pipework lengths, etc.)                                                                                                                                                     |                                        | E                                        | 1                                                                     |
|                                             |                                                  |                                                                                                                           | Contamination of local SW                                                                   | III         | С          | 3                       | Monitoring program.                                                                                                                                                                                                            | III                                    | E                                        | 1                                                                     |





| Operational Area          | Risk Issue                                                                                   | Cause                                                                      | Impact                                                                                                              | Consequence | Likelihood | Inherent<br>Risk Rating | Control Measures /Mitigation/Site<br>Operations                                                                                            | Consequence with mitigation & controls | Likelihood with mitigation<br>& controls | Current Residual<br>Rating inclusive<br>of Mitigation and<br>Controls |
|---------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------|------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------------------------------------|
|                           |                                                                                              | Leakage from low point drains/separators                                   | Soil/Shallow GW contamination                                                                                       |             | С          | 3                       | Appropriate design.                                                                                                                        | III                                    | D                                        | 2                                                                     |
|                           | Erosion                                                                                      | Design, construction of<br>stream crossings, open<br>areas                 | Stream water quality                                                                                                | II          | С          | 2                       | Design to minimise impacts and<br>accommodate high flows, few perennial<br>streams                                                         | II                                     | E                                        | 1                                                                     |
|                           | Uncontrolled<br>discharge to<br>environment                                                  | Seepage - vertical                                                         | Shallow groundwater<br>and/or soil contamination                                                                    | IV          | С          | 3                       | Small water volumes production. Lined<br>for separator and interceptor ponds.<br>Monitoring program in high pond hazard.                   |                                        | D                                        | 2                                                                     |
|                           |                                                                                              | Seepage - lateral                                                          | Vegetation loss,<br>Discharge to water ways                                                                         | IV          | C          | 3                       | Vegetation of low conservation<br>significance.                                                                                            | III                                    | D                                        | 2                                                                     |
| Water Storage             |                                                                                              | Dam Break                                                                  | Damage to property, soil,<br>water, surface<br>infrastructure, loss of<br>asset and associated<br>income, fatality. | IV          | D          | 3                       | Monitoring around infrastructure,<br>treatment of water, dams located away<br>from creeks and sensitive environment.                       | IV                                     | E                                        | 1                                                                     |
|                           |                                                                                              | Operational Failure<br>Overflow, Operational<br>Failure Accidental Release | Damage to property, soil,<br>water, surface<br>infrastructure, and<br>associated income.                            | IV          | D          | 2                       | Water management model. Design of<br>dams to accommodate large floods and<br>operate at safe levels.                                       | IV                                     | E                                        | 1                                                                     |
|                           | Uncontrolled run-off<br>from roads                                                           | Inadequate design and<br>management of waterway<br>crossings               | Deterioration of water<br>quality                                                                                   | III         | D          | 2                       | Industry standard.                                                                                                                         | 111                                    | E                                        | 1                                                                     |
|                           | Camp - Contaminant releases                                                                  | Effluent release from sewage treatment                                     | Soil and shallow GW contamination                                                                                   | II          | D          | 1                       | Monitoring program.                                                                                                                        | II                                     | E                                        | 1                                                                     |
|                           |                                                                                              | Kitchen Waste                                                              | Soil and shallow GW contamination                                                                                   | I           | С          | 1                       | Site management procedures.<br>Appropriate design.                                                                                         | I                                      | E                                        | 1                                                                     |
| Surface<br>Infrastructure | Workshop and maintenance areas                                                               | Chemical storage                                                           | Contamination of GW or<br>SW                                                                                        | 111         | D          | 2                       | H&S and Environmental management<br>procedures, specific to facilities handling<br>chemicals. Response plans. Small<br>quantities.         |                                        | E                                        | 1                                                                     |
|                           | Compressor station hazards                                                                   | Bulk Fuel and chemical storage                                             | Contamination of GW or SW                                                                                           |             | D          | 2                       | Monitoring. Environmental response<br>plans specific to facilities                                                                         | III                                    | E                                        | 1                                                                     |
|                           | Oil station hazards                                                                          | Bulk Fuel and chemical storage                                             | Contamination of GW or SW                                                                                           | III         | D          | 2                       | Monitoring. Environmental response<br>plans specific to facilities.                                                                        | III                                    | E                                        | 1                                                                     |
|                           |                                                                                              | Washdown areas                                                             | Contamination of GW or SW, weeds                                                                                    | II          | С          | 2                       | Environmental response plans.                                                                                                              | II                                     | E                                        | 1                                                                     |
|                           | Potential for<br>migration of injection<br>fluid out of target<br>formation into<br>aquifers | Wellbore integrity                                                         | Migration of injection fluid<br>out of the target formation<br>into the aquifers                                    | III         | D          | 3                       | Birkhead target hydraulically isolated.<br>Flood well design. Well integrity is<br>checked through regular mechanical<br>integrity checks. | 1                                      | D                                        | 1                                                                     |
| Water Flooding            |                                                                                              | Faults                                                                     | Migration of injection fluid<br>out of the target formation<br>into the aquifers                                    | 111         | D          | 2                       | No major faults identified in area based<br>on seismic data. Chemical tracer<br>program.                                                   | I                                      | D                                        | 1                                                                     |
|                           | Reactivity of injected fluid with target zone                                                | Potential for reactivity with the receiving aquifer                        | Degradation of the water quality                                                                                    | II          | C          | 3                       | Comprehensive analysis of waters taken<br>prior to project start-up. Regular<br>produced water sampling. Chemical<br>tracer program.       |                                        | D                                        | 1                                                                     |



| Operational Area | Risk Issue                                              | Cause            | Impact                                            | Consequence | Likelihood | Inherent<br>Risk Rating | Control Measures /Mitigation/Site<br>Operations                                                                                                                                                                                                                            | Consequence with mitigation & controls | Likelihood with mitigation<br>& controls | Current Residual<br>Rating inclusive<br>of Mitigation and<br>Controls |
|------------------|---------------------------------------------------------|------------------|---------------------------------------------------|-------------|------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------------------------------------|
|                  | Over pressurisation<br>of target zone from<br>injection | Create fractures | Localised groundwater<br>flows between formations | I           | D          |                         | General operations do not result in<br>exceeding frac pressures; however,<br>fractures (if created) would be limited to<br>the near-wellbore region, contained<br>within the Birkhead and have no impact<br>upon aquifers. Reservoir and injection<br>pressure monitoring. | Ι                                      | D                                        | 1                                                                     |

j:\hyd\2011\117636010 santos\_cooper basin o&g & moonie oil -official folder in brisbane\correspondence out\117636010-3000-001-cooper basin uwir\rev2\appendices\117636010-3000-001-rev2 appendix f risk analysis.docx





## **APPENDIX G**

Santos Extraction Bores in the Cooper and Eromanga Basins





Field Name and Ground Well Datum Datum Oil or Gas Easting Northing Well Reference Height (Kelly Elevation **Date Drilled** Level Well (GDA 54) (GDA 54) (mAHD) (mAHD) Number Bushing) (m) GAS ACRUS 1 582730.4326 6933263.87 225.55 16.6 242.15 12/05/2002 OIL 6893652.827 **APOLLOSA 1** 584523.1632 232.38 13.2 245.58 20/01/2004 OIL 4.86 AROS 2 739261.6165 6989838.13 206.82 211.68 30/11/2006 OIL **ARRABURY 3** 507157.4131 6991681.243 425.75 15.6 441.35 2/11/2005 GAS ASHBY 2 552952.3636 6876554.974 341.07 16.6 357.67 21/03/2005 GAS ASHBY 3 557246.1567 327.46 16.6 344.06 6876717.857 7/03/2005 GAS ASHBY 4 554825.4051 6877295.269 337.14 16.6 353.74 11/12/2005 GAS ASHBY NORTH 1 555466.7254 6879970.608 326.21 17.25 343.46 22/04/1997 UNAS **BALLERA SOUTH 1** 580274.8461 6970185.783 372.11 17.25 389.36 10/01/1998 GAS **BALLERA WEST 1** 577148.0921 6969878.76 354.26 334.16 20.1 1/09/1994 GAS **BALLERA WEST 2** 576687.6086 6971703.561 335.1 26.2 361.3 2/02/1999 GAS **BALLERA WEST 3** 576687.5162 6970116.371 329.75 16.6 346.35 2/03/2002 GAS **BARROLKA 10** 570053.5206 7030766.204 336.64 19.3 355.94 16/02/2006 GAS 567379.6079 20.1 **BARROLKA 2** 7027638.162 361.68 381.78 12/07/1994 GAS **BARROLKA 3** 572951.0088 7025918.48 315.35 19.3 334.65 22/10/1996 GAS 26.2 **BARROLKA 4** 569980.5235 7025909.211 332.69 358.89 27/10/2000 GAS **BARROLKA 4ST1** 569980.4241 7025909.211 332.69 26.2 358.89 27/10/2000 GAS **BARROLKA 5DW1** 570782.9835 7023304.485 363.14 26.2 389.34 5/02/2001 GAS **BARROLKA 5DW2** 570782.9835 7023304.485 363.14 26.2 389.34 5/02/2001 GAS **BARROLKA 6** 570516.8565 7023410.877 16.6 370.6 387.2 12/12/2001 GAS **BARROLKA 7DW1** 572175.6898 7024515.331 343.6 26.2 369.8 12/06/2001 GAS **BARROLKA 7DW2** 572175.6898 7024515.331 343.6 26.2 369.8 12/06/2001 GAS **BARROLKA 8** 569065.7388 7025740.695 342.02 16.6 358.62 6/01/2002 GAS **BARROLKA 9** 575274.826 7028668.76 299.27 19.3 318.57 24/01/2006 GAS **BARROLKA EAST 2** 579088.4257 7029304.792 26.21 299.97 326.18 14/01/1998 BARROLKA GAS NORTHEAST 1 575356.371 7033953.048 356.36 16.6 372.96 11/09/1997 BARROLKA GAS NORTHEAST 2 570631.704 7034654.485 395.47 16.6 412.07 14/12/1997 OIL **BARTA 1** 506272.6497 7043815.387 335.46 16.6 352.06 13/04/1998 OIL **BARTA NORTH 1** 518344.4493 7046197.415 105.61 5.1 110.71 12/11/2010 GAS **BARYULAH 10** 586556.3517 6929540.666 222.54 19.3 241.84 31/12/2005 GAS 583031.0412 **BARYULAH 11** 6929897.341 222.86 16.6 239.46 20/10/2006 GAS 583506.0176 6931276.099 223.65 16.6 240.25 **BARYULAH 12** 2/10/2006 GAS **BARYULAH 2** 581987.4025 6930608.135 222.5 17.9 240.4 20/10/1995 GAS **BARYULAH 3** 583227.6812 6930733.07 223.59 16.5 240.09 9/11/2000 GAS **BARYULAH 4** 586064.586 6929988.19 222.44 16.6 239.04 6/06/2001 GAS 585254.2416 239.73 **BARYULAH 5** 6929652.036 223.13 16.6 29/07/2001 GAS 585627.399 16.6 240.19 **BARYULAH 6** 6929879.061 223.59 9/09/2004 GAS **BARYULAH 7** 584471.1489 6930179.419 223.32 18.5 241.82 <Null>

The following Table contains all Santos Oil and Gas wells located in Queensland, grouped by field name.



| BARYULAH 7ST1   | GAS        | 584471.1489 | 6930179.419 | 223    | 18.5  | 241.5  | 12/09/2005 |
|-----------------|------------|-------------|-------------|--------|-------|--------|------------|
| BARYULAH 8      | GAS        | 582229.6393 | 6931534.412 | 223.78 | 18.5  | 242.28 | 3/10/2005  |
| BARYULAH 9      | GAS        | 583442.8082 | 6929180.958 | 221.91 | 18.5  | 240.41 | 20/10/2005 |
| BARYULAH EAST 1 | GAS        | 586370.0215 | 6929781.067 | 222.3  | 17    | 239.3  | 23/11/1994 |
| BEEREE 1        | GAS        | 560963.9003 | 7023433.368 | 522.73 | 16.6  | 539.33 | 9/07/1997  |
| BEEREE 2        | GAS        | 555613.7061 | 7033662.493 | 458.75 | 16.6  | 475.35 | 22/10/1997 |
| BEEREE 2ST1     | GAS        | 555613.7061 | 7033662.493 | 458.75 | 16.6  | 475.35 | 11/11/1997 |
| BEEREE 3        | GAS        | 558334.9427 | 7027075.337 | 548.65 | 16.6  | 565.25 | 24/01/1998 |
| BILBERRY 1      | OIL        | 736865.4569 | 7028130.128 | 164.24 | 4.07  | 168.31 | 14/07/2006 |
| BINGILBERRY 1   | OIL        | 737587.2495 | 7012768.004 | 169.34 | 4.1   | 173.44 | 20/11/2006 |
| BOGALA 2        | OIL        | 624694.1221 | 6954106.557 | 367.52 | 17    | 384.52 | 27/05/1988 |
| BOGALA 3        | OIL        | 624870.9704 | 6954314.931 | 372.09 | 16.5  | 388.59 | 29/08/1990 |
| BOGALA CENTRAL  | OIL        |             |             |        |       |        |            |
| 1               | OIL        | 622841.6413 | 6956520.871 | 375.64 | 13.1  | 388.74 | 23/05/2007 |
| BOLAN 2         | -          | 614003.305  | 6926220.255 | 230.5  | 17.9  | 248.4  | 4/05/1991  |
| BOWEN 2         | OIL        | 603635.3187 | 6912631.47  | 217.85 | 16.5  | 234.35 | 24/02/1990 |
| BOWEN 3         | OIL<br>GAS | 602909.8154 | 6911465.175 | 223.75 | 17.9  | 241.65 | 25/11/1992 |
| BRUMBY 10       |            | 500113.3177 | 6856550.929 | 270.64 | 17    | 287.64 | 6/01/1997  |
| BRUMBY 11       | GAS        | 500185.4485 | 6859493.4   | 254.98 | 17    | 271.98 | 22/01/1997 |
| BRUMBY 6        | GAS        | 500152.5083 | 6857650.106 | 260.62 | 20.1  | 280.72 | 1/01/1993  |
| BRUMBY 8        | GAS        | 500182.693  | 6858687.132 | 254.98 | 17    | 271.98 | 13/11/1995 |
| BURUNDI 1       | OIL        | 648574.7743 | 6926217.932 | 102.84 | 3.95  | 106.79 | 11/10/2007 |
| CALLISTO 1      | OG         | 651130.8541 | 6972258.046 | 140.6  | 4.02  | 144.62 | 15/11/2003 |
| CARNEY SOUTH 1  | OIL        | 615029.1657 | 6961860.792 | 319.58 | 13.15 | 332.73 | 12/08/2007 |
| CHALLUM 10      | GAS        | 560275.251  | 6968159.036 | 245.23 | 26.2  | 271.43 | 28/10/1998 |
| CHALLUM 11      | GAS        | 552989.6608 | 6969425.224 | 276.54 | 26.2  | 302.74 | 24/11/1998 |
| CHALLUM 12      | GAS        | 564106.711  | 6966117.842 | 244.78 | 26.2  | 270.98 | 17/12/1998 |
| CHALLUM 13      | GAS        | 556414.7756 | 6972103.617 | 268.53 | 26.2  | 294.73 | 11/01/1999 |
| CHALLUM 14DW    | GAS        | 554738.1037 | 6970326.557 | 269.73 | 26.2  | 295.93 | 4/05/1999  |
| CHALLUM 15      | GAS        | 554023.9427 | 6969226.88  | 269.67 | 26.2  | 295.87 | 19/03/1999 |
| CHALLUM 16DW1   | GAS        | 561071.077  | 6969156.048 | 249.75 | 26.2  | 275.95 | 13/05/2000 |
| CHALLUM 16DW2   | GAS        | 561071.077  | 6969156.048 | 249.75 | 26.2  | 275.95 | 13/05/2000 |
| CHALLUM 17DW1   | GAS        | 562435.7239 | 6968390.411 | 250.6  | 26.2  | 276.8  | 22/08/2000 |
| CHALLUM 17DW2   | GAS        | 562435.7239 | 6968390.411 | 250.6  | 26.2  | 276.8  | 22/08/2000 |
| CHALLUM 18DW1   | GAS        | 557583.6498 | 6970873.748 | 259.59 | 26.2  | 285.79 | 9/07/2000  |
| CHALLUM 18DW2   | GAS        | 557583.5514 | 6970873.86  | 259.59 | 26.2  | 285.79 | 9/07/2000  |
| CHALLUM 19      | GAS        | 557314.8118 | 6970410.429 | 258.56 | 16.6  | 275.16 | 3/02/2001  |
| CHALLUM 20DW1   | GAS        | 559899.1196 | 6969465.1   | 253.41 | 26.2  | 279.61 | 25/04/2001 |
| CHALLUM 20DW2   | GAS        | 559899.1196 | 6969465.1   | 253.41 | 26.2  | 279.61 | 25/04/2001 |
| CHALLUM 20DW3   | GAS        | 559899.1196 | 6969465.1   | 253.41 | 26.2  | 279.61 | 25/04/2001 |
| CHALLUM 21DW1   | GAS        | 554633.1116 | 6970619.457 | 268.8  | 26.2  | 295.01 | 12/03/2001 |
| CHALLUM 21DW2   | GAS        | 554633.1116 | 6970619.457 | 268.8  | 26.2  | 295.01 | 12/03/2001 |
| CHALLUM 22      | GAS        | 564223.3506 | 6968162.988 | 251.21 | 16.6  | 267.81 | 17/03/2001 |



| CHALLUM 23     | GAS | 558188.3191 | 6968763.483 | 247.28 | 16.6  | 263.88 | 23/04/2001 |
|----------------|-----|-------------|-------------|--------|-------|--------|------------|
| CHALLUM 24     | GAS | 559087.2604 | 6971188.196 | 258.64 | 16.6  | 275.24 | 26/02/2001 |
| CHALLUM 25     | GAS | 561368.806  | 6970472.753 | 261.02 | 16.6  | 277.62 | 6/04/2001  |
| CHALLUM 26     | GAS | 555923.6205 | 6971370.339 | 265.55 | 16.6  | 282.15 | 14/02/2004 |
| CHALLUM 27     | GAS | 553827.0052 | 6969861.239 | 267.29 | 16.6  | 283.89 | 5/03/2004  |
| CHALLUM 28     | OIL | 558744.0019 | 6969191.633 | 249.57 | 13.18 | 262.75 | 30/08/2006 |
| CHALLUM 29     | OIL | 556967.323  | 6969761.815 | 254.95 | 13.35 | 268.3  | 10/09/2006 |
| CHALLUM 30     | OIL | 555121.2514 | 6970261.044 | 270.53 | 13.12 | 283.65 | 21/09/2006 |
| CHALLUM 6      | GAS | 555395.4521 | 6971034.654 | 267.48 | 17.25 | 284.73 | 2/12/1997  |
| CHALLUM 7      | GAS | 554336.9488 | 6970300.641 | 273.85 | 26.2  | 300.05 | 1/03/1998  |
| CHALLUM 8      | GAS | 561860.2908 | 6967769.669 | 252    | 26.2  | 278.2  | 15/09/1998 |
| CHALLUM 9      | GAS | 558107.8724 | 6969691.019 | 255.94 | 26.2  | 282.14 | 1/05/1998  |
| CHALLUM WEST 1 | GAS | 549725.3341 | 6973834.729 | 309.58 | 26.2  | 335.78 | 30/03/1998 |
| CHANCETT 1     | OIL | 739070.9312 | 7027229.01  | 163.64 | 3.98  | 167.62 | 28/06/2006 |
| CHI 1          | OG  | 545629.5099 | 6864677.128 | 417.91 | 16.6  | 434.51 | 30/01/2010 |
| CHILLA 1       | GAS | 611982.706  | 6955831.479 | 331    | 16.6  | 347.6  | 1/05/1998  |
| CHILLA 2       | OIL | 612398.0411 | 6956098     | 346.09 | 12.9  | 358.99 | 1/10/2007  |
| CHILLA 3       | OIL | 611579.4118 | 6956743.741 | 344.13 | 13    | 357.12 | 15/02/2009 |
| CHILLA 3A      | OIL | 611584.3648 | 6956745.246 | 344.13 | 13    | 357.13 | 25/02/2009 |
| CHINOOK 1      | GAS | 590326.0398 | 6985561.761 | 252.1  | 16.6  | 268.7  | 19/12/2003 |
| CHIRON 1       | OG  | 508292.0786 | 6849874.033 | 325.59 | 16.6  | 342.19 | 23/09/1996 |
| CHIRON 2       | OG  | 506431.148  | 6851435.02  | 329.75 | 17.25 | 347    | 30/12/1996 |
| CHIRON 3       | GAS | 508261.9667 | 6850484.025 | 315.65 | 19.3  | 334.95 | 23/05/2005 |
| CHOOKOO 10     | GAS | 611592.9023 | 6951637.341 | 261.71 | 17.25 | 278.96 | 23/02/1998 |
| CHOOKOO 7      | OG  | 612500.9145 | 6951526.539 | 268.44 | 17.9  | 286.34 | 11/01/1989 |
| CHOOKOO 8      | OIL | 611218.7034 | 6951142.198 | 257.18 | 16.5  | 273.68 | 7/12/1989  |
| CHOOKOO 9      | GAS | 612812.0539 | 6950766.975 | 267.39 | 17.25 | 284.64 | 10/02/1998 |
| CLASSIC 1      | OIL | 737752.9759 | 7039110.917 | 164.1  | 4.87  | 168.97 | 2/07/2006  |
| CLINTON 1      | GAS | 607775.1062 | 7091642.557 | 323.13 | 18.78 | 341.91 | 13/12/1997 |
| COOK 10        | OIL | 530043.0967 | 7045844.933 | 403.51 | 15.75 | 419.26 | 5/04/2008  |
| COOK 11        | OIL | 528254.9224 | 7047015.082 | 394.65 | 15.75 | 410.4  | 23/03/2008 |
| COOK 12        | OIL | 528672.9187 | 7048194.911 | 392.38 | 15.4  | 407.78 | 4/03/2008  |
| COOK 13        | OIL | 528677.1169 | 7048820.118 | 390.19 | 15.7  | 405.89 | 19/04/2008 |
| COOK 14        | OIL | 528725.2604 | 7046441.75  | 394.88 | 15.75 | 410.63 | 14/05/2008 |
| COOK 15        | OIL | 528300.0767 | 7048170.496 | 388.19 | 16.6  | 404.79 | 16/12/2010 |
| COOK 16        | OIL | 527779.3851 | 7048050.48  | 396.56 | 16.6  | 413.16 | 3/02/2011  |
| COOK 17        | OIL | 528860.366  | 7049555.562 | 398.75 | 16.6  | 415.35 | 18/02/2011 |
| COOK 18        | OIL | 528984.541  | 7048160.423 | 400.46 | 16.6  | 417.06 | 11/01/2011 |
| COOK 19        | OIL | 528142.9662 | 7047490.03  | 389.27 | 16.6  | 405.87 | 30/12/2010 |
| COOK 1DW1      | OIL | 528928.6341 | 7046723.161 | 395.03 | 17.9  | 412.93 | 5/12/1993  |
| COOK 3         | OIL | 528639.1448 | 7047380.601 | 390.13 | 17    | 407.13 | 29/12/1992 |
| COOK 3A        | OIL | 528612.5829 | 7047380.661 | 389.8  | 17    | 406.8  | 15/01/1993 |



| COOK 4            | OIL | 529036.0136 | 7048480.833 | 399.32 | 17.9  | 417.22 | 14/09/1993 |
|-------------------|-----|-------------|-------------|--------|-------|--------|------------|
| COOK 5            | OIL | 528297.4524 | 7047707.432 | 387.78 | 17    | 404.78 | 24/05/1994 |
| COOK 6            | OIL | 528482.3029 | 7049306.33  | 385.39 | 17    | 402.39 | 7/06/1994  |
| COOK 7            | OIL | 529369.8966 | 7047916.761 | 402.71 | 20.1  | 422.81 | 5/11/1994  |
| COOK 8            | OIL | 528945.8616 | 7046818.151 | 395.24 | 20.1  | 415.34 | 24/01/1996 |
| COOK 9            | OIL | 529085.1913 | 7049014.451 | 397.27 | 16.6  | 413.87 | 23/01/2002 |
| COOK NORTH 2      | OIL | 531122.3032 | 7049756.005 | 401.65 | 20.1  | 421.75 | 19/09/1994 |
| COOLAH 1          | GAS | 579408.2415 | 7018409.359 | 348.98 | 16.6  | 365.58 | 8/08/1997  |
| COOLAH 2          | GAS | 582907.5788 | 7018112.012 | 311.12 | 19.3  | 330.42 | 12/10/1997 |
| COONABERRY 1      | GAS | 609668.718  | 7029627.718 | 287.82 | 16.6  | 304.42 | 9/01/2001  |
| COONABERRY 2      | GAS | 610236.3792 | 7030603.812 | 289.24 | 16.6  | 305.84 | 24/02/2007 |
| COOROO 3          | OIL | 627371.4111 | 6933379.273 | 284.83 | 17    | 301.83 | 7/07/1988  |
| COOROO 4          | OIL | 627194.3834 | 6933394.647 | 265.04 | 17    | 282.04 | 16/07/1989 |
| COOROO 5          | OIL | 626695.5856 | 6933728.49  | 252.01 | 17.9  | 269.91 | 13/11/1989 |
| COOROO 6          | OIL | 627616.564  | 6933560.071 | 271.94 | 17    | 288.94 | 3/12/1991  |
| CORELLA 2         | OIL | 615052.6638 | 6924543.199 | 233.54 | 16.5  | 250.04 | 23/03/1990 |
| CORRIDOR 1        | GAS | 595020.5132 | 7000559.389 | 257.28 | 20.1  | 277.38 | 18/02/1996 |
| CORSAIR 1         | GAS | 614096.8174 | 6974088.768 | 270.34 | 16.6  | 286.94 | 27/01/2004 |
| COSMO WEST 1      | GAS | 582268.6796 | 6925786.718 | 221.19 | 16.6  | 237.79 | 23/11/2004 |
| COSTA 1           | GAS | 599960.6119 | 6969071.474 | 241.78 | 17.9  | 259.68 | 11/07/1993 |
| COSTA CENTRAL 1   | GAS | 598745.5519 | 6967501.966 | 240.84 | 17.25 | 258.09 | 30/10/1997 |
| COSTA SOUTH 1     | GAS | 597173.9243 | 6965830.481 | 242.1  | 20.1  | 262.2  | 16/08/1995 |
| COSTA SOUTH 2     | GAS | 596638.6586 | 6966775.905 | 241.4  | 19.3  | 260.7  | 13/09/1996 |
| COSTA SOUTH 3     | GAS | 597010.7451 | 6966121.798 | 241.99 | 16.6  | 258.59 | 22/10/2005 |
| COSTA WEST 1      | GAS | 595932.4262 | 6968654.531 | 242.94 | 16.6  | 259.54 | 5/10/2005  |
| CRANBERRY 1       | OIL | 743393.252  | 7018559.164 | 174.49 | 4.04  | 178.53 | 21/08/2006 |
| CRANSTOUN 3       | OIL | 737562.4105 | 7031598.358 | 173.87 | 4.86  | 178.73 | 20/08/2006 |
| CRANSTOUN 4       | OIL | 737014.4084 | 7032161.377 | 175.3  | 4.86  | 180.16 | 27/08/2006 |
| CUISINIER 1       | OIL | 522097.8648 | 7047963.847 | 107.51 | 4.8   | 112.31 | 4/05/2008  |
| CUISINIER 2       | OIL | 522437.5759 | 7048280.122 | 108.84 | 5.1   | 113.94 | 1/12/2010  |
| CUISINIER 3       | OIL | 522489.9876 | 7047314.908 | 108.6  | 5.1   | 113.7  | 7/03/2011  |
| CURRAMBAR 1       | OIL | 664143.1832 | 6929032.049 | 92.42  | 4.08  | 96.5   | 7/01/2006  |
| CURRAWINYA 1      | OIL | 728979.6097 | 6999911.087 | 235.37 | 4.86  | 240.23 | 31/12/2006 |
| CURRI 1           | GAS | 581175.7967 | 6972863.772 | 333.49 | 16.6  | 350.09 | 24/02/1998 |
| DARTMOOR 1        | CSG | 651880.5587 | 6936481.685 | 117.9  | 5.06  | 122.96 | 29/07/2002 |
| DILKERA 3         | OIL | 661046.7801 | 6930331.345 | 99.33  | 5.1   | 104.43 | 8/09/2010  |
| DILKERA NORTH 1   | OIL | 661753.7476 | 6930629.453 | 109.67 | 4.02  | 113.69 | 7/01/2007  |
| DINGERA 2         | OG  | 588654.5941 | 6907257.407 | 227.92 | 17.9  | 245.82 | 15/12/1995 |
| DINOJUE 1         | OIL | 657164.0453 | 6927437.057 | 117.76 | 5.18  | 122.94 | 14/06/2011 |
| DULULU 1          | OIL | 543178.545  | 6866644.987 | 404.13 | 16.6  | 420.73 | 5/05/2005  |
| DURHAM DOWNS<br>3 | GAS | 579069.7787 | 6999800.491 | 309.6  | 20.1  | 329.7  | 9/06/1994  |
| DURHAM DOWNS      | GAS | 577899.9437 | 7004742.389 | 357.97 | 19.3  | 377.27 | 7/03/2006  |



| 4                       |     |             |             |        |      |        |            |
|-------------------------|-----|-------------|-------------|--------|------|--------|------------|
| DURHAM DOWNS<br>NORTH 1 | GAS | 580377.003  | 7007364.589 | 311.52 | 20.1 | 331.62 | 2/05/1994  |
| DURHAM DOWNS<br>NORTH 2 | GAS | 581444.725  | 7007344.713 | 305.44 | 19.3 | 324.74 | 6/12/2005  |
| ECHUBURRA 2             | OIL | 617207.4326 | 6920591.361 | 249.02 | 17.9 | 266.92 | 19/05/1992 |
| ENDEAVOUR 10            | OIL | 736555.0337 | 7035015.569 | 182.32 | 4.86 | 187.18 | 6/08/2006  |
| ENDEAVOUR 11            | OIL | 737099.064  | 7034492.345 | 185.27 | 4.87 | 190.14 | 27/05/2006 |
| ENDEAVOUR 12            | OIL | 735662.0595 | 7035305.064 | 177.84 | 4.86 | 182.7  | 28/10/2006 |
| ENDEAVOUR 13            | OIL | 735643.4144 | 7034721.559 | 184.96 | 4.86 | 189.82 | 19/10/2006 |
| ENDEAVOUR 14            | OIL | 735912.4027 | 7034400.944 | 186.98 | 4.86 | 191.84 | 19/09/2006 |
| ENDEAVOUR 15            | OIL | 736194.8624 | 7034093.926 | 183.56 | 4.86 | 188.42 | 12/11/2006 |
| ENDEAVOUR 16            | OIL | 735593.5081 | 7034104.827 | 182.77 | 4.86 | 187.63 | 12/10/2006 |
| ENDEAVOUR 17            | OIL | 735968.8454 | 7033801.291 | 182.34 | 4    | 186.34 | 20/01/2007 |
| ENDEAVOUR 18            | OIL | 735596.8803 | 7033501.845 | 183.55 | 4.86 | 188.41 | 11/09/2006 |
| ENDEAVOUR 19            | OIL | 735614.1678 | 7032903.811 | 183.8  | 4.86 | 188.66 | 6/10/2006  |
| ENDEAVOUR 20            | OIL | 738809.8008 | 7035875.937 | 183.37 | 3.96 | 187.33 | 9/12/2006  |
| ENDEAVOUR 21            | OIL | 737388.8223 | 7035914.461 | 177.34 | 4.1  | 181.44 | 27/11/2006 |
| ENDEAVOUR 25            | OIL | 736761.086  | 7035334.732 | 180.39 | 4.2  | 184.59 | 13/02/2007 |
| ENDEAVOUR 26            | OIL | 737378.1493 | 7035330.469 | 184.17 | 4.86 | 189.03 | 10/01/2007 |
| ENDEAVOUR 27            | OIL | 738058.5863 | 7035331.19  | 185.22 | 4.1  | 189.32 | 19/12/2006 |
| ENDEAVOUR 28            | OIL | 737424.1428 | 7034702.068 | 187.96 | 4.1  | 192.06 | 24/12/2006 |
| ENDEAVOUR 29            | OIL | 735350.9772 | 7034350.451 | 181.4  | 4    | 185.4  | 9/04/2007  |
| ENDEAVOUR 31            | OIL | 738073.4731 | 7034685.19  | 185.9  | 4.06 | 189.96 | 3/04/2007  |
| ENDEAVOUR 33            | OIL | 735301.7572 | 7033204.06  | 184.19 | 4.1  | 188.29 | 15/01/2007 |
| ENDEAVOUR 34            | OIL | 735891.3586 | 7033189.398 | 183.24 | 4.39 | 187.63 | 10/01/2007 |
| ENDEAVOUR 35            | OIL | 735944.794  | 7034995.278 | 179.56 | 4    | 183.56 | 6/02/2007  |
| ENDEAVOUR 36            | OIL | 736811.9221 | 7033520.016 | 182.28 | 4    | 186.28 | 31/01/2007 |
| ENDEAVOUR 37            | OIL | 734377.0416 | 7031125.301 | 177.1  | 4.08 | 181.18 | 15/04/2007 |
| ENDEAVOUR 38            | OIL | 735584.9455 | 7032313.519 | 180.16 | 4.04 | 184.2  | 30/12/2006 |
| ENDEAVOUR 39            | OIL | 735004.3043 | 7032913.962 | 184.52 | 4.86 | 189.38 | 20/01/2007 |
| ENDEAVOUR 4             | OIL | 737045.4635 | 7034949.398 | 189.62 | 4.35 | 193.97 | 19/09/1994 |
| ENDEAVOUR 40            | OIL | 736197.8774 | 7032909.862 | 180.66 | 4.05 | 184.71 | 5/01/2007  |
| ENDEAVOUR 41            | OIL | 738617.9634 | 7037103.602 | 173.19 | 4.11 | 177.3  | 3/12/2006  |
| ENDEAVOUR 5             | OIL | 736265.9684 | 7034672.35  | 183.24 | 4.87 | 188.11 | 15/05/2006 |
| ENDEAVOUR 6             | OIL | 736503.3395 | 7034289.792 | 183.73 | 4.86 | 188.59 | 27/07/2006 |
| ENDEAVOUR 7             | OIL | 736845.1207 | 7034080.749 | 182.99 | 4.86 | 187.85 | 21/07/2006 |
| ENDEAVOUR 8             | OIL | 736241.954  | 7033511.074 | 180.12 | 4.87 | 184.99 | 16/06/2006 |
| ENDEAVOUR 9             | OIL | 737725.6239 | 7035581.668 | 181.29 | 4.6  | 185.89 | 11/07/2006 |
| ENOGGARA 1              | OIL | 723520.2136 | 7029097.429 | 162.56 | 3.96 | 166.52 | 4/06/2007  |
| EPSILON 10              | GAS | 512267.9888 | 6884487.721 | 366.16 | 19.3 | 385.46 | 24/12/1999 |
| EPSILON 11              | GAS | 512823.9472 | 6884130.43  | 375.06 | 16.6 | 391.66 | 19/03/2007 |
| EPSILON 6               | GAS | 511588.8706 | 6881903.834 | 354.71 | 20.1 | 374.81 | 7/09/1991  |



| EPSILON 7     | GAS | 514071.7606 | 6886193.481 | 395.67 | 17.9  | 413.57 | 11/11/1992 |
|---------------|-----|-------------|-------------|--------|-------|--------|------------|
| EPSILON 8     | GAS | 514233.3094 | 6884575.709 | 382.64 | 16.3  | 398.94 | 16/05/1997 |
| EPSILON 9     | GAS | 514567.5487 | 6887274.853 | 407.67 | 10.5  | 423.67 | 15/07/1997 |
| EULO 1        | OIL | 732729.7505 | 7031339.924 | 172.39 | 4.86  | 177.25 | 29/09/2006 |
| FAJITA 1      | OIL | 641308.0184 | 6938326.98  | 357.15 | 13.14 | 370.29 | 22/04/2007 |
| FERAL 1       | OG  | 575497.8601 | 6888219.293 | 234.53 | 17.9  | 252.43 | 28/09/1992 |
| GALEX 1       | GAS | 585022.4575 | 6962664.963 | 278.28 | 16.6  | 294.88 | 3/11/2004  |
| GALEX 2       | GAS | 584171.1716 | 6963092.785 | 280.54 | 16.6  | 297.14 | 21/09/2008 |
| GALIBA 1      | GAS | 586150.0726 | 6961250.205 | 323.95 | 16.6  | 340.55 | 17/11/1996 |
| GENOA 2       | OIL | 583768.2178 | 6886901.104 | 242.07 | 17.9  | 259.97 | 16/02/1993 |
| GENOA 3       | OIL | 583787.4239 | 6887244.639 | 236.71 | 16.6  | 253.31 | 31/05/2010 |
| GENOA NORTH 1 | OIL | 584377.0816 | 6889636.421 | 238.2  | 17.9  | 256.1  | 19/12/1992 |
| GENOA NORTH 2 | OIL | 584817.5179 | 6889122.228 | 236.3  | 16.6  | 252.9  | 13/06/2010 |
| GHINA 1       | GAS | 616726.8825 | 7007686.232 | 431.56 | 12.4  | 443.96 | 31/05/1997 |
| GIMBOOLA 2    | OIL | 740159.6211 | 7024557.614 | 170.12 | 4.05  | 174.17 | 22/06/2006 |
| GIMBOOLA 3    | OIL | 739553.6592 | 7024611.625 | 171.1  | 4.09  | 175.19 | 12/05/2006 |
| GIMBOOLA 4    | OIL | 739582.1959 | 7025154.94  | 170.54 | 4.06  | 174.6  | 30/06/2006 |
| GIMBOOLA 4A   | OIL | 739582.1959 | 7025154.94  | 170.54 | 4.06  | 174.6  | 5/07/2006  |
| GIMBOOLA 5    | OIL | 739877.8569 | 7024857.978 | 170.32 | 4.03  | 174.35 | 17/06/2006 |
| GIMBOOLA 7    | OIL | 739902.5111 | 7025457.683 | 168.8  | 4.09  | 172.89 | 27/06/2006 |
| GIMBOOLA WEST | OIL |             |             |        |       |        |            |
| 1             |     | 738709.3644 | 7025533.026 | 170.22 | 5.26  | 175.48 | 26/11/1996 |
| GRAHAM 2      | OIL | 636902.0322 | 6947212.257 | 448.39 | 15.7  | 464.09 | 19/04/2007 |
| GUNNA NORTH 1 | OIL | 637276.2748 | 6950673.358 | 468.86 | 16    | 484.86 | 20/03/2007 |
| HAKHEEM 1     | OIL | 738731.6794 | 6993667.475 | 192.24 | 4.86  | 197.1  | 22/11/2006 |
| HEBE 1        | GAS | 594445.9558 | 6932348.371 | 226.93 | 19.3  | 246.23 | 22/01/2004 |
| HECTOR 1      | GAS | 560893.8058 | 6911075.105 | 241.93 | 19.3  | 261.23 | 25/12/2004 |
| HELIOSE 1     | GAS | 584885.5885 | 6903731.775 | 214.56 | 19.3  | 233.86 | 29/12/2003 |
| HERA 1        | GAS | 584839.8134 | 6937143     | 225.82 | 26.2  | 252.02 | 10/07/1998 |
| HERA 2        | GAS | 584468.5079 | 6937481.367 | 227.82 | 16.6  | 244.42 | 18/09/2001 |
| HOVELL 1      | OIL | 595355.427  | 6862569.679 | 345.74 | 17    | 362.74 | 4/06/1995  |
| HUCKLEBERRY 1 | OIL | 736254.2931 | 7023265.843 | 172.76 | 4.02  | 176.78 | 1/06/2006  |
| HUCKLEBERRY 2 | OIL | 735645.2773 | 7023826.99  | 168.4  | 4.1   | 172.5  | 20/03/2007 |
| HUDSON 1      | OIL | 505967.2789 | 7035074.592 | 97.44  | 4.79  | 102.23 | 21/07/2008 |
| HURRICANE 1   | GAS | 622253.4391 | 6968370.125 | 301.77 | 16.6  | 318.37 | 5/01/2004  |
| ILIAD 1       | OIL | 535935.3408 | 6870123.499 | 423.32 | 17    | 440.32 | 13/08/1994 |
| ILIAD 2       | OIL | 534811.5962 | 6870148.677 | 415.81 | 17    | 432.81 | 6/09/1994  |
| ILIAD 3       | OIL | 535709.1215 | 6870284.817 | 417.53 | 16.6  | 434.13 | 29/05/2005 |
| ILIAD 4       | OIL | 536305.8777 | 6870182.081 | 436.02 | 15.75 | 451.77 | 14/09/2008 |
| ILIAD 5       | OIL | 534579.3784 | 6869939.757 | 410.83 | 15.75 | 426.58 | 30/09/2008 |
| ILIAD 6       | OIL | 535748.8803 | 6869812.322 | 422.21 | 15.9  | 438.11 | 9/10/2008  |
| INCA 1        | OIL | 562891.7654 | 6889467.803 | 247.04 | 16.6  | 263.64 | 30/06/2010 |
| INSPECTOR 1   | OIL | 727015.3691 | 7004167.397 | 183.36 | 4.02  | 187.38 | 25/05/2007 |



| IPUNDU 10            | OIL | 730041.6324 | 7017644.048 | 201.47 | 5.26 | 206.73 | 10/08/1997 |
|----------------------|-----|-------------|-------------|--------|------|--------|------------|
| IPUNDU 11            | OIL | 728582.3929 | 7017569.957 | 188.48 | 5.26 | 193.74 | 23/08/1997 |
| IPUNDU 12            | OIL | 731584.2259 | 7018507.684 | 173.32 | 5.26 | 178.58 | 28/08/1997 |
| IPUNDU 12DW1         | OIL | 731584.2259 | 7018507.684 | 173.32 | 4.08 | 177.4  | 4/05/2005  |
| IPUNDU 13            | OIL | 731374.2245 | 7018795.112 | 172.37 | 5.26 | 177.63 | 14/03/1998 |
| IPUNDU 14            | OIL | 731994.4953 | 7018353.784 | 171.15 | 5.26 | 176.41 | 20/03/1998 |
| IPUNDU 15            | OIL | 731007.7914 | 7018168.464 | 176.37 | 5.26 | 181.63 | 26/03/1998 |
| IPUNDU 16            | OIL | 730341.7312 | 7019423.773 | 173.38 | 5.06 | 178.44 | 13/11/2009 |
| IPUNDU 4             | OIL | 731613.8712 | 7018515.118 | 173.58 | 5.26 | 178.84 | 18/10/1996 |
| IPUNDU 4A            | OIL | 731613.8712 | 7018515.118 | 173.58 | 5.26 | 178.84 | 14/04/1998 |
| IPUNDU 5             | OIL | 730092.7104 | 7019780.284 | 172.94 | 5.26 | 178.2  | 31/10/1996 |
| IPUNDU 6             | OIL | 731016.039  | 7018449.206 | 175.51 | 5.27 | 180.78 | 23/06/1997 |
| IPUNDU 7             | OIL | 730747.0807 | 7019313.461 | 172.29 | 5.27 | 177.56 | 29/06/1997 |
| IPUNDU 8             | OIL | 731902.4352 | 7017683.952 | 173.16 | 5.27 | 178.43 | 4/07/1997  |
| IPUNDU 9             | OIL | 730985.9289 | 7017731.009 | 180.16 | 5.27 | 185.43 | 25/07/1997 |
| IPUNDU NORTH 10      | OIL | 728494.9501 | 7020330.776 | 198.3  | 5.26 | 203.55 | 16/08/1997 |
| IPUNDU NORTH 11      | OIL | 729358.4949 | 7020698.35  | 174.98 | 5.27 | 180.25 | 1/04/1998  |
| IPUNDU NORTH 12      | OIL | 729096.6867 | 7021800.856 | 171.3  | 4.08 | 175.38 | 23/04/2007 |
| IPUNDU NORTH 13      | OIL | 728641.4896 | 7020798.88  | 181.02 | 5.1  | 186.12 | 24/11/2009 |
| IPUNDU NORTH 4       | OIL | 729007.2581 | 7020994.515 | 174.53 | 5.26 | 179.79 | 24/10/1996 |
| IPUNDU NORTH<br>4DW1 | OIL | 729006.9661 | 7020994.853 | 174.55 | 3.93 | 178.48 | 29/04/2005 |
| IPUNDU NORTH 5       | OIL | 728347.9887 | 7020822.73  | 181.41 | 5.26 | 186.67 | 7/11/1996  |
| IPUNDU NORTH 6       | OIL | 727959.57   | 7020971.447 | 181.54 | 5.27 | 186.81 | 9/07/1997  |
| IPUNDU NORTH 7       | OIL | 728602.6079 | 7021938.88  | 174.84 | 5.26 | 180.1  | 15/07/1997 |
| IPUNDU NORTH 8       | OIL | 729503.414  | 7021015.944 | 171.96 | 5.25 | 177.21 | 20/07/1997 |
| IPUNDU NORTH 9       | OIL | 728916.374  | 7020598.671 | 181.04 | 5.3  | 186.34 | 3/08/1997  |
| IPUNDU NORTH<br>9DW1 | OIL | 728916.374  | 7020598.671 | 181.04 | 4.08 | 185.12 | 21/04/2005 |
| IRTALIE EAST 1       | OIL | 624662.3336 | 6932199.362 | 248.72 | 16.6 | 265.32 | 20/10/2010 |
| JACKSON 31           | OIL | 639952.3312 | 6943963.938 | 371.58 | 16.5 | 388.08 | 18/09/1987 |
| JACKSON 32           | OIL | 641424.7676 | 6944653.652 | 348    | 16.5 | 364.5  | 27/09/1987 |
| JACKSON 33           | OIL | 640516.6597 | 6945719.329 | 363.35 | 17   | 380.35 | 7/02/1988  |
| JACKSON 33DW         | OIL | 640516.6597 | 6945719.329 | 363.35 | 16.6 | 379.95 | 14/06/1998 |
| JACKSON 34           | OIL | 639716.305  | 6946096.608 | 385.37 | 17   | 402.37 | 12/03/1988 |
| JACKSON 35           | OIL | 639751.9498 | 6945166.897 | 384.81 | 17   | 401.81 | 21/06/1988 |
| JACKSON 36           | OIL | 640219.6221 | 6945185.02  | 368.51 | 17   | 385.51 | 29/05/1989 |
| JACKSON 37           | OIL | 640208.515  | 6943712.684 | 356.79 | 16.5 | 373.29 | 13/07/1990 |
| JACKSON 38           | OIL | 639625.2711 | 6947440.799 | 434.07 | 16.5 | 450.57 | 4/08/1990  |
| JACKSON 39           | OIL | 640912.7382 | 6945228.666 | 358.6  | 16.5 | 375.1  | 24/07/1990 |
| JACKSON 40           | OIL | 639306.7709 | 6946107.052 | 405.15 | 16.5 | 421.65 | 18/11/1990 |
| JACKSON 41           | OIL | 640222.6973 | 6947789.406 | 393.56 | 16.5 | 410.06 | 28/11/1990 |
| JACKSON 42           | OIL | 641231.9244 | 6945115.501 | 353.82 | 16.5 | 370.32 | 9/07/1991  |



| JACKSON 43          | OIL | 639579.2732 | 6943559.462 | 374.63 | 17.9  | 392.53 | 23/01/1996  |
|---------------------|-----|-------------|-------------|--------|-------|--------|-------------|
| JACKSON 44          | OIL | 639693.8077 | 6945356.039 | 387.27 | 12.9  | 400.17 | 14/03/2005  |
| JACKSON 45          | OIL | 639606.1445 | 6948798.789 | 405.44 | 12.9  | 418.34 | 6/06/2005   |
| JACKSON 46          | OIL | 640165.0909 | 6942451.354 | 347.4  | 13.1  | 360.5  | 12/10/2007  |
| JACKSON 47          | OIL | 641895.0625 | 6942303.905 | 331.1  | 13.1  | 344.2  | 5/10/2007   |
| JACKSON 48          | OIL | 641296.9463 | 6944857.794 | 349.84 | 13.1  | 362.94 | 25/11/2007  |
| JACKSON 49          | OIL | 640057.1567 | 6946320.179 | 391.96 | 12.92 | 404.88 | 18/11/2007  |
| JACKSON 50          | OIL | 639897.119  | 6946946.831 | 419.16 | 12.87 | 432.02 | 11/11/2007  |
| JACKSON 51          | OIL | 639727.0345 | 6947784.119 | 429.05 | 13.05 | 442.1  | 3/11/2007   |
| JACKSON 52          | OIL | 640674.0848 | 6945555.299 | 365.05 | 13.1  | 378.15 | 9/12/2007   |
| JACKSON 53          | OIL | 639909.7279 | 6945894.06  | 383.26 | 13    | 396.26 | 17/12/2007  |
| JACKSON 54          | OIL | 640352.9596 | 6945887.418 | 373.75 | 13.2  | 386.95 | 24/12/2007  |
| JACKSON 55          | OIL | 639927.5233 | 6945319.897 | 372.6  | 12.95 | 385.56 | 31/12/2007  |
| JACKSON 56          | OIL | 639575.1446 | 6945294.018 | 393.93 | 13.04 | 406.97 | 3/12/2007   |
| JACKSON 57          | OIL | 640037.4751 | 6942956.312 | 353.84 | 13    | 366.84 | 23/09/2008  |
| JACKSON 58          | OIL | 639445.5505 | 6943335.509 | 366.54 | 12.98 | 379.52 | 23/01/2009  |
| JACKSON EAST 1      | OIL | 642056.6035 | 6947846.101 | 385.46 | 17    | 402.46 | 11/01/1995  |
| JACKSON EAST 2      | OIL | 641674.7159 | 6948304.61  | 405.84 | 13.1  | 418.94 | 9/02/2009   |
| JACKSON SOUTH 10    | OIL | 641469.254  | 6940010.887 | 325.95 | 13.05 | 339    | 8/04/2007   |
| JACKSON SOUTH       | OIL |             |             |        |       |        |             |
| 11<br>JACKSON SOUTH |     | 640449.0056 | 6940346.802 | 320.17 | 12.93 | 333.1  | 15/04/2007  |
| 12                  | OIL | 641511.4688 | 6941164.313 | 326.35 | 13.5  | 339.85 | 20/09/2007  |
| JACKSON SOUTH 12A   | OIL | 641507.2813 | 6941160.595 | 327.36 | 13.3  | 340.65 | 28/09/2007  |
| JACKSON SOUTH       | OIL | 040000 7475 | 0000504 440 | 055.04 | 40.0  | 000.04 | 4.4/00/0007 |
| 13<br>JACKSON SOUTH |     | 642396.7475 | 6939501.118 | 355.84 | 13.2  | 369.04 | 14/09/2007  |
| 14                  | OIL | 641343.7229 | 6939889.241 | 325.92 | 13.03 | 338.95 | 22/10/2008  |
| JACKSON SOUTH 15    | OIL | 640300.4066 | 6939892.336 | 318.24 | 13.1  | 331.34 | 9/10/2008   |
| JACKSON SOUTH       | OIL | 044050 4444 | 0000005 504 | 005.00 | 10.0  |        |             |
| 16<br>JACKSON SOUTH | 0"  | 641350.1111 | 6939895.594 | 325.98 | 13.2  | 339.18 | 2/11/2008   |
| 8                   | OIL | 640362.0602 | 6940576.061 | 321.83 | 17.9  | 339.73 | 11/02/1989  |
| JACKSON SOUTH<br>9  | OIL | 643124.9408 | 6939197.723 | 373.24 | 17.9  | 391.14 | 2/08/1992   |
| JALAPENO 1          | OIL | 622014.5465 | 6957657.01  | 389.14 | 13.17 | 402.31 | 12/06/2007  |
| JARRAR 2            | OIL | 619620.5024 | 6932518.451 | 238.53 | 17.9  | 256.43 | 22/04/1991  |
| JARRAR 3            | OIL | 619909.6945 | 6931941.896 | 240.87 | 17    | 257.87 | 17/01/1992  |
| JUDGA 2             | GAS | 601379.7916 | 6965277.161 | 238.39 | 17.9  | 256.29 | 7/08/1993   |
| JUDGA 3             | GAS | 600471.1059 | 6965764.759 | 238.71 | 19.3  | 258.01 | 19/10/2004  |
| JUDGA NORTH 1       | GAS | 604316.377  | 6969411.331 | 241.6  | 12.4  | 254    | 16/01/1997  |
| JUNO 1              | GAS | 581726.6777 | 6936257.133 | 224.6  | 16.6  | 241.2  | 16/02/1997  |
| JUNO 2              | GAS | 581723.6669 | 6937070.734 | 224.08 | 26.2  | 250.28 | 6/06/1998   |
| JUNO 3              | GAS | 582327.7603 | 6935873.98  | 225.65 | 16.6  | 242.25 | 18/10/2001  |
| JUNO 4              | GAS | 582562.8289 | 6937136.187 | 225.29 | 16.6  | 241.89 | 21/11/2005  |



| JUNO 5              | GAS | 581732.7587 | 6936105.653 | 225.12 | 16.6  | 241.72 | 9/06/2002  |
|---------------------|-----|-------------|-------------|--------|-------|--------|------------|
| JUNO NORTH 1        | GAS | 583988.5879 | 6941290.942 | 225.37 | 19.3  | 244.67 | 4/12/1999  |
| KAMEL 1             | OIL | 655542.9655 | 6934542.702 | 111.97 | 3.92  | 115.89 | 24/03/2007 |
| KANANDA 1           | GAS | 581360.7204 | 6996499.773 | 325.03 | 26.2  | 351.25 | 17/09/2000 |
| KANOOK 1            | GAS | 590687.1144 | 7001523.967 | 259.81 | 20.1  | 279.91 | 18/12/1993 |
| KAPPA 1             | GAS | 510769.9413 | 6898506.111 | 382.11 | 26.2  | 408.31 | 21/07/1997 |
| KARMONA 3           | GAS | 587401.3476 | 6979589.386 | 366.73 | 16.6  | 383.33 | 6/07/2002  |
| KARMONA 4           | GAS | 588397.7145 | 6980191.021 | 443.33 | 16.6  | 459.93 | 14/12/2004 |
| KARMONA 4A          | GAS | 588401.0854 | 6980191.884 | 443.33 | 16.6  | 459.93 | 31/12/2004 |
| KARMONA 5           | GAS | 588096.3706 | 6978747.527 | 439.07 | 19.3  | 458.37 | 16/11/2005 |
| KARMONA EAST 3      | GAS | 589318.1852 | 6981753.68  | 389.76 | 16.6  | 406.36 | 20/01/2005 |
| KARNAK 1            | GAS | 602071.2436 | 7050573.189 | 287.79 | 26.2  | 313.99 | 2/08/2001  |
| KARWIN 1DW1         | GAS | 630076.0295 | 6943419.601 | 352.27 | 19.3  | 371.57 | 13/11/1996 |
| KERCUMMURRA 2       | OIL | 641485.7756 | 7002073.011 | 422.54 | 16.6  | 439.14 | 1/11/2009  |
| KEREN 1             | OG  | 561137.0548 | 6880718.979 | 426.96 | 17.9  | 444.86 | 13/09/1992 |
| KINTA 1             | GAS | 504924.1145 | 6906931.956 | 314.56 | 19.3  | 333.86 | 8/11/2003  |
| KOOROOPA 2          | OIL | 720346.778  | 7010760.165 | 158.34 | 4     | 162.34 | 17/05/2007 |
| KOOROOPA 3          | OIL | 721834.644  | 7008890.425 | 159.84 | 4.02  | 163.86 | 10/05/2007 |
| KOOROOPA<br>NORTH 1 | OIL | 721287.0261 | 7011452.638 | 170.69 | 5.46  | 176.15 | 24/09/1995 |
| KOOROOPA<br>NORTH 2 | OIL | 720140.9167 | 7012084.035 | 163.1  | 5.26  | 168.36 | 7/03/1998  |
| KOOYONG 1           | OIL | 734126.2434 | 7032590.08  | 177.78 | 4.86  | 182.64 | 3/09/2006  |
| LEPARD 1            | OG  | 572097.9481 | 6921694.723 | 216.73 | 16.6  | 233.33 | 12/11/2006 |
| LOGANBERRY 1        | OIL | 731878.962  | 7025523.932 | 160.8  | 4.09  | 164.89 | 12/07/2006 |
| MACADAMA 2          | GAS | 542934.3588 | 6985273.589 | 482.02 | 20.1  | 502.12 | 7/01/1996  |
| MACADAMA 3          | GAS | 542926.1266 | 6983099.492 | 525.52 | 26.2  | 551.72 | 20/09/1997 |
| MARAMA 1ST          | GAS | 613329.7175 | 7112304.17  | 339.09 | 20    | 359.09 | 25/12/1994 |
| MARENGO SOUTH<br>1  | GAS | 581694.8658 | 7072200.975 | 296    | 18.78 | 314.78 | 28/07/1998 |
| MARRACOONDA 1       | OIL | 577612.9547 | 6880584.926 | 251.36 | 17    | 268.36 | 17/07/1993 |
| MATRIX 1            | OG  | 525576.665  | 6874984.737 | 389.3  | 16.6  | 405.9  | 15/06/2005 |
| MAXWELL 5           | OIL | 666451.832  | 6913336.397 | 126.65 | 3.92  | 130.57 | 18/10/2007 |
| MAXWELL SOUTH<br>2  | OIL | 665109.9288 | 6912885.087 | 114.81 | 5.18  | 119.99 | 28/05/2011 |
| MAYA 1              | GAS | 602461.7038 | 6986836.134 | 251.57 | 16.6  | 268.17 | 17/10/2004 |
| MERULA 1            | OIL | 734053.9404 | 7028529.082 | 167.6  | 4.02  | 171.62 | 28/12/2003 |
| MIMOSA 1            | OIL | 735069.5093 | 7033776.83  | 181.56 | 4.87  | 186.43 | 6/06/2006  |
| MINNI RITCHI 1      | OIL | 736071.4878 | 7030689.978 | 175.92 | 4.07  | 179.99 | 29/07/2006 |
| MINOS 1             | OIL | 593522.1478 | 6895991.344 | 235.5  | 13.05 | 248.55 | 1/01/2009  |
| MIRANDA 1           | GAS | 517283.4697 | 6865714.536 | 374.59 | 17    | 391.59 | 27/06/1994 |
| MITONGA 1           | OIL | 599180.5158 | 6893838.503 | 248.39 | 17.9  | 266.29 | 6/12/1992  |
| MONTE 1             | GAS | 576843.9781 | 6981321.152 | 444.09 | 17.9  | 461.99 | 15/06/1996 |
| MONTEGUE 1          | GAS | 501659.2365 | 6893181.841 | 285.33 | 16.6  | 301.93 | 12/11/2007 |
| MOOKOO 1            | GAS | 618137.6772 | 6979511.377 | 289.5  | 12.4  | 301.9  | 6/03/1997  |



| MOOLIAMPAH 3       | OIL | 527647.2364 | 6866567.045 | 439.41 | 17.9 | 457.31 | 7/01/1990  |
|--------------------|-----|-------------|-------------|--------|------|--------|------------|
| MOON 1             | GAS | 504164.8076 | 6877626.824 | 288.77 | 20.1 | 308.87 | 9/07/1995  |
| MOON 2             | GAS | 503934.183  | 6879838.82  | 294.98 | 16.6 | 311.58 | 5/09/1996  |
| MOON 3             | GAS | 503237.8446 | 6877746.532 | 294.81 | 16.6 | 311.41 | 16/03/2003 |
| MUCHACHO 1         | OIL | 610342.585  | 6959448.869 | 268.3  | 13.2 | 281.5  | 4/09/2007  |
| MUGGINANULLAH<br>2 | OIL | 732696.1005 | 6997221.194 | 180.73 | 4.86 | 185.59 | 23/12/2006 |
| MULBERRY 1         | OIL | 738556.0982 | 7023280.585 | 176.5  | 4.02 | 180.52 | 18/12/2003 |
| MULBERRY 10        | OIL | 739739.027  | 7022112.609 | 178.36 | 4.03 | 182.39 | 9/04/2006  |
| MULBERRY 10A       | OIL | 739739.027  | 7022112.609 | 178.36 | 4.15 | 182.51 | 15/04/2006 |
| MULBERRY 11        | OIL | 737732.0272 | 7023092.995 | 176.93 | 4.04 | 180.97 | 30/04/2006 |
| MULBERRY 12        | OIL | 737584.353  | 7024194.132 | 172.62 | 4.09 | 176.71 | 20/05/2006 |
| MULBERRY 13        | OIL | 737407.0358 | 7021337.102 | 185.58 | 4.04 | 189.62 | 23/04/2006 |
| MULBERRY 14        | OIL | 739504.8179 | 7022480.461 | 176.87 | 4.03 | 180.9  | 6/04/2006  |
| MULBERRY 15        | OIL | 737742.8682 | 7023682.204 | 174.75 | 4.02 | 178.77 | 6/06/2006  |
| MULBERRY 16        | OIL | 738331.6039 | 7023671.061 | 174.8  | 4.09 | 178.89 | 5/05/2006  |
| MULBERRY 17        | OIL | 737132.5806 | 7022518.893 | 178.26 | 4.03 | 182.29 | 12/06/2006 |
| MULBERRY 18        | OIL | 738025.0031 | 7022802     | 177.83 | 4.1  | 181.93 | 26/10/2006 |
| MULBERRY 19        | OIL | 737718.461  | 7022506.941 | 179.05 | 4.04 | 183.09 | 21/09/2006 |
| MULBERRY 2         | OIL | 738119.9523 | 7023412.344 | 176.65 | 4.08 | 180.73 | 27/03/2005 |
| MULBERRY 20        | OIL | 738553.0959 | 7022247.58  | 178.23 | 4.1  | 182.33 | 31/10/2006 |
| MULBERRY 21        | OIL | 738325.1233 | 7021903.043 | 179.29 | 4.1  | 183.39 | 1/10/2006  |
| MULBERRY 22        | OIL | 738896.267  | 7021885.659 | 180.67 | 4.1  | 184.77 | 7/10/2006  |
| MULBERRY 23        | OIL | 738286.2496 | 7021304.829 | 182.39 | 4.05 | 186.44 | 14/10/2006 |
| MULBERRY 24        | OIL | 740077.0962 | 7021266.97  | 181.59 | 4.1  | 185.69 | 20/10/2006 |
| MULBERRY 25        | OIL | 737990.4123 | 7023952.109 | 173.85 | 4.4  | 178.25 | 16/09/2006 |
| MULBERRY 26        | OIL | 737324.9799 | 7023950.271 | 173.15 | 4.2  | 177.35 | 20/02/2007 |
| MULBERRY 27        | OIL | 737134.0752 | 7023683.831 | 173.69 | 4.1  | 177.79 | 26/02/2007 |
| MULBERRY 28        | OIL | 737340.8304 | 7023415.433 | 175.47 | 4.1  | 179.57 | 3/03/2007  |
| MULBERRY 29        | OIL | 737145.9693 | 7023144.412 | 176.69 | 4.86 | 181.55 | 5/02/2007  |
| MULBERRY 3         | OIL | 739226.6628 | 7022937.162 | 176    | 4.08 | 180.08 | 4/04/2005  |
| MULBERRY 30        | OIL | 737340.1269 | 7022793.664 | 178.03 | 4.1  | 182.13 | 8/03/2007  |
| MULBERRY 31        | OIL | 738587.7356 | 7022821.154 | 176.87 | 4.06 | 180.93 | 21/08/2007 |
| MULBERRY 32        | OIL | 738593.3365 | 7022812.512 | 176.89 | 4.06 | 180.95 | 15/08/2007 |
| MULBERRY 33        | OIL | 738582.6231 | 7022829.344 | 176.92 | 4.06 | 180.98 | 29/08/2007 |
| MULBERRY 34        | OIL | 738577.0181 | 7022837.764 | 176.95 | 4.3  | 181.25 | 4/09/2007  |
| MULBERRY 35        | OIL | 738599.7891 | 7020985.047 | 185.66 | 4.87 | 190.53 | 17/02/2007 |
| MULBERRY 4         | OIL | 738926.5109 | 7023518.986 | 175.08 | 4.08 | 179.16 | 15/04/2005 |
| MULBERRY 41        | OIL | 737106.1051 | 7024251.266 | 171.85 | 4.86 | 176.71 | 28/02/2007 |
| MULBERRY 42        | OIL | 736535.9131 | 7023706.181 | 171.81 | 4.1  | 175.91 | 13/03/2007 |
| MULBERRY 44        | OIL | 736546.9505 | 7022549.326 | 176.08 | 4.04 | 180.12 | 26/03/2007 |
| MULBERRY 45        | OIL | 737256.8798 | 7021721.832 | 182.05 | 4.87 | 186.92 | 10/03/2007 |
| MULBERRY 5         | OIL | 738908.9953 | 7023088.867 | 176.4  | 4.08 | 180.48 | 26/05/2005 |



| MULBERRY 6                   | OIL | 738317.6846 | 7023083.46                | 176.51 | 4.3   | 180.81 | 7/03/2006     |
|------------------------------|-----|-------------|---------------------------|--------|-------|--------|---------------|
| MULBERRY 7                   | OIL | 738609.7584 | 7022787.479               | 176.94 | 4.3   | 181.24 | 16/03/2006    |
| MULBERRY 8                   | OIL | 738309.9235 | 7022495.742               | 178.25 | 4.3   | 182.55 | 24/03/2006    |
| MULBERRY 9                   | OIL | 738923.1873 | 7022444.415               | 176.68 | 4.03  | 180.71 | 31/03/2006    |
| MUNKAH 10                    | GAS | 589555.1867 | 6966056.84                | 291.66 | 16.6  | 308.26 | 18/04/2002    |
| MUNKAH 11                    | GAS | 588327.5369 | 6964155.992               | 243.14 | 16.6  | 259.74 | 4/04/2002     |
| MUNKAH 12                    | GAS | 592811.1228 | 6966012.64                | 243.14 | 16.8  | 259.74 | 9/10/2008     |
| MUNKAH 12                    | GAS |             |                           |        | 17.9  |        | 11/07/1992    |
|                              | GAS | 592491.9981 | 6965640.606<br>6965536.71 | 238.86 |       | 256.76 |               |
|                              | GAS | 589557.7237 |                           | 241.13 | 17.9  | 259.03 | 28/05/1993    |
| MUNKAH 5                     | GAS | 590544.5626 | 6967637.736               | 297.33 | 17.9  | 315.23 | 21/06/1993    |
| MUNKAH 6                     | GAS | 588112.8021 | 6964257.236               | 241.17 | 16.6  | 257.77 | 7/08/1996     |
| MUNKAH 7                     | GAS | 588827.0734 | 6965307.602               | 243.44 | 26.2  | 269.63 | 22/05/1999    |
| MUNKAH 9                     |     | 590328.6393 | 6966950.605               | 299.83 | 16.6  | 316.43 | 22/03/2002    |
| MUNRO 5                      | OIL | 519507.7653 | 6844287.128               | 392.54 | 17    | 409.54 | 24/08/1994    |
| MUNRO 6                      | OIL | 519798.6355 | 6843818.909               | 394.13 | 17    | 411.13 | <null></null> |
| MUNRO 7                      | OIL | 518897.9254 | 6843980.034               | 391.44 | 17    | 408.44 | <null></null> |
| MUTHERO 3                    | OIL | 659000.7278 | 6933620.618               | 118.92 | 4.08  | 123    | 24/12/2005    |
| MUTHERO 4                    | OIL | 659232.9417 | 6933549.867               | 115.59 | 4.02  | 119.61 | 22/02/2007    |
| MUTHERO 5                    | OIL | 659036.0028 | 6933362.179               | 120.09 | 3.96  | 124.05 | 3/03/2007     |
| MUTHERO 6                    | OIL | 659265.8093 | 6933672.219               | 116.14 | 3.96  | 120.1  | 14/03/2007    |
| MUTHERO 7                    | OIL | 658954.9245 | 6933639.945               | 119.28 | 4.02  | 123.3  | 12/02/2007    |
| NACCOWLAH 3                  | OIL | 613017.0786 | 6959288.796               | 313.97 | 12.75 | 326.72 | 23/08/2007    |
| NACCOWLAH<br>SOUTH 12        | OIL | 608205.2378 | 6954707.041               | 249.24 | 17.9  | 267.14 | 30/01/1989    |
| NACCOWLAH<br>SOUTH 13        | OIL | 608981.7887 | 6954900.9                 | 273.71 | 17    | 290.71 | 3/07/1989     |
| NACCOWLAH<br>SOUTH 14        | OIL | 607677.2425 | 6955404.452               | 247.01 | 17    | 264.01 | 18/06/1989    |
| NACCOWLAH<br>SOUTH 15        | OIL | 607259.323  | 6955492.873               | 239.63 | 13.15 | 252.78 | 8/07/2007     |
| NACCOWLAH<br>SOUTH 16        | OIL | 609210.1627 | 6954582.232               | 254.79 | 13.18 | 267.97 | 27/06/2007    |
| NACCOWLAH<br>SOUTH 17        | OIL | 607019.1431 | 6955135.248               | 240.09 | 13    | 253.09 | 3/08/2008     |
| NACCOWLAH<br>SOUTH 18        | OIL | 607925.7333 | 6954842.011               | 248.92 | 13    | 261.92 | 20/08/2008    |
| NACCOWLAH<br>WEST 10         | OIL | 603176.498  | 6955000.947               | 235.54 | 16.5  | 252.04 | 8/03/1990     |
| NACCOWLAH<br>WEST 11         | OIL | 602681.9437 | 6954809.125               | 234.07 | 16.5  | 250.57 | 13/10/1990    |
| NACCOWLAH<br>WEST 12         | OIL | 603844.7534 | 6954278.842               | 232.27 | 16.5  | 248.77 | 24/10/1990    |
| NACCOWLAH<br>WEST 13         | OIL | 602609.6678 | 6955058.999               | 236.51 | 16.5  | 253.01 | 6/11/1990     |
| NACCOWLAH<br>WEST 14         | OIL | 603473.9988 | 6954874.134               | 233.32 | 16.5  | 249.82 | 8/12/1990     |
| NACCOWLAH<br>WEST 15         | OIL | 604221.1424 | 6954337.905               | 232.3  | 17    | 249.3  | 14/12/1991    |
| NACCOWLAH<br>WEST 16         | OIL | 603941.5316 | 6954917.59                | 232.22 | 16.5  | 248.72 | 20/07/1991    |
| NACCOWLAH<br>WE <u>ST 17</u> | OIL | 605143.6705 | 6954497.746               | 234.05 | 17    | 251.05 | 25/12/1991    |



| NACCOWLAH             |     |             |             |        |       |        |            |
|-----------------------|-----|-------------|-------------|--------|-------|--------|------------|
| WEST 18               | OIL | 605588.4962 | 6955046.632 | 234.69 | 17    | 251.69 | 5/01/1992  |
| NACCOWLAH<br>WEST 19  | OIL | 603746.2964 | 6955095.507 | 231.38 | 17.9  | 249.28 | 24/07/1992 |
| NACCOWLAH<br>WEST 20  | OIL | 604842.0372 | 6954173.845 | 233.66 | 13.15 | 246.82 | 19/07/2007 |
| NACCOWLAH<br>WEST 21  | OIL | 605874.7434 | 6954820.149 | 236.05 | 13.15 | 249.2  | 27/07/2007 |
| NACCOWLAH<br>WEST 22  | OIL | 602983.8829 | 6955174.731 | 233.89 | 13    | 246.88 | 4/09/2008  |
| NACCOWLAH<br>WEST 7   | OIL | 604977.3391 | 6954703.464 | 233.51 | 17    | 250.51 | 19/02/1988 |
| NACCOWLAH<br>WEST 8   | OIL | 603426.8901 | 6954593.911 | 234.16 | 17    | 251.16 | 10/06/1988 |
| NACCOWLAH<br>WEST 9   | OIL | 603478.7071 | 6955174.103 | 234.39 | 16.5  | 250.89 | 19/11/1989 |
| NATAN 2               | OIL | 613601.4968 | 6924291.889 | 241.05 | 16.5  | 257.55 | 17/08/1990 |
| NOCKATUNGA 6          | OIL | 650094.3744 | 6934556.392 | 122.84 | 5.18  | 128.02 | 15/06/1995 |
| NOCKATUNGA<br>NORTH 1 | OIL | 649677.9416 | 6934576.933 | 126.11 | 5.1   | 131.21 | 27/08/2010 |
| NUATA EAST 1          | OIL | 627662.8505 | 6944866.867 | 368.96 | 13.1  | 382.06 | 11/05/2007 |
| OBERONE 1             | OIL | 583260.6974 | 6889815.981 | 241.59 | 17    | 258.59 | 5/08/1993  |
| OKOTOKO 2             | GAS | 598423.2029 | 6975108.845 | 243.67 | 20    | 263.67 | 10/01/1994 |
| ОКОТОКО 3             | GAS | 598733.3605 | 6977201.685 | 247.11 | 16.8  | 263.91 | 18/12/2008 |
| OKOTOKO EAST 1        | GAS | 600702.4368 | 6976497.051 | 245.04 | 20.1  | 265.14 | 29/09/1995 |
| OKOTOKO WEST 1        | GAS | 595724.8069 | 6973492.407 | 244.03 | 20.1  | 264.13 | 8/09/1995  |
| OKOTOKO WEST 2        | GAS | 594571.9767 | 6974369.045 | 244.42 | 16.65 | 261.07 | 13/09/2009 |
| OLYMPUS 1             | GAS | 564359.2913 | 6879597.898 | 269.98 | 16.6  | 286.58 | 30/07/2004 |
| OMEGA 1               | GAS | 543387.5057 | 6887191.33  | 429.75 | 17.25 | 447    | 28/02/1997 |
| PATROCLUS 2           | OIL | 567118.0402 | 6890134.761 | 224.05 | 17    | 241.05 | 14/02/1992 |
| PATROCLUS 3           | OIL | 567431.7392 | 6889971.359 | 226.95 | 17.9  | 244.85 | 13/10/1992 |
| PATROCLUS 4           | OIL | 567650.2236 | 6889768.605 | 227.96 | 17.9  | 245.86 | 27/01/1993 |
| PATROCLUS EAST<br>1   | OG  | 568408.8434 | 6889122.947 | 226.89 | 17.9  | 244.79 | 25/08/1992 |
| PINIATA 1             | OIL | 612461.6214 | 6958150.007 | 301.8  | 13.14 | 314.96 | 12/09/2007 |
| PITCHERY 2            | OIL | 614222.3638 | 6958149.126 | 348.7  | 17    | 365.7  | 26/03/1988 |
| PITCHERY 3            | OIL | 613879.784  | 6957845.869 | 335.56 | 13    | 348.56 | 22/09/2007 |
| PITTEROO 1            | OIL | 681983.611  | 6899116.477 | 626.44 | 16.6  | 643.04 | 25/06/1998 |
| PSYCHE 1              | GAS | 580021.3045 | 6912181.12  | 214.04 | 17.9  | 231.94 | 7/11/1995  |
| PSYCHE 2              | GAS | 582277.3574 | 6911772.408 | 215.71 | 17.25 | 232.96 | 25/12/1997 |
| PSYCHE 3              | GAS | 581056.2339 | 6909000.86  | 214.99 | 16.6  | 231.59 | 26/07/2005 |
| PSYCHE 4              | GAS | 579680.9138 | 6910354.539 | 214.73 | 16.6  | 231.33 | 12/07/2005 |
| PSYCHE 5              | GAS | 581306.7524 | 6911990.933 | 215.02 | 16.6  | 231.62 | 12/12/2006 |
| PSYCHE 6              | GAS | 580534.0383 | 6913227.722 | 215.81 | 16.65 | 232.46 | 19/07/2009 |
| PYTHON 1              | GAS | 519448.6272 | 6855212.589 | 392.4  | 13.29 | 405.69 | 5/08/2006  |
| QUASAR 1              | GAS | 503874.7755 | 6859337.45  | 308.72 | 16.5  | 325.22 | 24/03/2001 |
| QUASAR SOUTH 1        | GAS | 504199.7332 | 6856340.361 | 336.31 | 16.5  | 352.81 | 14/04/2001 |
| QUASAR<br>SOUTHEAST 1 | GAS | 505080.2883 | 6855619.045 | 326.44 | 16.5  | 342.94 | 22/12/2001 |



| RAFFLE 1       | GAS | 557844.1138 | 6901415.91  | 304.92 | 17.25 | 322.17 | 27/01/1997    |
|----------------|-----|-------------|-------------|--------|-------|--------|---------------|
| RAMSES 1       | GAS | 609597.5279 | 7039240.993 | 298.26 | 16.6  | 314.86 | 8/12/2000     |
| RAMSES 2       | GAS | 609948.9665 | 7040204.132 | 298.06 | 16.6  | 314.66 | 7/01/2007     |
| RANGER SOUTH 1 | GAS | 507473.0807 | 6858536.209 | 334.61 | 16.5  | 351.11 | 21/05/2001    |
| RAWORTH 1      | GAS | 626337.5093 | 6961281.504 | 435.59 | 16.5  | 452.09 | 3/02/2001     |
| RELIANCE 1     | OIL | 738580.3986 | 7033928.916 | 180    | 4.86  | 184.86 | 14/08/2006    |
| RHEIMS 2       | OIL | 530279.9918 | 6873045.422 | 428.15 | 17    | 445.15 | <null></null> |
| ROSA 1         | GAS | 581946.3949 | 6984565.786 | 314.79 | 16.6  | 331.39 | 23/03/1998    |
| ROSENEATH 2    | GAS | 522222.5496 | 6883987.329 | 438.18 | 16.6  | 454.78 | 20/02/2003    |
| ROSENEATH 3    | OIL | 522598.3871 | 6884167.302 | 441.76 | 16.6  | 458.36 | 13/04/2003    |
| ROTI 1         | GAS | 615114.8743 | 6971231.171 | 290.78 | 16.6  | 307.38 | 13/07/1996    |
| ROTI 2         | GAS | 616640.7174 | 6970612.023 | 319.89 | 16.5  | 336.39 | 27/02/2001    |
| ROTI 3         | GAS | 616724.9938 | 6969914.584 | 293.63 | 16.6  | 310.23 | 15/05/2001    |
| ROTI WEST 1    | GAS | 613052.0759 | 6972373.767 | 266.15 | 16.6  | 282.75 | 27/08/2000    |
| SAMPDORIA 1    | OIL | 585624.6063 | 6890654.008 | 238.35 | 17    | 255.35 | <null></null> |
| SARAH 1        | GAS | 504242.053  | 6885142.217 | 302.72 | 16.5  | 319.23 | 13/09/2000    |
| SARATOGA 1     | OG  | 524086.2267 | 7024924.555 | 356    | 15.6  | 371.6  | 14/10/2005    |
| SEAGOON 1      | OIL | 744588.2897 | 7014538.163 | 180.17 | 4.1   | 184.27 | 8/11/2006     |
| SHILLINGLAW 1  | OIL | 619556.3566 | 6875177.237 | 476.47 | 17    | 493.47 | 25/05/1995    |
| SIGMA 2        | OIL | 533401.8438 | 6865039.137 | 399.41 | 17.9  | 417.31 | 21/12/1987    |
| STILTON 1      | OG  | 586816.8139 | 6953855.244 | 235.04 | 19.3  | 254.34 | 29/11/2004    |
| STOKES 1       | GAS | 502818.8076 | 6864624.999 | 270.12 | 17    | 287.12 | 23/06/1993    |
| STOKES 10      | GAS | 502437.3542 | 6865545.892 | 275.39 | 16.5  | 291.89 | 9/06/2001     |
| STOKES 11      | GAS | 504131.5907 | 6865369.392 | 288.74 | 16.5  | 305.24 | 17/03/2002    |
| STOKES 12      | GAS | 504908.666  | 6864233.925 | 303.67 | 16.5  | 320.17 | 1/02/2002     |
| STOKES 2       | GAS | 505071.5624 | 6863806.021 | 289.3  | 17    | 306.3  | 4/09/1993     |
| STOKES 3       | GAS | 501823.6525 | 6867922.796 | 290.68 | 17    | 307.68 | 1/04/1994     |
| STOKES 4       | GAS | 504339.0663 | 6865848.333 | 289.89 | 17.25 | 307.14 | 5/04/1997     |
| STOKES 5ST1    | GAS | 504017.3448 | 6864906.036 | 297.62 | 16    | 313.62 | 7/03/1999     |
| STOKES 6       | GAS | 505003.5265 | 6864678.116 | 307.2  | 26.2  | 333.4  | 8/06/1999     |
| STOKES 7       | GAS | 505960.9243 | 6865557.492 | 298.34 | 18.8  | 317.14 | 15/07/2000    |
| STOKES 8       | GAS | 502296.1968 | 6866479.468 | 294.47 | 18.8  | 313.27 | 1/08/2000     |
| STOKES 9       | GAS | 502845.8626 | 6863830.473 | 277.28 | 18.8  | 296.08 | 15/08/2000    |
| STOKES CENTRAL | GAS | 504365.9476 | 6867508.922 | 285.66 | 16.5  | 302.16 | 24/02/2002    |
| STOKES NORTH 1 | GAS | 503826.8818 | 6869365.562 | 274.7  | 16.6  | 291.3  | 26/10/1996    |
| STOKES SOUTH 1 | GAS | 503923.412  | 6862426.016 | 283.2  | 26.2  | 309.4  | 20/08/1998    |
| SURLOW 1       | GAS | 595390.9155 | 6975838.223 | 245.21 | 16.6  | 261.81 | 29/11/2003    |
| SURLOW 2       | GAS | 595616.2854 | 6976477.232 | 244.42 | 16.65 | 261.07 | 29/09/2009    |
| TAKYAH 2       | OIL | 726393.5166 | 7010328.878 | 171.02 | 4.07  | 175.09 | 15/06/2007    |
| TAKYAH 4       | OIL | 726130.3874 | 7014528.313 | 155    | 3.96  | 158.96 | 1/05/2007     |
| TAKYAH 5       | OIL | 727677.9416 | 7010512.746 | 157.17 | 4.05  | 161.22 | 4/08/2007     |
| TALGEBERRY 10  | OIL | 740959.6529 | 7016661.222 | 181.9  | 4.04  | 185.94 | 4/08/2006     |



|                                | OIL | 744000 7040 | 7040004 049 | 100 11 | 4.04  | 104.45 | 44/00/2000 |
|--------------------------------|-----|-------------|-------------|--------|-------|--------|------------|
| TALGEBERRY 11                  | OIL | 741802.7948 | 7016964.048 | 190.11 | 4.04  | 194.15 | 11/08/2006 |
| TALGEBERRY 12                  | OIL | 741552.928  | 7017805.18  | 184.99 | 4.06  | 189.05 | 18/07/2006 |
| TALGEBERRY 13<br>TALGEBERRY 14 | OIL | 740936.9769 | 7017854.935 | 182.08 | 4.04  | 186.12 | 23/07/2006 |
|                                | OIL | 742339.7803 | 7017179.728 | 182.25 | 4.04  | 186.29 | 16/08/2006 |
| TALGEBERRY 15                  | OIL | 740648.8331 | 7020010.771 | 179.84 | 4.04  | 183.88 | 2/09/2006  |
| TALGEBERRY 16                  | OIL | 738294.669  | 7019119.263 | 191.03 | 4.04  | 195.07 | 9/09/2006  |
| TALGEBERRY 17                  | OIL | 741130.4207 | 7018108.078 | 182.19 | 4.05  | 186.24 | 4/07/2007  |
| TALGEBERRY 18                  | OIL | 740945.8953 | 7017325.971 | 183.4  | 4.04  | 187.44 | 17/07/2007 |
| TALGEBERRY 19                  | OIL | 741394.0859 | 7018633.245 | 181.14 | 4.03  | 185.17 | 27/06/2007 |
| TALGEBERRY 20                  | OIL | 740414.1248 | 7017598.905 | 181.9  | 4.06  | 185.96 | 27/07/2007 |
| TALGEBERRY 22                  | OIL | 742049.9794 | 7017849.812 | 183.12 | 4.05  | 187.17 | 11/07/2007 |
| TALGEBERRY 4                   | OIL | 741771.7659 | 7017333.585 | 188.33 | 5.46  | 193.79 | 11/09/1995 |
| TALGEBERRY 5                   | OIL | 741785.2625 | 7018374.399 | 186.79 | 5.26  | 192.05 | 16/11/1996 |
| TALGEBERRY 6                   | OIL | 740249.2853 | 7017323.367 | 181.65 | 5.26  | 186.91 | 3/12/1996  |
| TALGEBERRY 7                   | -   | 741294.0208 | 7017403.089 | 192.24 | 5.26  | 197.5  | 9/04/1998  |
| TALGEBERRY 8                   | OIL | 741437.5706 | 7016602.145 | 187.4  | 4.02  | 191.42 | 26/11/2003 |
| TALGEBERRY 9<br>TALGEBERRY     | OIL | 740623.7945 | 7016978.959 | 180.53 | 4.04  | 184.57 | 29/07/2006 |
| NORTH 1                        | OIL | 738922.0229 | 7020423.091 | 190.8  | 4.02  | 194.82 | 6/12/2003  |
| TALLALIA 2                     | GAS | 529318.2641 | 6973442.008 | 461.02 | 26.2  | 487.22 | 18/11/1997 |
| TANU 1                         | GAS | 593159.2514 | 6988472.736 | 254.62 | 20.1  | 274.72 | 18/10/1995 |
| TARBAT 10                      | OIL | 726744.5492 | 7024005.676 | 183.14 | 5.26  | 188.4  | 11/10/1996 |
| TARBAT 11                      | OIL | 726534.2114 | 7024804.783 | 181.72 | 5.25  | 186.97 | 30/07/1997 |
| TARBAT 12                      | OIL | 727472.28   | 7023635.943 | 182.15 | 3.93  | 186.08 | 14/05/2005 |
| TARBAT 2                       | OIL | 727369.0626 | 7023897.079 | 181.73 | 5.46  | 187.19 | 30/08/1995 |
| TARBAT 3                       | OIL | 727159.79   | 7023916.268 | 184.87 | 5.46  | 190.33 | 8/01/1996  |
| TARBAT 4                       | OIL | 727373.578  | 7023520.12  | 183.57 | 5.46  | 189.03 | 27/12/1995 |
| TARBAT 5                       | OIL | 726983.4756 | 7024225.164 | 178.73 | 5.46  | 184.19 | 20/04/1996 |
| TARBAT 6                       | OIL | 726728.7122 | 7024367.762 | 182.97 | 5.46  | 188.43 | 2/05/1996  |
| TARBAT 7                       | OIL | 727588.7207 | 7023589.497 | 178.72 | 5.46  | 184.18 | 12/05/1996 |
| TARBAT 8                       | OIL | 726733.4982 | 7024004.656 | 183.14 | 5.26  | 188.4  | 13/09/1996 |
| TARBAT 9                       | OIL | 726779.3795 | 7024008.041 | 183.14 | 5.26  | 188.4  | 29/09/1996 |
| TARTULLA 2                     | GAS | 615595.7084 | 6991688.993 | 437.91 | 17.9  | 455.81 | 30/12/1993 |
| TARTULLA 3                     | GAS | 616095.3767 | 6988764.241 | 588.25 | 20.1  | 608.35 | 5/08/1994  |
| TARTULLA 4                     | GAS | 613525.7373 | 6990801.541 | 327.42 | 20.1  | 347.52 | 8/03/1996  |
| TARTULLA 5                     | GAS | 612929.4583 | 6986119.567 | 325.23 | 12.4  | 337.63 | 9/07/1997  |
| TARTULLA 6                     | GAS | 612814.7858 | 6990113.737 | 314.14 | 16.6  | 330.74 | 5/02/2005  |
| TARTULLA 7                     | GAS | 614803.2289 | 6991297.852 | 419.81 | 16.6  | 436.41 | 19/02/2005 |
| TARTULLA 8                     | GAS | 613988.8427 | 6991428.105 | 356.26 | 16.31 | 372.57 | 27/12/2007 |
| TEEGAL 1                       | OG  | 521289.5914 | 6870372.108 | 374.83 | 16.6  | 391.43 | 27/11/2006 |
| TELLUS 1                       | GAS | 505204.3434 | 6862446.237 | 312.07 | 16.5  | 328.58 | 1/05/2001  |
| TELLUS SOUTH 1                 | GAS | 505936.7977 | 6860845.104 | 307.64 | 16.5  | 324.14 | 15/01/2002 |
| TENNAPERRA 2                   | OIL | 596915.9684 | 6902042.178 | 221.29 | 13    | 234.29 | 11/01/2009 |



| TEQUILA 1    | OIL | 635448.9195 | 6951614.27  | 500.58 | 15.4  | 515.98 | 2/04/2007  |
|--------------|-----|-------------|-------------|--------|-------|--------|------------|
| THETA 1      | GAS | 573225.723  | 6904854.253 | 211.91 | 16.6  | 228.51 | 30/12/2005 |
| THETA 2      | GAS | 571447.5855 | 6907023.914 | 211.58 | 16.65 | 228.23 | 4/07/2009  |
| THOAR 2      | GAS | 576517.0205 | 6899106.457 | 225.42 | 17.25 | 242.67 | 10/06/1997 |
| THOAR 3      | GAS | 576172.922  | 6899734.811 | 223.66 | 16.6  | 240.26 | 11/08/2005 |
| THOAR 4      | GAS | 575918.5875 | 6901099.419 | 212.14 | 16.6  | 228.74 | 23/01/2006 |
| THUNGO 10    | OIL | 656018.2867 | 6931936.158 | 107.76 | 4.02  | 111.78 | 19/01/2007 |
| THUNGO 11    | OIL | 655033.8352 | 6931784.106 | 114.75 | 3.96  | 118.71 | 1/04/2007  |
| THUNGO 13    | OIL | 655796.5649 | 6931263.711 | 110.67 | 4.02  | 114.69 | 6/02/2007  |
| THUNGO 7     | OIL | 655994.911  | 6932610.867 | 106.53 | 5.06  | 111.59 | 15/07/2002 |
| THUNGO 8     | OIL | 656282.7453 | 6932908.577 | 106.46 | 4.02  | 110.48 | 3/11/2003  |
| THUNGO 9     | OIL | 656088.2365 | 6932307.147 | 108.22 | 4.02  | 112.24 | 14/01/2007 |
| THURRA 2     | OIL | 631990.3344 | 6957866.852 | 660.5  | 17.9  | 678.4  | 9/01/1993  |
| TICKALARA 10 | OIL | 537032.8746 | 6864667.396 | 408.35 | 17.9  | 426.25 | 12/06/1992 |
| TICKALARA 11 | OIL | 538335.6505 | 6865276.32  | 429.28 | 17.9  | 447.18 | 23/10/1992 |
| TICKALARA 12 | OIL | 537662.9274 | 6865202.705 | 420.85 | 17.9  | 438.75 | 6/02/1993  |
| TICKALARA 13 | OIL | 538256.1613 | 6865610.367 | 433.93 | 17    | 450.93 | 16/08/1993 |
| TICKALARA 14 | OIL | 537666.2046 | 6865554.763 | 417.53 | 17    | 434.53 | 25/12/1994 |
| TICKALARA 15 | OIL | 538736.7839 | 6866549.573 | 419.45 | 17    | 436.45 | 14/05/1995 |
| TICKALARA 16 | OIL | 537157.9118 | 6864940.306 | 420.73 | 17.25 | 437.98 | 10/03/1997 |
| TICKALARA 17 | OIL | 537396.8025 | 6865043.578 | 411.35 | 16.6  | 427.95 | 21/05/1998 |
| TICKALARA 18 | OIL | 538030.706  | 6865454.224 | 426.54 | 16.6  | 443.14 | 12/05/1998 |
| TICKALARA 19 | OIL | 536777.9896 | 6864491.603 | 417.45 | 15.75 | 433.2  | 21/10/2008 |
| TICKALARA 20 | OIL | 539201.7528 | 6866054.836 | 418.99 | 15.4  | 434.39 | 2/11/2008  |
| TICKALARA 21 | OIL | 537910.6099 | 6865293.642 | 432.97 | 16.6  | 449.57 | 20/12/2009 |
| TICKALARA 22 | OIL | 538579.6694 | 6865894.915 | 431.27 | 16.6  | 447.87 | 29/12/2009 |
| TICKALARA 23 | OIL | 538827.957  | 6865476.561 | 433.63 | 16.6  | 450.23 | 7/01/2010  |
| TICKALARA 24 | OIL | 537303.7792 | 6865227.55  | 416.6  | 16.6  | 433.2  | 16/01/2010 |
| TICKALARA 4  | OIL | 538138.2257 | 6865087.629 | 428.06 | 17.9  | 445.96 | 6/01/1988  |
| TICKALARA 5  | OIL | 538577.9354 | 6865333.029 | 438.41 | 17.9  | 456.31 | 18/03/1988 |
| TICKALARA 6  | OIL | 537270.8499 | 6864668.864 | 405.92 | 17    | 422.92 | 12/08/1988 |
| TICKALARA 7  | OIL | 537936.981  | 6864989.458 | 424.8  | 20.1  | 444.9  | 21/09/1991 |
| TICKALARA 8  | OIL | 537465.3257 | 6864861.455 | 414.59 | 17    | 431.59 | 27/01/1992 |
| TICKALARA 9  | OIL | 538618.357  | 6865645.194 | 437.92 | 17.9  | 455.82 | 1/06/1992  |
| TOGAR 1      | OIL | 619595.0185 | 6911256.045 | 263.59 | 17.9  | 281.49 | 20/08/1993 |
| TOOBUNYAH 6  | OIL | 708862.8459 | 7017432.594 | 165.76 | 4.44  | 170.2  | 26/07/1994 |
| TOOTEN 1     | OIL | 738162.3694 | 7032483.741 | 175.2  | 4.07  | 179.27 | 13/08/2006 |
| TOOTEN 1A    | OIL | 738162.3694 | 7032483.741 | 175.4  | 4.07  | 179.47 | 14/08/2006 |
| TOSCA 1      | GAS | 555313.2823 | 6892470.735 | 333.79 | 17.9  | 351.69 | 28/11/1995 |
| TOSTADA 1    | OIL | 633120.7985 | 6949573.772 | 481.98 | 15.98 | 497.96 | 11/04/2007 |
| TOSTADA 2    | OIL | 633407.9409 | 6950072.671 | 488.18 | 13.19 | 501.37 | 27/10/2007 |
| TURANDOT 1   | OIL | 552166.6945 | 6893066.595 | 368.83 | 13.2  | 382.03 | 9/02/2004  |



| TUROL 1         | OIL | 514625.9532 | 7020138.739 | 368.36 | 20.1  | 388.46 | 17/11/1995 |
|-----------------|-----|-------------|-------------|--------|-------|--------|------------|
| UPSILON 1       | OIL | 532016.4559 | 6866935.019 | 395.83 | 16.6  | 412.43 | 18/05/2005 |
| VEGA 1          | GAS | 587438.332  | 6933180.026 | 224.37 | 19.3  | 243.67 | 17/11/1997 |
| VEGA 2          | GAS | 587006.0671 | 6933459.205 | 225.52 | 16.6  | 242.12 | 2/07/2001  |
| VEGA 3          | GAS | 585144.0243 | 6933608.447 | 224.34 | 16.8  | 241.14 | 22/11/2008 |
| VEGA NORTH 1    | GAS | 587059.4775 | 6935491.703 | 225.06 | 16.6  | 241.66 | 13/11/2001 |
| WACKETT 10      | GAS | 597813.3255 | 6956474.308 | 236.28 | 19.3  | 255.58 | 15/09/1999 |
| WACKETT 11      | GAS | 595767.6117 | 6959109.495 | 237.38 | 16.6  | 253.98 | 3/10/2000  |
| WACKETT 12      | GAS | 598561.0675 | 6955922.038 | 236.09 | 16.6  | 252.69 | 7/02/2002  |
| WACKETT 13      | OIL | 589545.6568 | 6957910.227 | 289.5  | 13.12 | 302.62 | 27/12/2006 |
| WACKETT 14      | GAS | 598821.9405 | 6955275.17  | 236.28 | 16.65 | 252.93 | 16/08/2009 |
| WACKETT 15      | GAS | 600225.2692 | 6956148.491 | 236.98 | 16.6  | 253.58 | 4/08/2009  |
| WACKETT 16      | GAS | 598354.3163 | 6958134.395 | 238.16 | 16.65 | 254.81 | 29/08/2009 |
| WACKETT 5       | GAS | 590684.0026 | 6956327.32  | 273.63 | 20.1  | 293.73 | 27/07/1995 |
| WACKETT 6       | GAS | 589715.2519 | 6955776.448 | 231.99 | 17.9  | 249.89 | 7/02/1996  |
| WACKETT 7       | OIL | 589582.7737 | 6957730.934 | 280.74 | 17.9  | 298.64 | 23/03/1996 |
| WACKETT 8       | GAS | 586686.8558 | 6955835.483 | 278.7  | 17.25 | 295.95 | 23/09/1997 |
| WACKETT 9       | GAS | 599064.2801 | 6957175.823 | 237.96 | 26.2  | 264.16 | 8/06/1999  |
| WACKETT         | GAS |             |             |        |       |        |            |
| SOUTHEAST 1     | OIL | 599426.0028 | 6947275.02  | 231.1  | 16.6  | 247.7  | 27/10/2000 |
| WANDILO 3       | OIL | 600178.1565 | 6895202.814 | 241.03 | 16.5  | 257.53 | 5/02/1990  |
| WANDILO 4       | -   | 600567.362  | 6895684.605 | 243.26 | 16.5  | 259.76 | 6/04/1990  |
| WANDILO SOUTH 1 | OIL | 601476.3581 | 6894059.003 | 260.2  | 17    | 277.2  | 3/07/2011  |
| WAREENA 3       | GAS | 631678.6536 | 7021479.26  | 373.16 | 12.4  | 385.56 | 14/12/1996 |
| WAREENA 4       | GAS | 635716.6116 | 7026593.856 | 364.66 | 12.4  | 377.06 | 12/04/1997 |
| WAREENA 5       | GAS | 634190.0594 | 7022970.933 | 367.72 | 16.65 | 384.37 | 14/10/2009 |
| WARNIE 1        | GAS | 534927.5256 | 6911681.263 | 430.77 | 16.5  | 447.27 | 11/10/2000 |
| WATKINS 1       | OIL | 603660.0036 | 6895677.607 | 269.55 | 13    | 282.55 | 8/12/2008  |
| WATSON 3        | OIL | 606126.8846 | 6892778.391 | 270.18 | 13    | 283.18 | 14/11/2008 |
| WATSON 4        | OIL | 605949.8528 | 6893159.438 | 264.11 | 13    | 277.11 | 23/11/2008 |
| WATSON SOUTH 3  | OIL | 602820.3546 | 6887706.374 | 265.52 | 16.5  | 282.02 | 18/12/1989 |
| WATSON SOUTH 4  | OIL | 602507.7547 | 6887104.008 | 269.17 | 17    | 286.17 | 26/07/1993 |
| WATSON WEST 1   | OIL | 601127.2052 | 6886807.005 | 271.45 | 16.6  | 288.05 | 15/07/2010 |
| WELLINGTON 1    | GAS | 582002.3038 | 6933353.116 | 224.64 | 16.6  | 241.24 | 21/08/2001 |
| WELLINGTON 2    | GAS | 585170.865  | 6933921.222 | 224.08 | 16.6  | 240.68 | 8/11/2003  |
| WELLINGTON 3    | GAS | 579475.7261 | 6933087.093 | 224.64 | 16.6  | 241.24 | 19/08/2004 |
| WELLINGTON 4    | GAS | 579694.4119 | 6931605.835 | 223.88 | 16.6  | 240.48 | 24/09/2004 |
| WELLINGTON 5    | GAS | 585299.2174 | 6931408.639 | 223.85 | 16.6  | 240.45 | 6/12/2004  |
| WELLINGTON 6    | GAS | 586010.1387 | 6931191.247 | 223.68 | 16.6  | 240.28 | 3/12/2007  |
| WHANTO 1        | GAS | 619139.8423 | 7066010.373 | 316.04 | 18.78 | 334.82 | 1/11/1997  |
| WHYNOTT 1       | OIL | 738930.9582 | 7030844.31  | 171.46 | 4.07  | 175.53 | 9/08/2006  |
| WILSON 8        | OIL | 640097.1903 | 6950335.314 | 433.56 | 17.9  | 451.46 | 7/04/1996  |
| WILSON 9        | OIL | 640469.926  | 6949645.39  | 399.11 | 13.29 | 412.4  | 30/04/2007 |



| WINDIGO 1          | GAS | 609640.6418 | 6970047.948 | 255.1  | 19.3  | 274.4  | 5/10/1999  |
|--------------------|-----|-------------|-------------|--------|-------|--------|------------|
| WINDIGO 2          | GAS | 609076.916  | 6970634.027 | 252.08 | 16.6  | 268.68 | 18/09/2000 |
| WINDULA 1          | OG  | 539819.0918 | 7044227.083 | 449.37 | 15.6  | 464.97 | 21/09/2005 |
| WINNA 4            | OIL | 651833.0327 | 6932261.947 | 133.75 | 4.08  | 137.83 | 11/12/2005 |
| WINNINIA 1         | GAS | 582274.8256 | 6918469.497 | 217.95 | 17    | 234.95 | 13/12/1994 |
| WINNINIA NORTH 1   | GAS | 587452.2159 | 6923074.252 | 219.52 | 19.3  | 238.82 | 29/10/1999 |
| WINNINIA NORTH 2   | GAS | 588019.0933 | 6921571.761 | 219.89 | 16.5  | 236.39 | 12/12/2000 |
| WINNINIA NORTH 3   | GAS | 586560.153  | 6921763.875 | 217.91 | 19.3  | 237.21 | 2/10/2004  |
| WINNINIA NORTH 4   | GAS | 586916.0249 | 6924233.718 | 219.65 | 16.6  | 236.25 | 14/09/2005 |
| WINNINIA SOUTH 1   | GAS | 580108.9386 | 6915949.432 | 215.81 | 16.6  | 232.41 | 28/08/2005 |
| WIPPO EAST 1       | GAS | 610978.3089 | 6980537.915 | 259.1  | 16.6  | 275.7  | 31/07/2000 |
| WIPPO EAST 2       | GAS | 611925.8222 | 6983231.538 | 262.41 | 16.5  | 278.91 | 9/01/2001  |
| WIPPO SOUTH 1      | GAS | 607178.6539 | 6975209.71  | 244.84 | 12.4  | 257.24 | 9/08/1997  |
| WOLGOLLA 3         | GAS | 532031.0911 | 6882361.791 | 425.09 | 16.6  | 441.69 | 3/02/2003  |
| WOLGOLLA 4         | GAS | 528629.3468 | 6883815.796 | 436.71 | 16.6  | 453.31 | 3/04/2005  |
| WOLGOLLA 5         | GAS | 533382.1216 | 6882292.831 | 430.18 | 16.6  | 446.78 | 23/04/2005 |
| WOLGOLLA 6         | GAS | 532611.9607 | 6882927.63  | 422.07 | 16.6  | 438.67 | 7/02/2006  |
| WOLGOLLA EAST<br>1 | GAS | 539388.3426 | 6880253.389 | 413.64 | 17.25 | 430.89 | 15/05/1997 |
| WOMPI EAST 1       | OIL | 580207.0851 | 6874285.592 | 254.63 | 17.23 | 271.63 | 5/07/1993  |
| YANDA 10           | GAS | 577481.8955 | 6962067.152 | 402.49 | 16.6  | 419.09 | 16/03/1997 |
| YANDA 11           | OIL | 579266.0981 | 6962922.925 | 392.48 | 16.6  | 409.08 | 3/04/1997  |
| YANDA 12           | GAS | 582101.1315 | 6963928.107 | 330.99 | 16.6  | 347.59 | 30/04/1997 |
| YANDA 13           | GAS | 580835.8781 | 6964436.548 | 413.8  | 26.2  | 440    | 29/06/1999 |
| YANDA 14           | GAS | 578093.695  | 6963735.121 | 425.25 | 26.2  | 451.45 | 25/02/1999 |
| YANDA 15           | OIL | 579719.6021 | 6963213.217 | 380.54 | 12.9  | 393.44 | 12/02/2006 |
| YANDA 16           | OIL | 581588.5567 | 6963506.246 | 389.17 | 12.9  | 402.07 | 25/01/2006 |
| YANDA 17           | OIL | 580176.0897 | 6963381.95  | 390.97 | 13.12 | 404.09 | 5/10/2006  |
| YANDA 18           | OIL | 580260.7358 | 6962845.345 | 399.57 | 13.12 | 412.69 | 15/10/2006 |
| YANDA 19           | OIL | 578373.4398 | 6962490.199 | 421.09 | 13.12 | 434.21 | 25/10/2006 |
| YANDA 20           | OIL | 578639.8401 | 6963151.276 | 429.59 | 13.12 | 442.71 | 4/11/2006  |
| YANDA 21           | OIL | 579429.1049 | 6963587.422 | 420.3  | 13.12 | 433.42 | 30/11/2006 |
| YANDA 22           | OIL | 580408.0312 | 6963954.926 | 371.78 | 13.12 | 384.9  | 10/12/2006 |
| YANDA 23           | OIL | 580758.0505 | 6963167.106 | 395.63 | 13.12 | 408.75 | 13/11/2006 |
| YANDA 24           | OIL | 579868.2791 | 6962612.28  | 424.24 | 13.12 | 437.36 | 21/11/2006 |
| YANDA 25           | OIL | 578948.8636 | 6962382.825 | 430.64 | 13.21 | 443.85 | 18/12/2006 |
| YANDA 7            | OG  | 578103.427  | 6964131.086 | 406.44 | 17.89 | 424.33 | 28/09/1990 |
| YANGTSE 1          | GAS | 606326.2709 | 6940773.498 | 230.18 | 19.3  | 249.48 | 2/11/2004  |
| YAWA 1             | GAS | 591099.6953 | 6971433.939 | 243.13 | 17.9  | 261.03 | 2/03/1996  |
| YAWA 2             | GAS | 591881.0324 | 6971549.108 | 307.12 | 16.8  | 323.92 | 2/11/2008  |
| ZENONI 1           | OIL | 747750.2578 | 6996620.234 | 206.39 | 4.86  | 211.25 | 7/12/2006  |
| ZEUS 1             | OIL | 594884.4078 | 6897771.349 | 236.75 | 13.02 | 249.77 | 18/12/2008 |
| ZEUS 2             | OIL | 596056.0495 | 6897393.959 | 234.38 | 17    | 251.38 | 21/07/2011 |





| ZEUS 3      | OIL | 595077.8542 | 6898241.344 | 236.35 | 17   | 253.35 | 7/08/2011  |
|-------------|-----|-------------|-------------|--------|------|--------|------------|
| ZIEGFREID 1 | OIL | 748983.8077 | 6993387.526 | 197.43 | 4.87 | 202.3  | 16/12/2006 |

The following Table contains all Santos Oil and Gas wells located in South Australia, grouped by field name.

| Field Name and<br>Well Reference<br>Number | Oil or Gas<br>Well | Easting (GDA<br>54) | Northing<br>(GDA 54) | Ground<br>Level<br>(mAHD) | Datum<br>Height (Kelly<br>Bushing) (m) | Well Datum<br>Elevation<br>(mAHD) | Date Drilled |
|--------------------------------------------|--------------------|---------------------|----------------------|---------------------------|----------------------------------------|-----------------------------------|--------------|
| ALISMA 1                                   | GAS                | 494453.9034         | 6874933.997          | 248.8                     | 20                                     | 268.8                             | 1/08/1990    |
| ALISMA 2                                   | GAS                | 494593.2556         | 6875880.337          | 247.36                    | 19.3                                   | 266.66                            | 5/05/2005    |
| ALLAMBI 1                                  | GAS                | 485904.384          | 6872280.508          | 229.12                    | 17                                     | 246.12                            | 21/10/1994   |
| ALLUNGA 1                                  | GAS                | 435936.8763         | 6867499.053          | 106.94                    | 18.78                                  | 125.72                            | 1/08/1996    |
| ALLUNGA TROUGH<br>1                        | GAS                | 433138.4037         | 6865003.806          | 133.21                    | 18.8                                   | 152.01                            | 10/07/1998   |
| ALWYN 3                                    | OIL                | 434132.0221         | 6848065.563          | 99.38                     | 17                                     | 116.38                            | 5/09/1989    |
| ALWYN 4                                    | OIL                | 433521.8125         | 6847846.418          | 101.25                    | 17                                     | 118.25                            | 23/09/1990   |
| ALWYN 5                                    | OIL                | 433629.9226         | 6849015.872          | 107.64                    | 14.5                                   | 122.14                            | 19/12/1990   |
| ALWYN 6                                    | OIL                | 434023.9034         | 6847535.82           | 100.5                     | 13.2                                   | 113.7                             | 10/07/2003   |
| ALWYN 7                                    | OIL                | 433430.0299         | 6848031.917          | 106.86                    | 15.52                                  | 122.38                            | 20/07/2007   |
| ALWYN EAST 1                               | OIL                | 435746.379          | 6847358.903          | 99.55                     | 13.2                                   | 112.75                            | 18/07/2003   |
| ALWYN NORTH 1                              | OIL                | 435881.5001         | 6849861.175          | 103.48                    | 17                                     | 120.48                            | 23/04/1991   |
| AMYEMA 1                                   | GAS                | 494195.3622         | 6860667.365          | 279.39                    | 17.8                                   | 297.19                            | 5/06/1989    |
| ANGELICA 1                                 | OIL                | 440155.1925         | 6997853.406          | 113.89                    | 19.3                                   | 133.19                            | 5/03/1998    |
| APACHIRIE 1                                | OIL                | 443652.5918         | 7003270.928          | 104.41                    | 20.1                                   | 124.51                            | 7/06/1995    |
| ARABURG 1                                  | OIL                | 495230.6396         | 7076980.251          | 575.34                    | 17.8                                   | 593.14                            | 6/03/1989    |
| ARAGORN 1                                  | OIL                | 442692.4948         | 6853897.341          | 103.5                     | 17                                     | 120.5                             | 25/05/1997   |
| AZOLLA 1                                   | GAS                | 487853.7376         | 6847347.927          | 270.68                    | 14.5                                   | 285.18                            | 25/12/1988   |
| BAGUNDI 3                                  | GAS                | 477661.2647         | 6879412.268          | 236.13                    | 17                                     | 253.13                            | 3/01/1989    |
| BAGUNDI 4                                  | GAS                | 475920.7716         | 6878751.949          | 202.72                    | 20.1                                   | 222.82                            | 23/07/1992   |
| BAGUNDI 5                                  | GAS                | 474319.6757         | 6879194.487          | 197.61                    | 19.3                                   | 216.91                            | 31/01/2005   |
| BAGUNDI 6                                  | GAS                | 476622.3066         | 6878984.656          | 190.42                    | 19.3                                   | 209.72                            | 13/02/2005   |
| BALCAMINGA 1                               | GAS                | 436581.8679         | 6949867.086          | 127.69                    | 16.2                                   | 143.89                            | 1/04/1987    |
| BARATTA 2                                  | GAS                | 467473.6475         | 6869701.185          | 156.48                    | 17                                     | 173.48                            | 4/08/1995    |
| BARATTA SOUTH 1                            | GAS                | 468072.9877         | 6867937.727          | 162.12                    | 17                                     | 179.12                            | 14/04/1992   |
| BARATTA WEST 1                             | GAS                | 465260.551          | 6870290.025          | 157.56                    | 17                                     | 174.56                            | 14/10/1996   |
| BATTUNGA 1                                 | GAS                | 454667.9684         | 6842209.66           | 128.95                    | 20                                     | 148.95                            | 26/09/1987   |
| BAUHAUS 1                                  | GAS                | 429833.166          | 6859573.694          | 111.7                     | 18.78                                  | 130.48                            | 20/08/1997   |
| BAUHINIA 1                                 | GAS                | 491117.8228         | 6958246.094          | 321.69                    | 14.5                                   | 336.19                            | 1/07/1991    |
| BAUHINIA 2                                 | GAS                | 490907.1117         | 6958549.663          | 332.82                    | 16                                     | 348.82                            | 29/12/1997   |
| BECKLER 1                                  | GAS                | 495918.2278         | 6897343.676          | 277.12                    | 17                                     | 294.12                            | 9/12/1996    |
| BECKLER 2                                  | GAS                | 495570.6409         | 6896753.338          | 275.03                    | 18.8                                   | 293.83                            | 19/04/2000   |
| BECKLER 3                                  | GAS                | 496301.4499         | 6898178.94           | 275.99                    | 17.3                                   | 293.29                            | 8/11/2000    |
| BECKLER 4                                  | GAS                | 494766.7908         | 6898499.95           | 262.16                    | 18.8                                   | 280.96                            | 10/12/2001   |



| BECKLER 5      | GAS | 496955.6166 | 6895150.618 | 285.92 | 18.8  | 304.72 | 2/01/2002  |
|----------------|-----|-------------|-------------|--------|-------|--------|------------|
| BIALA 10       | OIL | 439516.5887 | 6843258.411 | 164.09 | 13.2  | 177.29 | 26/07/2003 |
| BIALA 11       | OIL | 439153.8843 | 6844696.809 | 111.89 | 13.2  | 125.09 | 16/10/2003 |
| BIALA 12       | OIL | 436554.1286 | 6842630.978 | 153.66 | 13.2  | 166.86 | 11/10/2003 |
| BIALA 13       | OIL | 438232.9674 | 6845693.101 | 117.18 | 13.4  | 130.58 | 16/09/2006 |
| BIALA 14       | OIL | 437629.9191 | 6844081.015 | 165.8  | 13.4  | 179.2  | 14/12/2006 |
| BIALA 15       | OIL | 436882.9701 | 6843426.458 | 160.63 | 13.3  | 173.93 | 24/12/2006 |
| BIALA 4        | OIL | 438088.8584 | 6845463.56  | 136.26 | 16.5  | 152.76 | 22/07/1987 |
| BIALA 5        | OIL | 438503.4284 | 6843791.254 | 108.63 | 17    | 125.63 | 21/03/1990 |
| BIALA 6        | OIL | 438982.5339 | 6845773.243 | 109.37 | 17    | 126.37 | 8/10/1991  |
| BIALA 7        | OIL | 438221.8064 | 6843277.036 | 122.48 | 17    | 139.48 | 25/04/1992 |
| BIALA 8        | OIL | 439373.2656 | 6844847.843 | 141.39 | 16.3  | 157.69 | 7/05/2002  |
| BIALA 9        | OIL | 436450.7079 | 6842398.311 | 138.89 | 16.3  | 155.19 | 26/05/2002 |
| BIG LAKE 17DW1 | GAS | 429022.5175 | 6876818.035 | 106.65 | 19.36 | 126.01 | 28/07/2007 |
| BIG LAKE 44    | GAS | 429518.5685 | 6875649.851 | 107.39 | 20    | 127.39 | 30/12/1988 |
| BIG LAKE 46    | GAS | 436596.4549 | 6881962.427 | 117.74 | 16.2  | 133.94 | 13/09/1989 |
| BIG LAKE 48    | GAS | 429817.2263 | 6874053.948 | 107.56 | 20    | 127.56 | 29/04/1990 |
| BIG LAKE 50    | GAS | 432790.877  | 6876567.743 | 115.31 | 20.3  | 135.61 | 3/11/1991  |
| BIG LAKE 52    | GAS | 432073.9267 | 6879611.19  | 108.26 | 20    | 128.26 | 10/05/1992 |
| BIG LAKE 54    | GAS | 435295.3988 | 6877786.446 | 135.08 | 20    | 155.08 | 6/06/1994  |
| BIG LAKE 55    | OIL | 430814.9958 | 6877533.324 | 107.67 | 17    | 124.67 | 10/09/1995 |
| BIG LAKE 56H   | GAS | 430533.5762 | 6877180.82  | 107.53 | 18.78 | 126.31 | 20/05/1996 |
| BIG LAKE 57    | OIL | 430547.8571 | 6877205.276 | 107.59 | 18.78 | 126.37 | 18/06/1996 |
| BIG LAKE 58DW  | OIL | 430905.1223 | 6877406.776 | 107.6  | 18.8  | 126.4  | 14/02/1997 |
| BIG LAKE 59DW  | OIL | 430944.4179 | 6877449.436 | 107.67 | 18.8  | 126.47 | 27/02/1997 |
| BIG LAKE 60    | GAS | 433421.9608 | 6880123.997 | 112.99 | 18.8  | 131.79 | 28/01/1997 |
| BIG LAKE 61    | GAS | 429816.4244 | 6877510.519 | 107.72 | 20    | 127.72 | 1/07/1998  |
| BIG LAKE 63    | OIL | 430672.1081 | 6877822.644 | 108.57 | 26.2  | 134.77 | 13/07/1999 |
| BIG LAKE 64    | GAS | 431946.393  | 6877390.848 | 110.14 | 18.8  | 128.94 | 2/02/2000  |
| BIG LAKE 65    | GAS | 431449.1092 | 6877935.167 | 109.16 | 18.8  | 127.96 | 8/10/2000  |
| BIG LAKE 66    | GAS | 434044.2605 | 6879068.237 | 101.88 | 18.8  | 120.68 | 9/11/2000  |
| BIG LAKE 67    | GAS | 432643.4476 | 6880059.901 | 113.21 | 18.8  | 132.01 | 9/09/2000  |
| BIG LAKE 69    | OG  | 430308.7592 | 6876983.742 | 107.35 | 16.3  | 123.65 | 16/07/2001 |
| BIG LAKE 70    | GAS | 433393.5819 | 6879408.048 | 101.66 | 19.3  | 120.96 | 5/10/2001  |
| BIG LAKE 71    | GAS | 432231.232  | 6878821.403 | 111.89 | 19.3  | 131.19 | 26/03/2003 |
| BIG LAKE 71ST1 | GAS | 432231.232  | 6878821.403 | 111.89 | 19.3  | 131.19 | 26/03/2003 |
| BIG LAKE 71ST2 | GAS | 432231.232  | 6878821.403 | 111.89 | 19.3  | 131.19 | 26/03/2003 |
| BIG LAKE 72    | GAS | 432893.8774 | 6878483.163 | 147.77 | 19.3  | 167.07 | 29/05/2003 |
| BIG LAKE 73    | OIL | 430727.6645 | 6877600.839 | 108.21 | 16.6  | 124.81 | 14/11/2002 |
| BIG LAKE 74    | OIL | 430665.446  | 6877148.021 | 101.84 | 16.6  | 118.44 | 2/12/2002  |
| BIG LAKE 74ST1 | OIL | 430665.446  | 6877148.021 | 101.84 | 16.6  | 118.44 | 2/12/2002  |



| BIG LAKE 76        | GAS | 433589.8737 | 6878720.055 | 101.84 | 19.3  | 121.14 | 9/03/2004  |
|--------------------|-----|-------------|-------------|--------|-------|--------|------------|
| BIG LAKE 77        | GAS | 429754.5456 | 6877421.192 | 108.97 | 19.3  | 128.27 | 3/04/2004  |
| BIG LAKE 81        | GAS | 435455.8952 | 6881464.632 | 125.65 | 15.4  | 141.05 | 8/04/2005  |
| BIG LAKE 82        | GAS | 436145.643  | 6880712.242 | 115.73 | 15.6  | 131.33 | 4/05/2005  |
| BIG LAKE 83        | GAS | 431319.7935 | 6877813.552 | 107.62 | 19.3  | 126.92 | 18/12/2006 |
| BIG LAKE 84        | GAS | 433323.0243 | 6880703.187 | 117.27 | 19.3  | 136.57 | 11/07/2007 |
| BIG LAKE 85        | GAS | 431051.1676 | 6878821.378 | 109.82 | 19.3  | 129.12 | 16/06/2007 |
| BIG LAKE 86        | OIL | 430176.0408 | 6876610.052 | 109.05 | 15.7  | 124.75 | 23/09/2007 |
| BIG LAKE 87        | OIL | 431512.2418 | 6878559.04  | 108.72 | 19.1  | 127.82 | 24/06/2008 |
| BIG LAKE 88        | OIL | 432479.2612 | 6879124.708 | 117.04 | 19.1  | 136.14 | 13/07/2008 |
| BIG LAKE 89        | GAS | 431695.2733 | 6877873.214 | 107.98 | 19.1  | 127.08 | 14/09/2008 |
| BIG LAKE 8DW1      | GAS | 431378.9142 | 6879420.525 | 109.24 | 18.5  | 127.74 | 7/08/2005  |
| BIG LAKE 90        | GAS | 431675.1013 | 6877882.958 | 107.93 | 19.3  | 127.23 | 12/10/2008 |
| BIG LAKE 91        |     | 431654.8332 | 6877892.369 | 107.9  | 19.1  | 127    | 8/11/2008  |
| BIMBAYA 1          | GAS | 442291.4726 | 6952254.984 | 160.06 | 16.2  | 176.26 | 31/05/1986 |
| BIMBAYA 2          | GAS | 442905.3362 | 6952941.56  | 132.5  | 20    | 152.5  | 2/10/1986  |
| BIMBAYA 3          | OG  | 441866.8837 | 6951683.042 | 157.44 | 16.2  | 173.64 | 13/02/1988 |
| BOOKABOURDIE<br>10 | GAS | 444987.6617 | 6956813.751 | 135.35 | 20.3  | 155.65 | 10/12/1988 |
| BOOKABOURDIE       | GAS | 445315.1417 | 6956710.316 | 130.71 | 20    | 150.71 | 13/12/1992 |
| BOOKABOURDIE 6     | GAS | 448282.9947 | 6956141.431 | 147.77 | 16.2  | 163.97 | 1/05/1986  |
| BOOKABOURDIE 7     | GAS | 450474.1308 | 6953962.745 | 147.07 | 16.2  | 163.27 | 21/12/1987 |
| BOOKABOURDIE 8     | GAS | 447703.8794 | 6955442.879 | 140.94 | 16.2  | 157.14 | 18/03/1988 |
| BOOKABOURDIE 9     | GAS | 448423.8233 | 6954361.03  | 135.39 | 16.2  | 151.59 | 29/04/1988 |
| BOONGALA 1         | GAS | 486790.3165 | 6877172.001 | 260.43 | 20.3  | 280.73 | 22/01/1992 |
| BOONGALA 2         | GAS | 486913.0235 | 6876844.009 | 228.44 | 16.31 | 244.75 | 22/05/2007 |
| BOW 1              | GAS | 497582.7154 | 6900971.477 | 274.38 | 16.3  | 290.68 | 29/11/2000 |
| BOW 2              | GAS | 497323.5543 | 6899750.676 | 263.88 | 18.8  | 282.68 | 14/11/2001 |
| BRONZEWING 1       | OIL | 438907.5911 | 6842931.194 | 120.98 | 15.32 | 136.3  | 21/09/2007 |
| BRUMBY 12          | GAS | 499327.3155 | 6858720.127 | 258.23 | 16.6  | 274.83 | 13/04/2006 |
| BRUMBY 4           | GAS | 496570.1054 | 6860935.166 | 263.38 | 17.8  | 281.18 | 15/04/1988 |
| BRUMBY 5           | GAS | 496850.4739 | 6858525.083 | 267.37 | 17    | 284.37 | 5/08/1989  |
| BRUMBY 7           | GAS | 499878.7611 | 6855381.514 | 312.19 | 17    | 329.19 | 19/03/1993 |
| BRUMBY 9           | GAS | 498714.5997 | 6859456.663 | 290.28 | 16.3  | 306.58 | 9/07/1996  |
| BUCKINNA 2         | OIL | 448693.8048 | 6858466.148 | 133.27 | 17    | 150.27 | 19/10/1989 |
| BUGITO 1           | OIL | 430415.7488 | 6841510.406 | 93.93  | 13.4  | 107.33 | 21/08/2005 |
| BUGITO 2           | OIL | 430898.0452 | 6841606.767 | 94.19  | 15.7  | 109.89 | 6/11/2007  |
| BULYEROO 1         | GAS | 458494.7061 | 6920680.224 | 151.91 | 20    | 171.91 | 16/10/1994 |
| BURKE 10           | OIL | 494155.8689 | 6888784.567 | 268.18 | 15.7  | 283.88 | 23/05/2007 |
| BURKE 11           | GAS | 493800.3961 | 6888710.5   | 270.92 | 19.1  | 290.02 | 21/12/2009 |
| BURKE 3            | GAS | 493314.837  | 6889279.522 | 277.42 | 22    | 299.42 | 16/04/1982 |



| BURKE 4            | GAS | 494456.7151 | 6888917.311 | 270.76 | 16.2  | 286.96 | 27/02/1982 |
|--------------------|-----|-------------|-------------|--------|-------|--------|------------|
| BURKE 5            | GAS | 495181.7875 | 6889651.746 | 257.7  | 16.2  | 273.9  | 26/03/1982 |
| BURKE 6            | GAS | 495903.2211 | 6887797.716 | 297.75 | 20    | 317.75 | 9/07/1994  |
| BURKE 7            | GAS | 494310.9579 | 6888332.006 | 279.36 | 16.6  | 295.96 | 7/03/2006  |
| BURKE 8            | GAS | 495187.5214 | 6888097.323 | 271.07 | 16.6  | 287.67 | 6/05/2006  |
| BURKE 9            | OIL | 495097.922  | 6888432.055 | 268.77 | 15.7  | 284.47 | 4/05/2007  |
| BURKE EAST 1       | GAS | 497968.5514 | 6888366.977 | 264.83 | 17.25 | 282.08 | 18/10/2000 |
| BURLEY 3           | GAS | 466833.754  | 6924555.84  | 158.83 | 19.3  | 178.13 | 2/02/1997  |
| BURLEY 3U          | GAS | 466833.754  | 6924555.84  | 158.84 | 18.78 | 177.62 | 16/11/1996 |
| CALVIN 1           | OIL | 448309.8306 | 6850800.458 | 155.64 | 15.7  | 171.34 | 21/07/2007 |
| CARAKA 1           | GAS | 474557.8564 | 6872315.548 | 190.39 | 17    | 207.39 | 21/04/1990 |
| CARAWAY 1          | OIL | 467891.6474 | 7008937.408 | 140.36 | 20.1  | 160.46 | 18/05/1995 |
| CARMINA 1          | OIL | 437713.8121 | 6852201.146 | 111.77 | 16.3  | 128.07 | 17/09/1996 |
| CARMINA 2          | OIL | 437513.6001 | 6852621.971 | 97.53  | 12.9  | 110.43 | 21/06/2005 |
| CAROOWINNIE 1      | OIL | 470550.0806 | 6847851.838 | 165.45 | 13.4  | 178.85 | 26/04/2007 |
| CARTMAN 1          | OIL | 448041.8786 | 6856684.508 | 47.45  | 7.07  | 54.52  | 19/11/2009 |
| CHILCARRIE 1       | OG  | 463690.7927 | 6863596.816 | 160.31 | 14.5  | 174.81 | 13/04/1988 |
| COBBLER 1          | GAS | 436061.5298 | 6947985.732 | 134.23 | 26.2  | 160.43 | 24/10/1998 |
| COBBLER 1ST1       | GAS | 436061.5298 | 6947985.732 | 134.23 | 26.2  | 160.43 | 9/11/1998  |
| COOBOWIE 1         | OIL | 495798.5441 | 6843075.102 | 298.8  | 17.8  | 316.6  | 25/04/1988 |
| COOLOON 1          | GAS | 455870.5987 | 6876998.256 | 166.52 | 20    | 186.52 | 1/07/1990  |
| COOLOON SOUTH<br>1 | GAS | 457767.0324 | 6874297.187 | 180.92 | 20.1  | 201.02 | 9/07/1991  |
| COONATIE 10        | GAS | 434146.5833 | 6960465.123 | 129.62 | 19.36 | 148.98 | 5/01/2008  |
| COONATIE 11        | GAS | 434394.9081 | 6960992.964 | 139.84 | 19.3  | 159.14 | 2/02/2008  |
| COONATIE 12        | GAS | 433623.7617 | 6959858.253 | 131.34 | 19.3  | 150.64 | 2/05/2008  |
| COONATIE 13        | GAS | 435092.656  | 6961852.403 | 133.51 | 19.3  | 152.81 | 5/04/2008  |
| COONATIE 14        | GAS | 434038.9126 | 6961508.925 | 135.83 | 23.2  | 159.03 | 23/11/2010 |
| COONATIE 15        | GAS | 434627.3409 | 6962338.225 | 130.48 | 23.4  | 153.88 | 21/01/2011 |
| COONATIE 16        | GAS | 435286.0962 | 6960565.346 | 163.79 | 23.2  | 186.99 | 2/07/2010  |
| COONATIE 17        | GAS | 433583.9753 | 6960473.5   | 152.94 | 19.1  | 172.04 | 23/06/2010 |
| COONATIE 18        | GAS | 433431.5594 | 6959175.393 | 138.21 | 23.2  | 161.41 | 24/10/2010 |
| COONATIE 19        | GAS | 434079.5975 | 6959086.619 | 137.02 | 19.1  | 156.12 | 24/08/2010 |
| COONATIE 20        | GAS | 435616.387  | 6962466.854 | 143.95 | 23.2  | 167.15 | 13/09/2010 |
| COONATIE 3         | GAS | 432901.1505 | 6960531.707 | 146.16 | 16.2  | 162.36 | 18/11/1987 |
| COONATIE 4         | GAS | 435904.1038 | 6961980.956 | 132.6  | 19.3  | 151.9  | 3/07/1997  |
| COONATIE 5         | GAS | 434936.6036 | 6961205.986 | 160.45 | 19.3  | 179.75 | 29/06/2004 |
| COONATIE 6         | GAS | 434395.7261 | 6961764.067 | 127.9  | 19.3  | 147.2  | 29/09/2005 |
| COONATIE 7         | GAS | 434652.9944 | 6960452.766 | 164.31 | 19.3  | 183.61 | 26/10/2005 |
| COONATIE 8         | GAS | 433724.5252 | 6960920.127 | 137.01 | 19.36 | 156.37 | 5/12/2007  |
| COONATIE 8ST1      | GAS | 433724.5252 |             | 137.01 |       |        | 5/12/2007  |



| COONATIE 9    | GAS | 435653.3938 | 6961062.659 | 154.28 | 19.3  | 173.58 | 8/03/2008  |
|---------------|-----|-------------|-------------|--------|-------|--------|------------|
| CORUNA 1      | GAS | 432594.3156 | 6995585.85  | 122.87 | 18.8  | 141.67 | 28/11/1996 |
| CROWSNEST 1   | GAS | 492624.2845 | 6900319.2   | 284.43 | 18.8  | 303.23 | 19/10/2001 |
| CROWSNEST 2   | GAS | 493945.4073 | 6901411.411 | 283.53 | 16.6  | 300.13 | 22/09/2002 |
| CROWSNEST 3   | GAS | 490927.5122 | 6900287.019 | 279.14 | 16.6  | 295.74 | 21/01/2003 |
| CRUMPA 1      | OIL | 469963.7671 | 7014290.766 | 139.81 | 20.3  | 160.11 | 1/01/1994  |
| CURLINGTON 1  | OIL | 431830.8483 | 6835081.325 | 45.8   | 4.8   | 50.6   | 9/01/2008  |
| CUTTAPIRRIE 2 | GAS | 437584.9772 | 6987804.569 | 106.84 | 20    | 126.84 | 9/09/1995  |
| CUTTAPIRRIE 3 | GAS | 439559.7067 | 6988774.057 | 132.82 | 18.8  | 151.62 | 28/07/1996 |
| CUTTAPIRRIE 4 | GAS | 444043.3163 | 6987833.63  | 105.53 | 18.8  | 124.33 | 14/08/1997 |
| CUTTAPIRRIE 5 | GAS | 441909.8315 | 6989942.486 | 149    | 18.8  | 167.8  | 22/10/1997 |
| CUTTAPIRRIE 6 | GAS | 432653.2787 | 6986128.607 | 114.19 | 16.3  | 130.49 | 26/02/2000 |
| CUTTAPIRRIE 7 | GAS | 436777.8599 | 6986198.415 | 110.09 | 16.3  | 126.39 | 21/04/2000 |
| DARMODY 1     | GAS | 468367.5852 | 6943532.81  | 189.18 | 20.1  | 209.28 | 20/05/1996 |
| DELLA 10      | GAS | 463900.7533 | 6891397.09  | 159.23 | 13.5  | 172.73 | 28/07/1980 |
| DELLA 11      | GAS | 465728.2109 | 6892951.823 | 183.95 | 13.5  | 197.45 | 23/08/1980 |
| DELLA 12      | GAS | 462354.1647 | 6889319.191 | 173.73 | 13.5  | 187.23 | 21/02/1981 |
| DELLA 13      | GAS | 466148.9709 | 6891432.363 | 174.26 | 13.5  | 187.76 | 16/03/1981 |
| DELLA 14      | GAS | 462865.4901 | 6892345.953 | 168.84 | 13.5  | 182.34 | 12/04/1981 |
| DELLA 15      | GAS | 468066.9411 | 6892239.568 | 181.38 | 13.5  | 194.88 | 5/05/1981  |
| DELLA 16      | GAS | 464425.34   | 6890133.345 | 170.59 | 13.5  | 184.09 | 28/05/1981 |
| DELLA 18      | GAS | 462818.4711 | 6890723.889 | 164.74 | 17    | 181.74 | 26/07/1997 |
| DELLA 18R     | GAS | 462818.4711 | 6890723.889 | 164.74 | 20    | 184.74 | 20/05/1998 |
| DELLA 19      | GAS | 466233.9278 | 6892340.989 | 172.82 | 16.3  | 189.12 | 27/12/1999 |
| DELLA 20      | GAS | 463469.588  | 6890988.445 | 182.06 | 18.8  | 200.86 | 13/05/2000 |
| DELLA 21      | GAS | 462859.1626 | 6890968.284 | 168.21 | 18.8  | 187.01 | 7/06/2000  |
| DELLA 22      | GAS | 466560.5448 | 6891683.66  | 205.25 | 18.8  | 224.05 | 27/05/2000 |
| DELLA 23      | GAS | 467270.324  | 6891022.504 | 174.7  | 15.6  | 190.3  | 1/03/2003  |
| DELLA 24      | GAS | 465620.2688 | 6892224.805 | 184.51 | 15.6  | 200.11 | 16/03/2003 |
| DELLA 24DW1   | GAS | 465620.2688 | 6892224.805 | 184.51 | 15.6  | 200.11 | 13/11/2004 |
| DELLA 25      | GAS | 462717.3183 | 6889427.565 | 157.04 | 13.29 | 170.33 | 20/05/2006 |
| DELLA 7       | GAS | 461113.8133 | 6890947.664 | 171.64 | 13.5  | 185.14 | 29/02/1980 |
| DELLA 8       | GAS | 466922.6964 | 6892264.151 | 185.83 | 13.5  | 199.33 | 24/04/1980 |
| DELLA 9       | GAS | 463703.0919 | 6888753.741 | 164.58 | 16.2  | 180.78 | 25/03/1980 |
| DEPARANIE 2   | OG  | 428609.9371 | 6940238.938 | 137.83 | 16.8  | 154.63 | 10/07/2008 |
| DERAMOOKOO 1  | OIL | 455902.9909 | 6995046.587 | 110.88 | 14.5  | 125.38 | 25/10/1989 |
| DILCHEE 2     | GAS | 491682.9063 | 6878657.767 | 252    | 20    | 272    | 29/05/1990 |
| DILCHEE 3     | GAS | 491456.822  | 6878120.33  | 240.86 | 16.3  | 257.16 | 23/02/1997 |
| DIPTERA 1     | OIL | 436023.8337 | 6842100.289 | 158.81 | 13.4  | 172.21 | 8/10/2006  |
| DULLINGARI 16 | GAS | 486565.5226 | 6887454.202 | 271.44 | 13.5  | 284.94 | 4/10/1981  |
| DULLINGARI 17 | GAS | 490283.1369 | 6886752.156 | 289.52 | 13.5  | 303.02 | 1/12/1981  |



| DULLINGARI 18             | GAS   | 488858.8167                | 6886711.917                | 299.14          | 13.5     | 312.64                 | 22/02/1982                    |
|---------------------------|-------|----------------------------|----------------------------|-----------------|----------|------------------------|-------------------------------|
| DULLINGARI 19             | GAS   | 489751.4529                | 6888672.483                | 287.15          | 20       | 307.15                 | 6/04/1982                     |
| DULLINGARI 22             | GAS   | 487582.0047                | 6888069.787                | 279.01          | 13.5     | 292.51                 | 9/04/1982                     |
| DULLINGARI 23             | GAS   | 487783.8325                | 6886800.705                | 293.2           | 20       | 313.2                  | 25/05/1982                    |
| DULLINGARI 24             | GAS   | 489376.5036                | 6890654.846                | 285.45          | 22       | 307.45                 | 1/06/1982                     |
| DULLINGARI 25             | GAS   | 487072.2503                | 6889328.453                | 268.59          | 20       | 288.59                 | 26/06/1982                    |
| DULLINGARI                | GAS   |                            |                            |                 |          |                        |                               |
| 36DW1<br>DULLINGARI 43    | OIL   | 489587.3358<br>488169.5308 | 6887787.783<br>6887590.385 | 292.4<br>293.63 | <u> </u> | <u>311.5</u><br>310.13 | <u>3/12/2009</u><br>9/08/1987 |
|                           | GAS   |                            |                            |                 |          |                        |                               |
| DULLINGARI 44             | GAS   | 488292.033                 | 6890343.545                | 274.22          | 20       | 294.22                 | 3/01/1988                     |
| DULLINGARI 45             | GAS   | 486153.843                 | 6886641.288                | 272.12          | 16.2     | 288.32                 | 13/06/1989                    |
| DULLINGARI 46             |       | 485003.0513                | 6891020.373                | 233.18          | 20       | 253.18                 | 24/04/1990                    |
| DULLINGARI 47             | OIL   | 489228.6759                | 6890657.15                 | 281.62          | 17       | 298.62                 | 21/07/1991                    |
| DULLINGARI 48             | OIL   | 488899.799                 | 6886988.9                  | 302.03          | 17       | 319.03                 | 25/09/1996                    |
| DULLINGARI 49             | GAS   | 489062.8224                | 6892646.665                | 270.04          | 17       | 287.04                 | 24/10/1997                    |
| DULLINGARI 50DW           | OIL   | 488077.2502                | 6886877.217                | 303.22          | 19.3     | 322.52                 | 26/04/1998                    |
| DULLINGARI 51             | GAS   | 488458.9058                | 6892381.451                | 266.34          | 26.2     | 292.54                 | 22/04/1999                    |
| DULLINGARI 52             | GAS   | 490083.6018                | 6891258.081                | 271.75          | 18.8     | 290.55                 | 21/05/2001                    |
| DULLINGARI 53             | GAS   | 489443.8553                | 6889021.606                | 281.79          | 18.8     | 300.59                 | 9/06/2001                     |
| DULLINGARI 54             | GAS   | 486946.2312                | 6888352.367                | 264.42          | 18.8     | 283.22                 | 1/07/2001                     |
| DULLINGARI 55             | GAS   | 486217.8271                | 6888202.33                 | 254.37          | 19.3     | 273.67                 | 27/04/2002                    |
| DULLINGARI 57             | GAS   | 491138.6539                | 6893265.188                | 273.53          | 16.6     | 290.13                 | 16/10/2003                    |
| DULLINGARI 58             | OIL   | 488199.9991                | 6887265.283                | 304.82          | 13.4     | 318.22                 | 10/02/2007                    |
| DULLINGARI 59             | OIL   | 485484.1559                | 6893210.365                | 244.65          | 13.4     | 258.05                 | 28/02/2007                    |
| DULLINGARI 60             | OIL   | 486509.0109                | 6894106.752                | 250.55          | 13.3     | 263.85                 | 24/03/2007                    |
| DULLINGARI<br>NORTH 10    | GAS   | 487622.5126                | 6896465.058                | 272.45          | 18.8     | 291.25                 | 8/02/2001                     |
| DULLINGARI                | GAS   |                            | 6895364.669                |                 |          | 262.77                 |                               |
| NORTH 11<br>DULLINGARI    | 0.1.0 | 485973.1457                | 0090304.009                | 243.97          | 18.8     | 202.11                 | 2/03/2001                     |
| NORTH 12                  | GAS   | 486455.1888                | 6893655.608                | 251.18          | 18.8     | 269.98                 | 24/03/2001                    |
| DULLINGARI<br>NORTH 13    | GAS   | 488328.7717                | 6894464.038                | 266.8           | 18.8     | 285.6                  | 27/04/2001                    |
| DULLINGARI<br>NORTH 13ST1 | GAS   | 488328.7717                | 6894464.038                | 266.8           | 18.8     | 285.6                  | 27/04/2001                    |
| DULLINGARI                | GAS   | 400320.7717                | 0094404.030                | 200.0           | 10.0     | 205.0                  | 27/04/2001                    |
| NORTH 14<br>DULLINGARI    | GAS   | 488272.7206                | 6895914.601                | 265.2           | 19.3     | 284.5                  | 4/02/2002                     |
| NORTH 15                  | GAS   | 488901.5213                | 6897192.451                | 277.49          | 19.3     | 296.79                 | 23/02/2002                    |
| DULLINGARI<br>NORTH 16    | GAS   | 487121.8834                | 6896956.488                | 270.97          | 19.3     | 290.27                 | 21/03/2002                    |
| DULLINGARI                | GAS   |                            |                            |                 |          |                        |                               |
| NORTH 17<br>DULLINGARI    |       | 485267.0525                | 6893994.51                 | 255.77          | 19.3     | 275.07                 | 7/04/2002                     |
| NORTH 18                  | GAS   | 491543.3797                | 6899444.023                | 288.1           | 16.6     | 304.7                  | 25/08/2002                    |
| DULLINGARI<br>NORTH 19    | GAS   | 488725.8067                | 6898023.107                | 293.6           | 16.6     | 310.2                  | 18/09/2003                    |
| DULLINGARI<br>NORTH 2     | GAS   | 485829.0586                |                            | 269.86          |          |                        | 7/06/1982                     |
|                           |       |                            |                            |                 |          |                        |                               |



| DULLINGARI<br>NORTH 3 | OG  | 487394.2046 | 6895648.841 | 275.01 | 13.5  | 288.51 | 9/07/1982  |
|-----------------------|-----|-------------|-------------|--------|-------|--------|------------|
| DULLINGARI<br>NORTH 5 | GAS | 488058.6456 | 6896950.812 | 271.88 | 20    | 291.88 | 16/06/1991 |
| DULLINGARI<br>NORTH 6 | OG  | 485033.6567 | 6892857.317 | 230.42 | 20.3  | 250.72 | 12/10/1993 |
| DULLINGARI<br>NORTH 7 | GAS | 484803.0339 | 6891815.168 | 242.49 | 17    | 259.49 | 19/09/1997 |
| DULLINGARI<br>NORTH 8 | GAS | 486013.7362 | 6893004.951 | 256.26 | 18.78 | 275.04 | 17/09/1997 |
| DULLINGARI<br>NORTH 9 | GAS | 486801.0699 | 6896372.569 | 264.28 | 17    | 281.28 | 30/11/1997 |
| FANGORN 1             | OIL | 431450.3291 | 6848619.809 | 109.59 | 17    | 126.59 | 8/06/1997  |
| FROSTILLICUS 1        | OIL | 440090.8216 | 6850085.668 | 31.14  | 4.05  | 35.19  | 3/06/2006  |
| FULCIA 1              | OIL | 460806.8504 | 7000480.596 | 123.47 | 18.78 | 142.25 | 6/02/1996  |
| GAHNIA 1              | GAS | 493274.0907 | 6877264.29  | 259.18 | 20    | 279.18 | 9/08/1995  |
| GAMBERO 1             | OIL | 450356.1185 | 6850168.92  | 149.67 | 15.7  | 165.37 | 8/07/2007  |
| GOLAH SING 1          | OIL | 498082.203  | 6888794.706 | 266.52 | 15.7  | 282.22 | 5/06/2007  |
| GOYDER 2              | GAS | 444760.9628 | 6859543.633 | 109.84 | 17    | 126.84 | 13/05/1997 |
| GOYDER 3              | GAS | 443883.5787 | 6860646.145 | 109.63 | 16    | 125.63 | 29/03/1998 |
| GOYDER 4              | GAS | 444882.1164 | 6860391.164 | 123.43 | 15.6  | 139.03 | 16/07/2003 |
| GOYDER 5              | GAS | 445149.399  | 6859906.719 | 109.34 | 16.31 | 125.65 | 2/05/2007  |
| <b>GRANCHIO 1</b>     | OIL | 446329.2755 | 6849742.541 | 129.52 | 15.7  | 145.22 | 31/08/2007 |
| <b>GRANCHIO 2</b>     | OIL | 446810.0864 | 6849791.145 | 136.64 | 12.9  | 149.54 | 19/04/2008 |
| GRANCHIO 3            | OIL | 446906.1191 | 6849421.99  | 155.28 | 13.2  | 168.48 | 26/06/2008 |
| GRYSTES 1             | GAS | 468379.6861 | 6858983.215 | 152.38 | 20.1  | 172.48 | 22/05/1991 |
| GUDI 1                | GAS | 429956.1183 | 6987573.509 | 150.17 | 18.8  | 168.97 | 28/10/1996 |
| GUDNUKI 1             | GAS | 486778.716  | 6897838.779 | 268.11 | 19.3  | 287.41 | 3/08/1997  |
| GUDNUKI 2             | GAS | 478662.4343 | 6893385.799 | 232.4  | 18.8  | 251.2  | 2/04/1998  |
| GUDNUKI 3             | GAS | 491856.1355 | 6894127.208 | 264.9  | 19.3  | 284.2  | 30/07/1998 |
| HALORAGIS 1           | GAS | 433208.219  | 6941364.281 | 135.01 | 20.3  | 155.31 | 25/08/1991 |
| HAMLYN 1              | OIL | 447760.4303 | 7001918.753 | 103.74 | 20    | 123.74 | 1/06/1997  |
| HAWKINS 1             | OIL | 441232.1701 | 6844038.67  | 128.54 | 15    | 143.54 | 11/09/2007 |
| HOBBES 1              | OIL | 448349.7595 | 6851561.964 | 132.67 | 13    | 145.67 | 17/05/2008 |
| HOBBES 2              | OIL | 447139      | 6851381.212 | 131.23 | 23.16 | 154.39 | 4/11/2009  |
| HOEK 1ST1             | OIL | 445870.1925 | 6849099.971 | 42.54  | 4.05  | 46.59  | 13/07/2006 |
| HOEK 2                | OIL | 445451.0093 | 6848961.099 | 41.63  | 4.05  | 45.68  | 15/06/2007 |
| HOEK 3                | OIL | 446192.1611 | 6849030.101 | 43.94  | 3.99  | 47.93  | 25/05/2008 |
| IKARUMBA 1            | OIL | 435622.8805 | 6851200.433 | 107.23 | 15.75 | 122.98 | 5/12/2007  |
| ITCHY 1               | OIL | 442481.5777 | 6845806.965 | 124.29 | 13.4  | 137.69 | 6/01/2007  |
| JAMES 1               | OIL | 484778.8471 | 7034342.148 | 217.65 | 14.5  | 232.15 | 16/09/1988 |
| JAMES 2               | OIL | 484503.7223 | 7033647.59  | 231.93 | 15.75 | 247.68 | 22/08/2008 |
| JAMES 3               | OIL | 484517.1605 | 7034196.184 | 224.4  | 15.4  | 239.8  |            |
| JENA 10               | OIL | 430659.252  | 6847056.442 | 128.18 | 17    | 145.18 | 11/07/1991 |
| JENA 11               | OIL | 431958.4366 | 6845933.631 | 99.84  | 17    | 116.84 |            |



| JENA 12         | OIL | 432706.0909 | 6846908.692 | 94.84  | 17    | 111.84 | 23/08/1992 |
|-----------------|-----|-------------|-------------|--------|-------|--------|------------|
| JENA 13         | OIL | 435101.4705 | 6845981.775 | 98.78  | 17    | 115.78 | 26/07/1996 |
| JENA 14         | OIL | 429917.9929 | 6846003.398 | 101.65 | 16.3  | 117.95 | 5/06/2002  |
| JENA 15         | OIL | 430198.3734 | 6846216.791 | 99.39  | 13.2  | 112.59 | 21/06/2003 |
| JENA 16         | OIL | 430972.7305 | 6845308.331 | 97.96  | 13.2  | 111.16 | 2/07/2003  |
| JENA 17         | OIL | 430885.2252 | 6844696.909 | 97.42  | 13.2  | 110.62 | 16/09/2003 |
| JENA 18         | OIL | 432773.3146 | 6846483.306 | 104.61 | 13.2  | 117.81 | 25/09/2003 |
| JENA 19         | OIL | 432999.5572 | 6846006.977 | 95.64  | 13.2  | 108.84 | 4/10/2003  |
| JENA 2          | OIL | 432661.1248 | 6845653.058 | 104.54 | 17    | 121.54 | 16/09/1988 |
| JENA 20         | OIL | 430893.6949 | 6845020.14  | 97.12  | 13.4  | 110.52 | 31/10/2005 |
| JENA 21         | OIL | 433026.9341 | 6844672.983 | 97.17  | 15.5  | 112.67 | 15/11/2007 |
| JENA 22         | OIL | 432657.1041 | 6845227.927 | 97.18  | 15.52 | 112.7  | 13/08/2007 |
| JENA 25         | OIL | 429615.5943 | 6845334.399 | 139.63 | 15.7  | 155.33 | 25/11/2007 |
| JENA 26         | OIL | 432365.5011 | 6847385.466 | 127.03 | 13.4  | 140.43 | 4/12/2006  |
| JENA 27         | OIL | 430896.225  | 6847268.232 | 104.63 | 13.4  | 118.03 | 16/11/2006 |
| JENA 28         | OIL | 433354.0553 | 6845464.898 | 98.34  | 15.52 | 113.86 | 3/08/2007  |
| JENA 3          | OIL | 433834.1653 | 6844766.304 | 113.86 | 17    | 130.86 | 19/08/1989 |
| JENA 4          | OIL | 431724.5163 | 6846141.005 | 103.86 | 17    | 120.86 | 27/08/1989 |
| JENA 5          | OIL | 432068.8501 | 6845590.816 | 102.02 | 17    | 119.02 | 17/09/1989 |
| JENA 6          | OIL | 432337.2905 | 6846607.659 | 108.64 | 17    | 125.64 | 5/01/1990  |
| JENA 7          | OIL | 431618.6913 | 6845642.713 | 97.46  | 17    | 114.46 | 29/03/1990 |
| JENA 8          | OIL | 432300.3599 | 6846223.111 | 96.24  | 17    | 113.24 | 7/09/1990  |
| JENA 9          | OIL | 431517.0604 | 6846474.277 | 112.13 | 17    | 129.13 | 15/09/1990 |
| KAPINKA 1       | GAS | 473030.2538 | 6857278.619 | 142.63 | 20.1  | 162.73 | 27/03/1991 |
| KATINGAWA 1     | GAS | 479619.9537 | 6882282.304 | 229.79 | 20    | 249.79 | 13/07/1992 |
| KEETO 2         | GAS | 473262.6994 | 6853300.808 | 174.19 | 20.1  | 194.29 | 12/04/1991 |
| KELBROOK 1      | GAS | 485332.3202 | 6867615.41  | 227.59 | 19.3  | 246.89 | 28/12/1998 |
| KELEARY 1       | OIL | 468710.9915 | 7005447.72  | 147.82 | 20    | 167.82 | 21/10/1991 |
| KELEARY 2       | OIL | 468391.607  | 7006471.464 | 143.43 | 20.3  | 163.73 | 23/03/1994 |
| KELEARY 3       | OIL | 468620.6187 | 7006096.67  | 130.24 | 20.1  | 150.34 | 24/04/1995 |
| KERINNA SOUTH 1 | OIL | 452945.1162 | 6860536.497 | 133.1  | 13.39 | 146.49 | 3/10/2005  |
| KERNA 5         | GAS | 498206.3947 | 6875383.147 | 242.76 | 20    | 262.76 | 16/09/1990 |
| KERNA 6         | GAS | 497679.4455 | 6876245.028 | 267.98 | 16.3  | 284.28 | 3/01/1997  |
| KERNA 7         | GAS | 497928.5978 | 6877555.367 | 269.35 | 26.2  | 295.55 | 31/03/1999 |
| KERNA NORTH 1   | GAS | 496518.0258 | 6879810.602 | 285.63 | 19.3  | 304.93 | 5/07/1998  |
| KIDMAN 10       | GAS | 477598.0654 | 6877382.778 | 212.27 | 17    | 229.27 | 23/12/1996 |
| KIDMAN 6        | GAS | 483693.1827 | 6876905.608 | 251.31 | 17.8  | 269.11 | 3/01/1989  |
| KIDMAN 7        | GAS | 479269.4389 | 6875698.858 | 195.39 | 17    | 212.39 | 7/05/1990  |
| KIDMAN 8        | GAS | 481006.3736 | 6873816.733 | 213.07 | 20    | 233.07 | 3/04/1991  |
| KIDMAN 9        | GAS | 482128.3214 | 6877104.643 | 236.68 | 17.4  | 254.08 | 27/02/1997 |
| KIDMAN NORTH 3  | GAS | 480899.5078 | 6880380.136 | 247.21 | 19.3  | 266.51 | 23/04/2004 |



| KIRBY 2         GAS         485467.8573         6941921.706         251.96         20.1         272.06         30/05/1992           KORMA 1         GAS         460523.9973         6953512.236         180.07         19.3         199.37         10/12/2003           KULTARR 1         GAS         499705.5395         6854625.091         301.61         16.3         317.91         11/11/1996           KYLE 1         OIL         443222.7095         6855350.786         32.4         7.1         39.5         6/12/2009           LAMDINA 2         GAS         440420.531         6974966.443         174.26         20         194.26         8/08/1997           LAMDINA 2A         GAS         44031.1637         6975015.241         170.91         18.8         189.71         16/09/1997           LEPENA 2         GAS         469364.4192         6880104.224         205.25         20         225.25         26/08/1994           LIMESTONE         OIL         441530.7182         6844602.751         142.5         16.3         158.8         17/05/2002           LIMESTONE         OIL         438796.2994         6845607.587         123.21         13.29         136.5         28/09/2006           CREEK 10         OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KORMA 1         GAS         460523.9973         6953512.236         180.07         19.3         199.37         10/12/2003           KULTARR 1         GAS         499705.5395         6854625.091         301.61         16.3         317.91         11/11/1966           KYLE 1         OIL         443222.7095         6855350.786         32.4         7.1         39.5         6/12/2009           LAMDINA 2         GAS         440420.531         6974966.443         174.26         20         194.26         8/08/1997           LAMDINA 2A         GAS         440341.1637         6975015.241         170.91         18.8         189.71         16/09/1997           LEPENA 2         GAS         469364.4192         6880104.224         205.25         20         225.25         26/08/1994           LIMESTONE         OIL         441530.7182         6844602.751         142.5         16.3         158.8         17/05/2002           LIMESTONE         OIL         438796.2994         684507.587         123.21         13.29         136.5         28/09/2006           LIMESTONE         OIL         440910.0274         6845466.13         120.63         16.5         137.13         29/07/1987           LIMESTONE         OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| INDEF         Interview         Interview <thinterview< th=""> <thinterview< th=""> <thinter< td=""></thinter<></thinterview<></thinterview<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| International         Interna         International         Internationali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LAMDIN 2         CAS         HOL2001 00700000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lindon A 2A         Image: Constraint of the second se |
| LINESTONE<br>CREEK 10         OIL         441530.7132         6804602.751         142.5         16.3         158.8         17/05/2002           LIMESTONE<br>CREEK 11         OIL         438796.2994         6846507.587         123.21         13.29         136.5         28/09/2006           LIMESTONE<br>CREEK 7         OIL         438796.2994         6846507.587         123.21         13.29         136.5         28/09/2006           LIMESTONE<br>CREEK 7         OIL         440910.0274         6845466.13         120.63         16.5         137.13         29/07/1987           LIMESTONE<br>CREEK 8         OIL         441094.2436         6844831.566         140.58         17.8         158.38         4/03/1988           LIMESTONE<br>CREEK 9         OIL         439374.4117         6845175.455         120.78         17.8         138.58         18/03/1988           MARABOOKA 10         GAS         461525.4082         6882145.525         182.18         13.4         195.58         19/03/2006           MARABOOKA 11         GAS         462971.9158         6881770.023         164.41         13.4         197.81         26/03/2006           MARABOOKA 12         GAS         463645.4974         6881268.048         177.56         13.4         190.96         3/04/200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CREEK 10         OIL         441530.7182         6844602.751         142.5         16.3         158.8         17/05/2002           LIMESTONE<br>CREEK 11         OIL         438796.2994         6846507.587         123.21         13.29         136.5         28/09/2006           LIMESTONE<br>CREEK 7         OIL         440910.0274         6845466.13         120.63         16.5         137.13         29/07/1987           LIMESTONE<br>CREEK 8         OIL         441094.2436         6844831.566         140.58         17.8         158.38         4/03/1988           LIMESTONE<br>CREEK 9         OIL         4339374.4117         6845175.455         120.78         17.8         138.58         18/03/1988           MARABOOKA 10         GAS         461525.4082         6882145.525         182.18         13.4         195.58         19/03/2006           MARABOOKA 11         GAS         462971.9158         6881770.023         164.41         13.4         190.96         3/04/2006           MARABOOKA 12         GAS         463645.4974         6881268.048         177.56         13.4         190.96         3/04/2006           MARABOOKA 13         GAS         461253.4134         6883203.152         176.02         16.6         192.62         15/08/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CREEK 11         OIL         438796.2994         6846507.587         123.21         13.29         136.5         28/09/2006           LIMESTONE<br>CREEK 7         OIL         440910.0274         6845466.13         120.63         16.5         137.13         29/07/1987           LIMESTONE<br>CREEK 8         OIL         441094.2436         6844831.566         140.58         17.8         158.38         4/03/1988           LIMESTONE<br>CREEK 9         OIL         439374.4117         6845175.455         120.78         17.8         138.58         18/03/1988           MARABOOKA 10         GAS         461525.4082         6882145.525         182.18         13.4         195.58         19/03/2006           MARABOOKA 11         GAS         462971.9158         6881770.023         164.41         13.4         177.81         26/03/2006           MARABOOKA 12         GAS         463645.4974         6881268.048         177.56         13.4         190.96         3/04/2006           MARABOOKA 13         GAS         466801.7172         6880138.275         191.84         16.8         208.64         8/08/2008           MARABOOKA 14         GAS         461253.4134         6883203.152         176.02         16.6         192.62         15/08/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CREEK 7OIL440910.02746845466.13120.6316.5137.1329/07/1987LIMESTONE<br>CREEK 8OIL441094.24366844831.566140.5817.8158.384/03/1988LIMESTONE<br>CREEK 9OIL439374.41176845175.455120.7817.8138.5818/03/1988MARABOOKA 10GAS461525.40826882145.525182.1813.4195.5819/03/2006MARABOOKA 11GAS462971.91586881770.023164.4113.4177.8126/03/2006MARABOOKA 12GAS463645.49746881268.048177.5613.4190.963/04/2006MARABOOKA 13GAS465801.71726880138.275191.8416.8208.648/08/2008MARABOOKA 14GAS461253.41346883203.152176.0216.6192.6215/08/2008MARABOOKA 15GAS464133.21176880383.283171.8816.8188.683/09/2008MARABOOKA 3GAS462034.58646882346.786179.3915.5194.8914/07/1984MARABOOKA 4GAS461873.52176880627.286169.7115.5185.2110/02/1986MARABOOKA 5GAS460457.39826882404.909187.5817204.587/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CREEK 8OIL441094.24366844831.566140.5817.8158.384/03/1988LIMESTONE<br>CREEK 9OIL439374.41176845175.455120.7817.8138.5818/03/1988MARABOOKA 10GAS461525.40826882145.525182.1813.4195.5819/03/2006MARABOOKA 11GAS462971.91586881770.023164.4113.4177.8126/03/2006MARABOOKA 12GAS463645.49746881268.048177.5613.4190.963/04/2006MARABOOKA 13GAS465801.71726880138.275191.8416.8208.648/08/2008MARABOOKA 14GAS461253.41346883203.152176.0216.6192.6215/08/2008MARABOOKA 15GAS464133.21176880383.283171.8816.8188.683/09/2008MARABOOKA 3GAS462034.58646882346.786179.3915.5194.8914/07/1984MARABOOKA 4GAS461873.52176880627.286169.7115.5185.2110/02/1986MARABOOKA 5GAS460457.39826882404.909187.5817204.587/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CREEK 9OIL439374.41176845175.455120.7817.8138.5818/03/1988MARABOOKA 10GAS461525.40826882145.525182.1813.4195.5819/03/2006MARABOOKA 11GAS462971.91586881770.023164.4113.4177.8126/03/2006MARABOOKA 12GAS463645.49746881268.048177.5613.4190.963/04/2006MARABOOKA 13GAS465801.71726880138.275191.8416.8208.648/08/2008MARABOOKA 14GAS461253.41346883203.152176.0216.6192.6215/08/2008MARABOOKA 15GAS464133.21176880383.283171.8816.8188.683/09/2008MARABOOKA 3GAS462034.58646882346.786179.3915.5194.8914/07/1984MARABOOKA 4GAS461873.52176880627.286169.7115.5185.2110/02/1986MARABOOKA 5GAS460457.39826882404.909187.5817204.587/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MARABOOKA 10         46132.4002         0002143.323         102.10         13.4         130.30         13/03/2000           MARABOOKA 11         GAS         462971.9158         6881770.023         164.41         13.4         177.81         26/03/2006           MARABOOKA 12         GAS         463645.4974         6881268.048         177.56         13.4         190.96         3/04/2006           MARABOOKA 13         GAS         463645.4974         6880138.275         191.84         16.8         208.64         8/08/2008           MARABOOKA 14         GAS         461253.4134         6883203.152         176.02         16.6         192.62         15/08/2008           MARABOOKA 15         GAS         464133.2117         6880383.283         171.88         16.8         188.68         3/09/2008           MARABOOKA 3         GAS         462034.5864         6882346.786         179.39         15.5         194.89         14/07/1984           MARABOOKA 4         GAS         461873.5217         6880627.286         169.71         15.5         185.21         10/02/1986           MARABOOKA 5         GAS         460457.3982         6882404.909         187.58         17         204.58         7/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MARABOOKA 11         GAS         462371.5160         0001770.025         104.41         13.4         1171.51         20/03/2000           MARABOOKA 12         GAS         463645.4974         6881268.048         177.56         13.4         190.96         3/04/2006           MARABOOKA 13         GAS         465801.7172         6880138.275         191.84         16.8         208.64         8/08/2008           MARABOOKA 14         GAS         461253.4134         6883203.152         176.02         16.6         192.62         15/08/2008           MARABOOKA 15         GAS         464133.2117         6880383.283         171.88         16.8         188.68         3/09/2008           MARABOOKA 3         GAS         462034.5864         6882346.786         179.39         15.5         194.89         14/07/1984           MARABOOKA 4         GAS         461873.5217         6880627.286         169.71         15.5         185.21         10/02/1986           MARABOOKA 5         GAS         460457.3982         6882404.909         187.58         17         204.58         7/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MARABOOKA 12         403043.4374         0001200.048         177.36         13.4         190.30         3/04/2006           MARABOOKA 13         GAS         465801.7172         6880138.275         191.84         16.8         208.64         8/08/2008           MARABOOKA 14         GAS         461253.4134         6883203.152         176.02         16.6         192.62         15/08/2008           MARABOOKA 15         GAS         464133.2117         6880383.283         171.88         16.8         188.68         3/09/2008           MARABOOKA 3         GAS         462034.5864         6882346.786         179.39         15.5         194.89         14/07/1984           MARABOOKA 4         GAS         461873.5217         6880627.286         169.71         15.5         185.21         10/02/1986           MARABOOKA 5         GAS         460457.3982         6882404.909         187.58         17         204.58         7/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MARABOOKA 15         GAS         463501.1172         0000130.213         191.04         10.5         200.04         6/00/2000           MARABOOKA 14         GAS         461253.4134         6883203.152         176.02         16.6         192.62         15/08/2008           MARABOOKA 15         GAS         464133.2117         6880383.283         171.88         16.8         188.68         3/09/2008           MARABOOKA 3         GAS         462034.5864         6882346.786         179.39         15.5         194.89         14/07/1984           MARABOOKA 4         GAS         461873.5217         6880627.286         169.71         15.5         185.21         10/02/1986           MARABOOKA 5         GAS         460457.3982         6882404.909         187.58         17         204.58         7/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MARABOOKA 14         GAS         461233.4134         0000203.132         170.02         10.0         192.02         10/00/2000           MARABOOKA 15         GAS         464133.2117         6880383.283         171.88         16.8         188.68         3/09/2008           MARABOOKA 3         GAS         462034.5864         6882346.786         179.39         15.5         194.89         14/07/1984           MARABOOKA 4         GAS         461873.5217         6880627.286         169.71         15.5         185.21         10/02/1986           MARABOOKA 5         GAS         460457.3982         6882404.909         187.58         17         204.58         7/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MARABOOKA 3         GAS         462135.2117         00000003.200         111.00         105.0         106.00         3/03/2000           MARABOOKA 3         GAS         462034.5864         6882346.786         179.39         15.5         194.89         14/07/1984           MARABOOKA 4         GAS         461873.5217         6880627.286         169.71         15.5         185.21         10/02/1986           MARABOOKA 5         GAS         460457.3982         6882404.909         187.58         17         204.58         7/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MARABOOKA 3         GAS         462034.3004         0002340.700         179.33         13.3         194.03         14/07/1304           MARABOOKA 4         GAS         461873.5217         6880627.286         169.71         15.5         185.21         10/02/1986           MARABOOKA 5         GAS         460457.3982         6882404.909         187.58         17         204.58         7/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MARABOOKA 5         GAS         460457.3982         6882404.909         187.58         17         204.58         7/04/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MARABOOKA 6 GAS 461456.0994 6881815.396 181.67 16.6 198.27 24/10/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MARABOOKA 7 GAS 462672.5022 6882223.953 179.04 16.6 195.64 10/10/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MARABOOKA 8 GAS 462379.4048 6881510.6 163 16.6 179.6 16/07/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MARABOOKA 9 GAS 462292.7936 6882949.81 164.67 13.4 178.07 12/03/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MARABOOKA<br>EAST 1         GAS         464651.9428         6880925.555         170.54         16.6         187.14         30/03/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MARSILEA 1 GAS 493884.6545 6863562.03 275.51 17.8 293.31 11/05/1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MATARANKA 1 GAS 475828.0752 6850251.162 182.16 20 202.16 5/10/1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MCKINLAY 5 OIL 449494.9801 6850665.016 116.09 15.7 131.79 15/08/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MCKINLAY 6 OIL 449789.0071 6849577.125 119.93 15.7 135.63 23/08/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MCKINLAY 7 OIL 450036.5135 6850511.229 138.99 12.95 151.94 10/04/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MCKINLAY 8 OIL 450697.8769 6851216.63 148.42 12.9 161.32 1/04/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MCKINLAY 9 OIL 448952.1524 6848858.056 143.99 13 156.99 26/04/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MERINDAL 1 GAS 453777.2623 6950936.759 160.83 16.3 177.13 23/01/1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MERINDAL 2 GAS 453035.6596 6949249.974 147.29 20 167.29 31/08/1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MERUPA 1 OG 446269.6078 6949923.502 130.72 20 150.72 8/11/1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MERUPA 2 GAS 445072.3224 6949026.45 184.94 20.3 205.24 11/08/1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| METTIKA 1 GAS 495992.1442 6866116.428 275.39 20 295.39 3/02/1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| METTIKA 2              | GAS | 496397.9579 | 6864797.937 | 244.9  | 17.8  | 262.7  | 4/07/1989  |
|------------------------|-----|-------------|-------------|--------|-------|--------|------------|
| METTIKA 3              | GAS | 496224.8714 | 6867876.694 | 257.9  | 17.8  | 275.7  | 5/08/1989  |
| METTIKA 4              | GAS | 495755.4789 | 6867606.674 | 255.06 | 17    | 272.06 | 22/03/1992 |
| METTIKA 5              | GAS | 496601.3785 | 6865302.714 | 248.28 | 20.1  | 268.38 | 23/01/1993 |
| METTIKA 6              | GAS | 495586.2221 | 6865644.026 | 256.38 | 19.1  | 275.48 | 8/01/2010  |
| MILLUNA 1              | GAS | 447263.474  | 6864016.097 | 113.46 | 17    | 130.46 | 19/08/1997 |
| MILLUNA 2              | GAS | 446816.2339 | 6864654.436 | 113.81 | 17.3  | 131.11 | 28/09/2000 |
| MILLUNA 3              | GAS | 448002.0101 | 6865120.686 | 116.75 | 16.3  | 133.05 | 14/12/2000 |
| MILLUNA 4              | GAS | 446337.0036 | 6864490.746 | 112.47 | 19.3  | 131.77 | 15/01/2005 |
| MILLUNA<br>NORTHEAST 1 | GAS | 449823.4337 | 6866560.447 | 136.05 | 16.3  | 152.35 | 5/04/2001  |
| MOOLION EAST 1         | GAS | 428856.5851 | 6970653.121 | 166.78 | 26.2  | 192.98 | 8/02/1999  |
| MOOMBA 120DW           | GAS | 432629.5053 | 6891843.746 | 125.26 | 19.3  | 144.56 | 11/10/2000 |
| MOOMBA 133             | GAS | 436926.4789 | 6895210.974 | 128.36 | 19.3  | 147.66 | 29/03/2001 |
| MOOMBA 134             | GAS | 430525.5281 | 6898755.74  | 147.52 | 19.3  | 166.82 | 22/12/2000 |
| MOOMBA 139             | GAS | 433606.3676 | 6890402.81  | 116.97 | 18.8  | 135.77 | 21/07/2001 |
| MOOMBA 149             | OG  | 433199.3093 | 6891368.355 | 118.96 | 19.3  | 138.26 | 28/11/2001 |
| MOOMBA 150             | GAS | 432696.4271 | 6890776.491 | 117.59 | 18.8  | 136.39 | 28/05/2002 |
| MOOMBA 151             | GAS | 431037.8854 | 6892492.508 | 132.56 | 19.3  | 151.86 | 12/12/2001 |
| MOOMBA 152             | GAS | 433613.3761 | 6890856.18  | 118.32 | 18.8  | 137.12 | 19/06/2002 |
| MOOMBA 155             | GAS | 431917.285  | 6893287.555 | 131.5  | 19.3  | 150.8  | 27/06/2002 |
| MOOMBA 162             | GAS | 430026.1107 | 6892362.66  | 118.94 | 19.3  | 138.24 | 16/07/2002 |
| MOOMBA 163             | GAS | 431105.3099 | 6891669.765 | 120.1  | 19.3  | 139.4  | 4/08/2002  |
| MOOMBA 164             | GAS | 431592.3442 | 6891162.066 | 118.81 | 19.3  | 138.11 | 22/08/2002 |
| MOOMBA 175             | GAS | 438924.9564 | 6886486.404 | 159.98 | 16.6  | 176.58 | 19/08/2006 |
| MOOMBA 178             | GAS | 437870.8312 | 6887823.884 | 120.28 | 16.31 | 136.59 | 14/06/2007 |
| MOOMBA 179             | GAS | 439232.1558 | 6887113.902 | 136.36 | 16.31 | 152.67 | 12/09/2007 |
| MOOMBA 180             | GAS | 438278.2071 | 6886397.77  | 148.17 | 16.31 | 164.48 | 4/10/2007  |
| MOOMBA 181             | GAS | 438856.715  | 6887730.823 | 119.39 | 16.31 | 135.7  | 24/10/2007 |
| MOOMBA 44              | GAS | 429232.4716 | 6884380.066 | 115.47 | 16.2  | 131.67 | 17/04/1979 |
| MOOMBA 57              | GAS | 429010.3905 | 6880098.602 | 110.46 | 16.2  | 126.66 | 15/06/1988 |
| MOOMBA 61              | GAS | 429665.7289 | 6891463.737 | 115.44 | 20.3  | 135.74 | 24/09/1988 |
| MOOMBA 70              | GAS | 429600.3017 | 6878928.206 | 107.58 | 20    | 127.58 | 27/04/1991 |
| MOOMBA 75              | GAS | 432422.2783 | 6893640.277 | 129.41 | 20    | 149.41 | 27/04/1994 |
| MOOMBA 78              | GAS | 433595.4102 | 6894568.462 | 120.52 | 20    | 140.52 | 9/07/1995  |
| MOOMBA 82              | GAS | 430236.7789 | 6884678.907 | 135.25 | 18.8  | 154.05 | 6/05/1997  |
| MOONA 1                | GAS | 458886.4518 | 6882668.121 | 156.62 | 16.3  | 172.92 | 18/03/2001 |
| MOONDIE 1ST1           | GAS | 458766.6874 | 6985885.038 | 128.25 | 18.8  | 147.05 | 12/10/1996 |
| MOOTANNA 1             | GAS | 445635.5334 | 6911872.843 | 138.09 | 19.3  | 157.39 | 16/06/2001 |
| MUDERA 10              | GAS | 456274.0531 | 6882522.111 | 126.11 | 13.29 | 139.4  | 26/04/2006 |
| MUDERA 11              | GAS | 456832.3022 |             | 124.96 | 13.29 | 138.25 | 3/05/2006  |



| MUDERA 12              | GAS | 457713.2104 | 6882123.29  | 128.89 | 15.6  | 144.49 | 3/04/2008  |
|------------------------|-----|-------------|-------------|--------|-------|--------|------------|
| MUDERA 13              |     | 457073.1041 | 6884883.217 | 126.07 | 15.7  | 141.77 | 10/04/2008 |
| MUDERA 14              |     | 455612.9878 | 6883723.195 | 140.14 | 12.85 | 152.99 | 19/07/2008 |
| MUDERA 15              |     | 456852.8832 | 6882743.348 | 125.55 | 16.8  | 142.35 | 23/07/2008 |
| MUDERA 16              | GAS | 455948.4586 | 6882150.458 | 129.03 | 16.8  | 145.83 | 31/07/2008 |
| MUDERA 4               | GAS | 457633.8586 | 6883597.505 | 126.71 | 20    | 146.71 | 15/03/1989 |
| MUDERA 5               | GAS | 456094.5175 | 6883507.848 | 124.92 | 12.4  | 137.32 | 15/11/1996 |
| MUDERA 6               | GAS | 455993.1429 | 6881719.351 | 130.76 | 17    | 147.76 | 19/04/1997 |
| MUDERA 7               | GAS | 457173.3666 | 6884303.417 | 126.08 | 13.2  | 139.28 | 22/10/2003 |
| MUDERA 8               | GAS | 455743.5208 | 6884683.49  | 130.15 | 13.3  | 143.45 | 10/04/2006 |
| MUDERA 9               | GAS | 455304.8246 | 6883149.968 | 149.34 | 13.3  | 162.64 | 18/04/2006 |
| MUDERA NORTH 1         | OIL | 456399.8445 | 6884949.679 | 125.79 | 15.7  | 141.49 | 23/01/2008 |
| MUDLALEE 3             | GAS | 455496.9851 | 6869412.775 | 155.02 | 20.1  | 175.12 | 5/08/1993  |
| MUDLALEE 4             | OIL | 455080.7195 | 6870224.577 | 162.93 | 13.4  | 176.33 | 13/07/2007 |
| MUDLALEE 5             | OIL | 455401.2952 | 6870374.68  | 211.26 | 12.9  | 224.16 | 8/03/2008  |
| MUDLALEE 6             | OIL | 455516.9386 | 6869687.039 | 158.66 | 13    | 171.66 | 9/02/2008  |
| MUDLALEE WEST          | OIL | 453683.7958 | 6868665.458 | 48     | 4.05  | 52.05  | 29/06/2007 |
| MULGA NORTH<br>EAST 1  | OIL | 456892.1416 | 6831029.001 | 48.99  | 3.93  | 52.92  | 6/05/2008  |
| MUNDI 2                | GAS | 472118.1123 | 6859743.857 | 193.68 | 20.1  | 213.78 | 1/05/1991  |
| MUNDI 3                | GAS | 472330.5336 | 6860736.858 | 163.55 | 20.3  | 183.85 | 24/12/1991 |
| MUNDI 4                | GAS | 472612.7405 | 6858400.222 | 142.84 | 20.1  | 162.94 | 11/04/1992 |
| MUNDI 5                | GAS | 472186.5418 | 6861221.416 | 156.26 | 20.1  | 176.36 | 28/04/1992 |
| MUNDI 6                | GAS | 471754.06   | 6860357.946 | 170.53 | 19.3  | 189.83 | 27/02/2005 |
| MUNDI 7                | GAS | 472204.6367 | 6858779.474 | 149.13 | 19.3  | 168.43 | 7/06/2005  |
| MUNKARIE 7             | GAS | 492147.996  | 6849756.019 | 292.33 | 20.1  | 312.43 | 31/08/1992 |
| MUNKARIE 8             | GAS | 492010.9304 | 6851381.666 | 275.76 | 17    | 292.76 | 22/09/1993 |
| MUNKARIE 9             | GAS | 491453.9177 | 6850804.207 | 264.3  | 16.3  | 280.6  | 14/03/1997 |
| MURTEREE<br>SOUTH 1    | OIL | 457333.0235 | 6856130.081 | 35.62  | 3.9   | 39.52  | 22/01/2008 |
| NAPOWIE 1              | GAS | 465251.2139 | 6959374.649 | 200.05 | 20.3  | 220.35 | 26/06/1993 |
| NAPOWIE 2              | GAS | 461448.0445 | 6956158.601 | 168.23 | 26.2  | 194.43 | 10/06/1998 |
| NAPPACOONGEE<br>EAST 1 | OIL | 478612.8582 | 6900020.688 | 297.99 | 17    | 314.99 | 24/12/1993 |
| NARCOONOWIE 10         | OIL | 473070.1729 | 6848093.631 | 169.88 | 23.2  | 193.08 | 20/01/2010 |
| NARCOONOWIE 4          | OIL | 473061.9377 | 6848484.127 | 166.68 | 17    | 183.68 | 24/10/1991 |
| NARCOONOWIE 5          | OIL | 474049.106  | 6849238.684 | 199.96 | 13.3  | 213.26 | 25/05/2007 |
| NARCOONOWIE 6          | OIL | 473526.0069 | 6847552.71  | 199.7  | 13.4  | 213.1  | 10/05/2007 |
| NARCOONOWIE 7          | OIL | 473589.1252 | 6849210.96  | 175.59 | 13    | 188.59 | 9/07/2008  |
| NARCOONOWIE 8          | OIL | 472816.3312 | 6848542.61  | 169.88 | 23.2  | 193.08 | 22/12/2009 |
| NARCOONOWIE 9          | OIL | 473373.5838 | 6849170.703 | 170.04 | 23.2  | 193.24 | 5/01/2010  |
| NARDU 1                | GAS | 461916.4125 | 6953919.742 | 214.7  | 14.5  | 229.2  | 29/01/1991 |



| ODONATA 1             | OIL | 431979.9239 | 6844640.152 | 103.57 | 13.4  | 116.97 | 26/11/2006 |
|-----------------------|-----|-------------|-------------|--------|-------|--------|------------|
| PACKSADDLE 6          | OIL | 468903.9658 | 6955169.256 | 437.35 | 19.3  | 456.65 | 29/08/2003 |
| PASTICCIO 1           | OIL | 431359.0266 | 6842789.08  | 102.76 | 13.4  | 116.16 | 2/11/2006  |
| PIRA 3                | GAS | 488745.9842 | 6880074.426 | 251.38 | 19.3  | 270.68 | 16/04/2005 |
| PIRRAMINTA 1          | OG  | 438346.3814 | 6945095.28  | 137.97 | 20.3  | 158.27 | 5/08/1987  |
| PLANTAGO 1            | GAS | 495056.1753 | 6872159.459 | 234.28 | 17    | 251.28 | 8/12/1995  |
| PLOTOSUS 1            | GAS | 478553.7308 | 6845521.762 | 231.56 | 16.3  | 247.86 | 25/07/1996 |
| PONDRINIE 10          | GAS | 463216.9821 | 6950324.571 | 326.12 | 14.5  | 340.62 | 18/07/1991 |
| PONDRINIE 11          | GAS | 468348.8802 | 6952196.331 | 422.12 | 17    | 439.12 | 5/11/1996  |
| PONDRINIE 12          | GAS | 466332.5246 | 6950643.82  | 369.37 | 20    | 389.37 | 16/04/1997 |
| PONDRINIE 12ST        | GAS | 466332.5246 | 6950643.82  | 369.37 | 20    | 389.37 | 26/04/1997 |
| PONDRINIE 13          | GAS | 464818.8114 | 6950620.836 | 357.59 | 16    | 373.59 | 9/03/1998  |
| PONDRINIE 14DW        | GAS | 463390.2469 | 6949327.824 | 295.65 | 19.3  | 314.95 | 9/12/1998  |
| PONDRINIE 15DW        | GAS | 462086.2223 | 6948103.814 | 298.14 | 19.3  | 317.44 | 24/03/1999 |
| PONDRINIE 16          | GAS | 459925.3254 | 6948972.67  | 231.18 | 16.3  | 247.48 | 25/03/2000 |
| PONDRINIE 17DW        | GAS | 461217.7323 | 6948564.442 | 230.94 | 16.3  | 247.24 | 8/07/2000  |
| PONDRINIE 3           | GAS | 459985.9408 | 6949601.495 | 228.46 | 17.8  | 246.26 | 28/10/1987 |
| PONDRINIE 4           | OG  | 466976.8714 | 6951286.161 | 386.11 | 17.8  | 403.91 | 10/02/1989 |
| PONDRINIE 5           | GAS | 465691.0834 | 6951065.067 | 364.87 | 14.5  | 379.37 | 29/09/1989 |
| PONDRINIE 6           | GAS | 464140.2395 | 6950187.634 | 338.35 | 17    | 355.35 | 18/10/1990 |
| PONDRINIE 7           | GAS | 466476.4741 | 6951966.699 | 366.85 | 17    | 383.85 | 6/11/1990  |
| PONDRINIE 8           | GAS | 462882.188  | 6949402.944 | 293.75 | 17    | 310.75 | 30/11/1990 |
| PONDRINIE 9           | OG  | 465419.6403 | 6951368.588 | 363.51 | 14.5  | 378.01 | 10/03/1991 |
| PONDRINIE<br>NORTH 1  | GAS | 470181.8553 | 6955467.413 | 448.83 | 19.3  | 468.13 | 31/07/1999 |
| PONDRINIE<br>NORTH 2  | GAS | 470542.0061 | 6956123.815 | 452.97 | 16.3  | 469.27 | 11/06/2000 |
| POTHOS 1              | OG  | 467143.9334 | 7031312.331 | 182.06 | 20    | 202.06 | 30/06/1997 |
| POTIRON 1             | OIL | 487936.2159 | 7081577.693 | 459.4  | 14.3  | 473.7  | 7/04/1988  |
| RAGNO 1               | OIL | 429264.8697 | 6844539.239 | 105.79 | 15.5  | 121.29 | 12/10/2007 |
| REG SPRIGG 1          | OIL | 495922.4064 | 6987064.497 | 410.81 | 20.1  | 430.91 | 19/06/1996 |
| REG SPRIGG 2          | OIL | 495604.9491 | 6987203.507 | 410.75 | 18.8  | 429.55 | 23/09/2001 |
| REG SPRIGG 3          | OIL | 495373.7226 | 6987068.624 | 407.64 | 15.6  | 423.24 | 18/03/2004 |
| REG SPRIGG<br>NORTH 1 | OIL | 495272.2331 | 6987873.501 | 381.18 | 15.75 | 396.93 | 6/06/2008  |
| REG SPRIGG<br>WEST 1  | OIL | 493905.1168 | 6986612.975 | 398.54 | 15.6  | 414.14 | 8/06/2004  |
| REN 1                 | OIL | 450779.493  | 6854269.81  | 38.61  | 4.08  | 42.69  | 27/07/2005 |
| RIEKE 1               | GAS | 446705.316  | 6858521.37  | 157.19 | 17    | 174.19 | 28/09/1995 |
| RISSIKIA 1            | OIL | 437577.9514 | 6843531.439 | 143.34 | 13.4  | 156.74 | 3/09/2006  |
| RUTHERFORD 1          | OIL | 482749.378  | 7039537.114 | 283.28 | 16.3  | 299.58 | 28/11/1998 |
| SCRATCHY 1            | OIL | 443663.5418 | 6845452.408 | 176.66 | 15.45 | 192.11 | 26/08/2007 |
| SCRUBBY CREEK         | GAS | 439687.167  | 6951288.317 | 143.22 | 26.2  | 169.42 | 11/07/1998 |



| SECCANTE 1                | OIL | 430215.8558 | 6843637.985 | 94.89  | 15.36 | 110.25 | 21/10/2007 |
|---------------------------|-----|-------------|-------------|--------|-------|--------|------------|
| SHAZLICK 1                | OIL | 432900.2954 | 6850625.178 | 29.65  | 4.05  | 33.7   | 11/04/2007 |
| SQUALO 1                  | OIL | 447125.1032 | 6850356.032 | 162.79 | 12.9  | 175.69 | 21/03/2008 |
| STIMPEE 1                 | OIL | 446297.2589 | 6848479.411 | 37.26  | 4.08  | 41.34  | 9/08/2005  |
| STIMPEE 2                 | OIL | 445895.2931 | 6848197.495 | 45.79  | 4.08  | 49.87  | 19/09/2005 |
| STIMPEE 3                 | OIL | 445492.6657 | 6847851.304 | 38.4   | 4.79  | 43.2   | 9/09/2007  |
| STIMPEE 4                 | OIL | 446509.2762 | 6848778.286 | 40.56  | 7.07  | 47.63  | 26/10/2009 |
| STIMPSON JAY 1            | OIL | 443726.3525 | 6850115.697 | 41.68  | 4.05  | 45.73  | 17/06/2006 |
| STRATHMOUNT 1             | GAS | 499299.9984 | 6905230.67  | 301.29 | 20.3  | 321.59 | 15/07/1987 |
| STREETON 1                | GAS | 485250.2918 | 6987330.863 | 266.49 | 18.8  | 285.29 | 22/11/1997 |
| STRZELECKI<br>14DEEP      | GAS | 465317.9972 | 6877478.802 | 200.5  | 19.3  | 219.8  | 15/05/2004 |
| STRZELECKI<br>14DW1       | GAS | 465317.9972 | 6877478.802 | 200.24 | 0     | 200.24 | 22/10/2004 |
| STRZELECKI 15             | GAS | 466545.1346 | 6875111.828 | 184.47 | 15.5  | 199.97 | 29/03/1983 |
| STRZELECKI 16             | GAS | 464189.4072 | 6876193.938 | 200.69 | 20.3  | 220.99 | 2/07/1983  |
| STRZELECKI 24             | OIL | 463500.5343 | 6877334.44  | 201.53 | 15.5  | 217.03 | 24/05/1984 |
| STRZELECKI 25             | GAS | 465203.8942 | 6874763.666 | 171.75 | 15.5  | 187.25 | 17/06/1985 |
| STRZELECKI 26             | OIL | 464985.9875 | 6877206.636 | 231.58 | 14.5  | 246.08 | 6/11/1990  |
| STRZELECKI 27             | OIL | 464628.7664 | 6877268.059 | 210.62 | 17    | 227.62 | 4/05/1991  |
| STRZELECKI 28             | OIL | 465488.7811 | 6876849.62  | 191.2  | 17    | 208.2  | 29/06/1991 |
| STRZELECKI 29             | GAS | 466994.2742 | 6876752.422 | 195.1  | 19.3  | 214.4  | 6/05/2004  |
| STRZELECKI<br>NORTHEAST 1 | GAS | 465866.4327 | 6877833.005 | 196.14 | 19.1  | 215.24 | 23/10/2010 |
| TALLERANGIE 1             | GAS | 431032.8742 | 6951038.615 | 124.67 | 20    | 144.67 | 2/06/1995  |
| TARRAGON 1                | OIL | 436062.2864 | 6997560.118 | 103.99 | 17.4  | 121.39 | 27/01/1997 |
| TARRAGON 2                | OIL | 437017.8047 | 6997611.181 | 95.98  | 19.3  | 115.28 | 20/09/1998 |
| TARWONGA 2                | GAS | 471741.2791 | 6862916.328 | 166.81 | 14.5  | 181.31 | 31/08/1987 |
| TARWONGA 3                | GAS | 471819.6717 | 6867114.49  | 155.77 | 17    | 172.77 | 23/06/1990 |
| TARWONGA 4                | GAS | 471334.1957 | 6862718.709 | 158.65 | 20.1  | 178.75 | 10/06/1991 |
| TARWONGA 5                | GAS | 471457.0075 | 6863479.195 | 153.14 | 16.6  | 169.74 | 26/03/2006 |
| TAYLOR SOUTH 1            | GAS | 448955.6769 | 6951402.757 | 143.47 | 16.2  | 159.67 | 13/02/1987 |
| TELOPEA 1                 | OIL | 467840.7459 | 7001019.884 | 130.2  | 20.1  | 150.3  | 19/10/1994 |
| TELOPEA 2                 | OIL | 467854.2058 | 7000528.243 | 149.88 | 20    | 169.88 | 10/01/1996 |
| TERINGIE 1                | OIL | 440624.0132 | 6851392.911 | 31.05  | 4.08  | 35.13  | 12/07/2005 |
| TERRACE 1                 | GAS | 435784.9555 | 6989731.965 | 105.46 | 16.3  | 121.76 | 6/01/1999  |
| THIELE 1                  | GAS | 440082.4453 | 6945236.753 | 141.58 | 26.2  | 167.78 | 12/01/1999 |
| TONNO 1                   | OIL | 452043.794  | 6851007.376 | 147.41 | 15.7  | 163.11 | 6/08/2007  |
| TOOLACHEE 10              | GAS | 480953.975  | 6854055.566 | 197.74 | 13.5  | 211.24 | 7/11/1982  |
| TOOLACHEE 11              | GAS | 482441.7399 | 6859348.402 | 202.15 | 22    | 224.15 | 6/11/1982  |
| TOOLACHEE 12              | GAS | 476895.3946 | 6855726.337 | 158.06 | 22    | 180.06 | 2/12/1982  |
| TOOLACHEE 13              | GAS | 484105.1725 | 6856374.154 | 231.36 | 22    | 253.36 | 25/12/1982 |
| TOOLACHEE 14              | GAS | 478756.7899 | 6859021.077 | 213.66 | 22    | 235.66 | 4/02/1983  |



| TOOLACHEE 15         | GAS | 477791.1643 | 6853774.622 | 184.54 | 15.5 | 200.04 | 16/02/1983 |
|----------------------|-----|-------------|-------------|--------|------|--------|------------|
| TOOLACHEE 17         | GAS | 484319.5157 | 6853980.874 | 227.12 | 15.5 | 242.62 | 7/04/1983  |
| TOOLACHEE 18         | GAS | 479635.9718 | 6853537.999 | 186.63 | 20.3 | 206.93 | 5/06/1983  |
| TOOLACHEE 19         | GAS | 483101.1479 | 6855378.153 | 246.28 | 15.5 | 261.78 | 11/06/1983 |
| TOOLACHEE 23         | GAS | 478086.8347 | 6861761.379 | 184.33 | 20.3 | 204.63 | 18/01/1984 |
| TOOLACHEE 24         | GAS | 481395.5818 | 6860151.188 | 202.19 | 20.3 | 222.49 | 18/02/1984 |
| TOOLACHEE 25         | GAS | 480870.4384 | 6852916.25  | 213.91 | 15.5 | 229.41 | 17/03/1984 |
| TOOLACHEE 26         | GAS | 477496.6779 | 6854874.471 | 172.87 | 15.5 | 188.37 | 2/03/1984  |
| TOOLACHEE 27         | GAS | 477488.3292 | 6856682.432 | 188.56 | 15.5 | 204.06 | 27/04/1984 |
| TOOLACHEE 28         | GAS | 478196.5263 | 6852675.855 | 193.67 | 15.5 | 209.17 | 6/04/1984  |
| TOOLACHEE 29         | GAS | 478079.5429 | 6858089.599 | 193.47 | 15.5 | 208.97 | 15/06/1984 |
| TOOLACHEE 32         | GAS | 479504.0864 | 6855052.949 | 176.8  | 15.5 | 192.3  | 1/05/1985  |
| TOOLACHEE 33         | GAS | 479523.7879 | 6860290.889 | 201.91 | 15.5 | 217.41 | 20/05/1985 |
| TOOLACHEE 34         | GAS | 480026.9517 | 6857758.272 | 185.05 | 15.5 | 200.55 | 10/08/1985 |
| TOOLACHEE 35         | GAS | 484009.7674 | 6859490.326 | 208.75 | 15.5 | 224.25 | 23/02/1986 |
| TOOLACHEE 38         | GAS | 482049.0733 | 6857947.082 | 193.68 | 16.5 | 210.18 | 12/03/1987 |
| TOOLACHEE 39         | GAS | 485192.5411 | 6855563.424 | 240.1  | 14.5 | 254.6  | 26/09/1987 |
| TOOLACHEE 40         | GAS | 483953.5954 | 6864352.12  | 218.97 | 17.8 | 236.77 | 7/10/1987  |
| TOOLACHEE 41         | GAS | 480859.8565 | 6864759.846 | 197.53 | 17   | 214.53 | 17/07/1990 |
| TOOLACHEE 42         | GAS | 483685.0868 | 6857238.901 | 217    | 20   | 237    | 23/04/1991 |
| TOOLACHEE 43         | GAS | 476701.3033 | 6865551.453 | 217.63 | 20   | 237.63 | 13/05/1991 |
| TOOLACHEE 44         | GAS | 477610.0403 | 6863312.317 | 191.05 | 20   | 211.05 | 2/07/1991  |
| TOOLACHEE 45         | GAS | 481354.071  | 6850475.806 | 191.15 | 20   | 211.15 | 20/07/1991 |
| TOOLACHEE 46         | GAS | 477207.6266 | 6860688.231 | 192.42 | 20   | 212.42 | 9/08/1991  |
| TOOLACHEE 46A        | GAS | 477207.6266 | 6860688.231 | 192.42 | 20   | 212.42 | 23/08/1991 |
| TOOLACHEE 47         | GAS | 482088.6747 | 6849878.385 | 204.11 | 17   | 221.11 | 29/02/1992 |
| TOOLACHEE 48         | GAS | 484020.9757 | 6854328.22  | 223.84 | 20.1 | 243.94 | 17/06/1992 |
| TOOLACHEE 49         | GAS | 477639.2288 | 6861714.676 | 189.73 | 20.1 | 209.83 | 2/07/1992  |
| TOOLACHEE 50         | GAS | 484769.555  | 6863317.949 | 236.91 | 20.1 | 257.01 | 13/08/1992 |
| TOOLACHEE 51         | GAS | 479671.3184 | 6859503.926 | 217.35 | 17   | 234.35 | 9/07/1995  |
| TOOLACHEE 52         | GAS | 480305.9136 | 6862930.71  | 202.92 | 16.3 | 219.22 | 31/12/2000 |
| TOOLACHEE<br>NORTH 1 | GAS | 475984.4952 | 6868311.578 | 172.05 | 17   | 189.05 | 23/05/1990 |
| TOOLACHEE<br>WEST 1  | GAS | 476689.5412 | 6859093.505 | 179.69 | 18.8 | 198.49 | 25/06/2000 |
| TURBAN 1             | GAS | 492294.7239 | 6965772.377 | 524.38 | 14.5 | 538.88 | 13/10/1988 |
| ULANDI 10            | OIL | 433222.4469 | 6842952.173 | 123.02 | 13.2 | 136.22 | 4/09/2003  |
| ULANDI 12            | OIL | 433672.9413 | 6843149.944 | 144.98 | 13.2 | 158.18 | 22/08/2003 |
| ULANDI 13            | OIL | 433203.2622 | 6843641.189 | 106.37 | 13.2 | 119.57 | 28/08/2003 |
| ULANDI 14            | OIL | 433442.1423 | 6842684.198 | 127.01 | 13.2 | 140.21 | 9/09/2003  |
| ULANDI 15            | OIL | 433465.889  | 6843775.963 | 122.46 | 13.4 | 135.86 | 19/10/2006 |
| ULANDI 16            | OIL | 432268.0966 | 6841792.36  | 98.34  | 15.7 | 114.04 | 30/10/2007 |



| ULANDI 2     | OIL | 432438.3422 | 6843418.439 | 97.4   | 17   | 114.4  | 5/11/1988  |
|--------------|-----|-------------|-------------|--------|------|--------|------------|
| ULANDI 3     | OIL | 432557.4446 | 6841932.628 | 100.5  | 17   | 117.5  | 21/11/1988 |
| ULANDI 4     | OIL | 434556.2978 | 6840489.147 | 108.63 | 17   | 125.63 | 3/11/1991  |
| ULANDI 5     | OIL | 432865.2502 | 6842951.464 | 105.77 | 17   | 122.77 | 28/07/1992 |
| ULANDI 6     | OIL | 432918.5747 | 6842574.412 | 118.19 | 16.3 | 134.49 | 11/06/2002 |
| ULANDI 7     | OIL | 433111.726  | 6842243.472 | 111.56 | 13.2 | 124.76 | 2/08/2003  |
| ULANDI 8     | OIL | 432527.2929 | 6842939.665 | 98.1   | 13.2 | 111.3  | 7/08/2003  |
| ULANDI 9     | OIL | 432872.8063 | 6843392.127 | 103.68 | 13.2 | 116.88 | 15/08/2003 |
| UNGARI 1     | GAS | 443276.6289 | 6836677.098 | 141.75 | 17.8 | 159.55 | 16/07/1989 |
| VERBENA 1    | GAS | 486470.3311 | 6864663.238 | 236.81 | 20   | 256.81 | 21/08/1990 |
| VERONA 1     | GAS | 445812.795  | 6989950.398 | 103.35 | 19.3 | 122.65 | 7/11/1998  |
| VERONA 2     | GAS | 447232.9483 | 6990247.504 | 115.64 | 19.3 | 134.94 | 2/02/2003  |
| VERONA 3     | GAS | 445265.2988 | 6991419.653 | 117.24 | 19.3 | 136.54 | 13/01/2003 |
| WANTANA 2    | GAS | 444437.1155 | 6943077.771 | 136.46 | 20   | 156.46 | 17/01/1991 |
| WHEELS 1     | OIL | 492207.6113 | 6888207.745 | 269.62 | 15.7 | 285.32 | 23/06/2007 |
| WILPINNIE 2  | GAS | 476848.1351 | 6897441.52  | 259.2  | 17.8 | 277    | 26/08/1989 |
| WILPINNIE 3  | GAS | 475214.97   | 6897228.993 | 259.15 | 17   | 276.15 | 3/01/1996  |
| WILPINNIE 4  | OIL | 475097.3312 | 6897370.765 | 254.76 | 13.3 | 268.06 | 26/01/2007 |
| WIRHA 1      | OIL | 482251.65   | 6843016.233 | 209.13 | 17.8 | 226.93 | 10/02/1988 |
| WITCHETTY 1  | GAS | 480840.123  | 6869687.13  | 222.48 | 17   | 239.48 | 31/08/1988 |
| WOMA 1       | GAS | 442159.9009 | 6980909.558 | 152.65 | 18.8 | 171.45 | 24/09/1996 |
| WUROOPIE 1   | OG  | 469836.14   | 6832831.229 | 175.09 | 17.8 | 192.89 | 13/09/1987 |
| YALCHIRRIE 1 | GAS | 458321.6146 | 6953318.393 | 150.96 | 20   | 170.96 | 23/09/1991 |
| YILKI 1      | OIL | 441594.9489 | 6852356.977 | 104.64 | 17   | 121.64 | 29/09/1988 |

j:\hyd\2011\117636010 santos\_cooper basin o&g & moonie oil -official folder in brisbane\correspondence out\117636010-3000-001-cooper basin uwir\rev2\appendices\117626010-3000-002-appendix g santos wells.docx





# APPENDIX H

**Groundwater Monitoring Program** 





#### 10 April 2013

# SANTOS COOPER BASIN OIL & GAS FIELDS, SOUTHWEST QUEENSLAND

# Interim Groundwater Monitoring Plan

Submitted to: Santos Ltd Ground Floor Santos Centre 60 Flinders Street Adelaide, SA 5000

REPORT

Report Number.

127666003 002 R Rev3

**Distribution:** Santos Ltd - 1 Copy Golder Associates - 1 Copy



## **Executive Summary**

This Groundwater Monitoring Plan (GWMP) has been prepared for Santos Ltd (Santos) by Golder Associates Pty Ltd (Golder), for monitoring of groundwater within Santos' petroleum tenements in Southwest Queensland (SWQ).

This GWMP is based on the findings of the Underground Water Impact Report for Santos Cooper Basin Oil and Gas Fields, SW QLD [UWIR] (Reference: 117636010-3000-001), in revision, and addresses the groundwater monitoring strategy requirements outlined therein. This GWMP should be read in conjunction with the UWIR.

Compilation and analysis of existing formation pressure data collected by Santos is a key objective of this GWMP. Since interpretation of these data is not complete, the approach and strategy behind this current GWMP version is considered *interim* only and subject to revision pursuant to this data review. Thus, both the water monitoring strategy and *proposed* water monitoring activities are also *interim*.

The period of applicability of this *interim* GWMP will be approximately 18 months from the time of Queensland Department of Environment and Heritage Protection (DEHP)'s acceptance of the Plan.

The *interim* groundwater monitoring strategy for Santos petroleum tenements is summarised as follows:

- Compilation and analysis of existing formation pressure data: Santos and Golder will compile and review existing formation pressure data across the area of interest to estimate groundwater elevations and pressure trends, hydraulic gradients, and potential zones of impact (i.e. where evidence of depressurisation is observed in formations that underlie aquifers accessed for water supply. Santos has a database of formation pressures in many of the water-bearing formations in the Eromanga Basin, collected during exploratory drilling within its tenements that will be used to define the potential changes to water levels required by the Water Act. This task will include the tracking, collection, and analysis of ongoing well drilling data for an 18- month period.
- Undertake interim water monitoring activities: Collection, laboratory analysis, and reporting of baseline data by undertaking groundwater monitoring activities at 15 existing bores (subject to landholder consent).
- Revise the interim GWMP and strategy, if required: Based on the results of previous tasks (bullet points 1 and 2), the GWMP may be revised after the interim period, if warranted. During this task the groundwater monitoring strategy will also be revisited, which will include consideration of verification of bore construction, and may include engineering or construction fieldworks required to further develop the monitoring network, if required.
- Revise the UWIR and GWMP: Revise the UWIR and GWMP on a 3 yearly cycle, as required by the Water Act,





Interim groundwater monitoring activities are summarised in the table below (subject to landholder agreement):

| WBBA<br>ID | Bore<br>Name              | Manually<br>Measure<br>Water Level | Install<br>Bladder<br>Pump | Field<br>Measure<br>Water<br>Quality | Collect<br>Sample for<br>Laboratory<br>Testing | Install<br>Automated<br>Water<br>Level<br>Device | Comment                                                   |
|------------|---------------------------|------------------------------------|----------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
| 5011       | Palara                    | No                                 | No                         | Quarterly                            | Quarterly                                      | No                                               | Windmill                                                  |
| 5014       | Ballera 2                 | No                                 | No                         | No                                   | No                                             | No                                               | Further inspection only                                   |
| 5016       | Ballera 1                 | Quarterly                          | Yes                        | Quarterly                            | Quarterly                                      | Yes                                              | -                                                         |
| 5025       | Fork Tree                 | Quarterly                          | No                         | Quarterly                            | Quarterly                                      | No                                               | -                                                         |
| 5028       | Irtalie 1                 | No                                 | No                         | Quarterly                            | Quarterly                                      | No                                               | -                                                         |
| 5029       | Keegan's                  | Quarterly                          | Yes                        | Quarterly                            | Quarterly                                      | Yes                                              | Repair head<br>works                                      |
| 5033       | Coothero<br>Water         | No                                 | No                         | Quarterly                            | Quarterly                                      | Yes                                              | Install pressure<br>gauge, data<br>logger and<br>fittings |
| 5037       | Jackson<br>6A             | No                                 | No                         | No                                   | No                                             | No                                               | Further inspection only                                   |
| 5043       | Naccowlah<br>West 4       | Quarterly                          | Yes                        | Quarterly                            | Quarterly                                      | Yes                                              | Fieldwork to<br>modify head<br>works                      |
| 5048       | Barrolka 2                | Quarterly                          | Yes                        | Quarterly                            | Quarterly                                      | Yes                                              | -                                                         |
| 5063       | Durham<br>Downs R2        | Quarterly                          | Yes                        | Quarterly                            | Quarterly                                      | No                                               | Fieldworks to<br>modify head<br>works                     |
| 5074       | Cherry<br>Cherry 1        | No                                 | No                         | Quarterly                            | Quarterly                                      | No                                               | Windmill                                                  |
| 5076       | Tarbat Job<br>No 1947     | Quarterly                          | No                         | Quarterly                            | Quarterly                                      | No                                               | Windmill                                                  |
| 5077       | Walla<br>Wallan<br>Bore 5 | Quarterly                          | No                         | Quarterly                            | Quarterly                                      | No                                               | Windmill                                                  |
| 5087       | Grahams<br>Bore           | Quarterly                          | No                         | Quarterly                            | Quarterly                                      | No                                               | -                                                         |

WBBA = Water Bore Baseline Assessment





## **Table of Contents**

| 1.0 | INTRO  | DUCTION                                                      | 1  |
|-----|--------|--------------------------------------------------------------|----|
|     | 1.1    | Legislative Framework                                        | 1  |
|     | 1.2    | Cooper Basin Oil and Gas Fields Operations                   | 2  |
|     | 1.3    | Historic Monitoring by Santos                                | 2  |
|     | 1.4    | Previous Groundwater Studies                                 | 4  |
|     | 1.4.1  | Underground Water Impact Report                              | 4  |
|     | 1.4.2  | Water Bore Baseline Assessment Report                        | 5  |
| 2.0 | OBJE   | CTIVES OF THE GWMP                                           | 9  |
|     | 2.1    | Preamble                                                     | 9  |
|     | 2.2    | Objectives                                                   | 9  |
|     | 2.3    | Limited Period of Applicability                              | 9  |
| 3.0 | SITE D |                                                              | 10 |
|     | 3.1    | Hydrogeological Conceptual Model (HCM)                       | 10 |
|     | 3.2    | Hydrostratigraphy                                            | 10 |
|     | 3.2.1  | Quaternary and Tertiary Alluvium                             | 12 |
|     | 3.2.2  | Winton Formation (Water-Bearing Unit)                        | 12 |
|     | 3.2.3  | Upper Cadna-owie Formation (Aquifer)                         | 12 |
|     | 3.2.4  | Hooray Sandstone (Aquifer)                                   | 13 |
|     | 3.2.5  | Westbourne Formation, Adori Sandstone and Birkhead Formation | 13 |
|     | 3.2.6  | Hutton Sandstone                                             | 14 |
|     | 3.2.7  | Poolowanna Formation                                         | 14 |
| 4.0 | GROU   | NDWATER MONITORING STRATEGY                                  | 15 |
|     | 4.1    | Interim Strategy                                             | 15 |
|     | 4.2    | Existing Formation Pressure Data                             | 15 |
|     | 4.3    | Interim Water Monitoring Activities                          | 17 |
|     | 4.3.1  | Aquifers to be Monitored                                     | 17 |
|     | 4.3.2  | Interim Monitoring Network                                   | 17 |
|     | 4.3.3  | Monitoring Equipment and Methods                             | 21 |
|     | 4.3.4  | Groundwater Quality Monitoring Suite                         | 21 |
|     | 4.3.5  | Monitoring Frequency and Period                              | 23 |
|     | 4.3.6  | Summary of Interim Water Monitoring Activity                 | 23 |





#### SANTOS - COOPER BASIN OIL & GAS FIELDS - GWMP

| 5.0 | REPOR  | RTING REQUIREMENTS                             | 25 |
|-----|--------|------------------------------------------------|----|
|     | 5.1    | Response Actions if Private Bore Impacts Occur | 25 |
|     | 5.2    | Private Bore Impacts Confirmation              | 25 |
| 6.0 | ADDIT  | IONAL DOCUMENTS                                | 27 |
| 7.0 | REFER  | ENCES                                          | 28 |
| 8.0 | LIMITA |                                                | 29 |

#### TABLES

| Table 1: Water Bores assessed as potentially suitable for ongoing monitoring during WBBA works         | 7    |
|--------------------------------------------------------------------------------------------------------|------|
| Table 2: Priority 1 and 2 bores observed to be used by third parties (private users) during WBBA works | 8    |
| Table 3: Hydrostratigraphy of the Area of Interest (UWIR, 2012)                                        | . 11 |
| Table 4: Interim Santos Groundwater Monitoring Network                                                 | . 19 |
| Table 5: Monitoring Suites Analytes                                                                    | . 22 |
| Table 6: Summary of Interim Water Monitoring Activities                                                | . 24 |

#### FIGURES

| Figure 1: Area of Interest – Eromanga and Cooper Basin                                                                                               | 3  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2: General Schematic of Observed Aquifer and Oil Field Pressure Trends (from Pers. Comm. with Dr. N. Lemon, Santos Principal Geologist, 2012) | 16 |
| Figure 3: Interim Groundwater Monitoring Network                                                                                                     | 20 |

#### APPENDICES

APPENDIX A Limitations (LEG04 RL1)



### **1.0 INTRODUCTION**

This Groundwater Monitoring Plan (GWMP) has been prepared for Santos Ltd (Santos) by Golder Associates Pty Ltd (Golder), for monitoring of groundwater within Santos' petroleum tenements in Southwest Queensland (SWQ). The GWMP is also designed to be adaptable to changes in Santos' operations, environmental data and conceptual understanding of the area of interest.

This GWMP has been prepared based on Golder's *Proposal and Cost Estimate – Groundwater Monitoring Plan, Southwest Queensland* (reference: P27666002 001 L Rev0), dated 31 January 2012, and follows previous works (Section 1.4). This GWMP is based on the findings of the *Underground Water Impact Report for Santos Cooper Basin Oil and Gas Fields, SW QLD* [UWIR] (Reference: 117636010-3000-001), in revision, and addresses the groundwater monitoring strategy requirements outlined therein. This GWMP should be read in conjunction with the UWIR.

This GWMP provides an interim water monitoring strategy that is designed to ensure that the proposed scope of monitoring program is specific and targeted in relation to the potential impacts identified in the Golder UWIR and provides measureable goals within its period of applicability. The GWMP summarises background technical information, outlines actions, responsibilities, monitoring network design and timeframes that will deliver an interim *water monitoring program* to meet the monitoring objectives.

Compilation and review of the existing, formation pressure data collected by Santos is a key objective of this GWMP. Since interpretation of these data is not yet complete, the approach and strategy behind this current GWMP version is considered to be *interim* only. The Water Bore Baseline Assessment (WBBA) is currently underway and monitoring data collected during interim water monitoring activities within this petroleum producing field may require revision to better achieve useful monitoring outcomes. Therefore, the period of applicability of the plan will be approximately 18 months from the time of Queensland Department of Environment and Heritage Protection (DEHP) acceptance, half that deemed appropriate for the associated UWIR revision cycle.

Finally, the GWMP provides a structure for engagement with private landowners during monitoring works and outlines the reporting and provision of monitoring data.

#### **1.1 Legislative Framework**

Santos is required to monitor and assess the impact of its petroleum production operations on underground water, as regulated by the *Water Act 2000* and relevant amendments in the *Water and Other Legislation Amendment Act 2010*), collectively referred to as the "Water Act" herein. The amendments transfer the regulatory framework for underground water from the *Petroleum Act 1923* and the *Petroleum and Gas (Production and Safety) Act 2004* (P&G Act) to the Water Act.

Santos' activities in the Cooper Basin are subject to Queensland and/or Commonwealth regulation, and to site and activities-specific Environmental Authorities (EAs) determined by the DEHP under the *Environmental Protection Act 1994*.

The Water Act regulates access to water resources. Under this Act, a water licence is required to take water for any purpose other than domestic use and stock watering. When a water licence is required, there may be a requirement under Section 214(e) of the Act to carry out and report on a monitoring program. The groundwater management requirements that were previously regulated under the P&G Act and the *Petroleum Act 1923*, and were transferred to the Water Act in 2010 included the obligations to:

- Prepare Underground Water Impact Reports;
- Establish groundwater baseline conditions through WBBA monitoring of private bores; and
- Define "make good" provisions as a contingency to address losses incurred by private bore owners resulting from petroleum activities.

The Water Act also defines the drawdown thresholds which, if reached, will trigger investigations and make good actions.





Santos currently operates conventional gas and oil fields within the Eromanga and Cooper Basins of SWQ. The locations of Santos oil and gas production wells are illustrated in Figure 1. The oil and gas fields encompass an area in excess of 8,160 km<sup>2</sup> of largely semi-arid agricultural land, which was first developed for petroleum production in the early 1970s. Santos' petroleum tenements include approximately 191 producing gas wells and 230 producing oil wells.

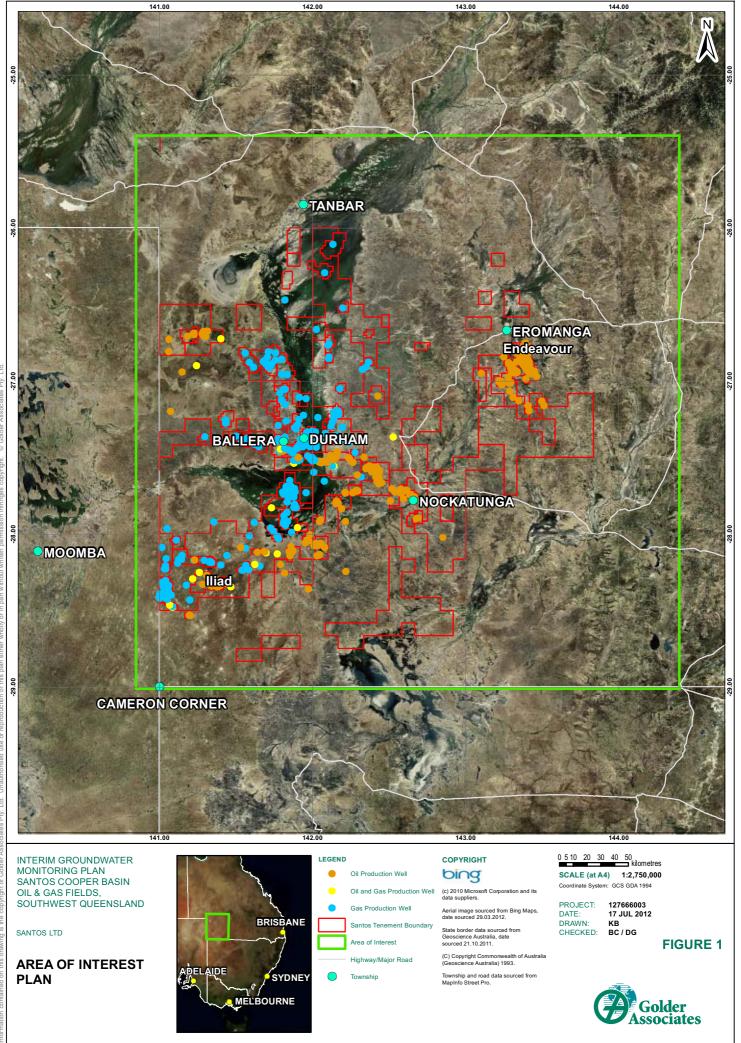
Santos Cooper Basin petroleum fields produce both conventional oil and gas:

- Conventional oil is produced from the Great Artesian Basin (GAB) formations of the Eromanga Basin. The oil is present in discontinuous oil reservoirs within interbedded sandstone units or larger sandstone formations. There are several types of oil reservoirs resulting from the process of "trapping" of the oil. In many cases, the oil exists with the groundwater, and as a consequence of the oil being lighter than water it generally migrates to the upper part of a formation where further migration is prevented by a hydraulic barrier (structural or stratigraphic trap).
- Conventional gas production is undertaken from porous sandstone formations and as such does not require the depressurisation of the target beds (with respect to groundwater, and the need to remove groundwater to release the gas). Some water is produced as a by-product; however, the volumes are quite limited. In the area of interest, gas production is typically associated with the deep formations of the Cooper Basin (underlying the GAB system).

Note: "Santos", in this document, refers to Santos and its various companies who operate the oil and gas tenements on behalf of the various joint venture parties.

Based on Santos' Environmental Management Plans and as described in the UWIR (Golder, 2012, in revision), Santos has divided their Cooper Basin production fields into three 'Project Areas'. To reduce confusion the terms "Production Fields", "Project Areas", and "Study Areas"; used in previous documents are referred to in this GWMP as the area of interest (see Figure-1) or sub-areas to the area of interest and are as follows:

- The Western Study Area (Western Sub-Area of Interest).
- The Central Study Area (Central Sub-Area of Interest).
- The Eastern Study Area (Eastern Sub-Area of Interest).


#### **1.3 Historic Monitoring by Santos**

Prior to the implementation of the GWMP, Golder understands the previous Santos groundwater monitoring efforts included the following:

- Santos' deep groundwater monitoring associated with the water flooding activities as described in the UWIR;
- Shallow groundwater monitoring associated with:
  - Ballera evaporation pond (8 monitoring wells);
  - Jackson refuelling station (3 monitoring wells);
  - Jackson landfarm activities (4 monitoring wells);
- DEHP GAB monitoring network spread over the area of interest and targeting the formations of the Eromanga Basin; however, few exist within the area of interest.

These ongoing existing monitoring programs are considered separate from the monitoring requirements of this GWMP.





le Location: S:\Santos\Project\Deliverable\Production Fig\127666003 - GWMP\002 - GWMP\REV 1 Figures - 17072012\127666003-002-R-F0001-Rev1.mxd



# **1.4 Previous Groundwater Studies**

Previous groundwater reports prepared for Santos' SWQ tenements include:

- URS (2010), Water Flooding Impact Assessment: Further Information to Support Assessment of Potential Impacts of Water Flooding in PL295
- Santos (2010), Response to DEHP Re: Use of fracture fluids containing BTEX
- Golder (2012, in revision), Underground Water Impact Report for Santos Cooper Basin Oil and Gas Fields, SW QLD (Golder reference: 117636010-3000-001-Rev2) [UWIR], dated 30 July 2012...
- Golder (2012), Santos South West Queensland, *Regional Water Bore Baseline Assessment Report (Priority 1 and 2 Bores)* [WBBA] (Reference 117666006-019-R-Rev0), dated 29 May 2012.

Golder has undertaken two of the previous investigations in relation to this GWMP. A summary of the Golder studies is presented below.

#### 1.4.1 Underground Water Impact Report

Under the Water Act, Santos is required to prepare an UWIR for its SWQ oil and gas production fields. In compliance with this requirement, a UWIR was prepared for Santos by Golder.

The UWIR identified the quantity of water produced during the production of gas and oil, and the potential impact of this groundwater extraction on the various aquifers accessed for water supply in the area of interest. It also identified environmental values of groundwater within the area of interest and the existing or proposed groundwater monitoring program required to assess potential impacts based on a groundwater monitoring strategy. Potential impacts to private bores and springs are specifically required to be addressed.

The risk assessment and groundwater modelling presented in the UWIR assessed the potential for environmental values of groundwater to be affected by drawdown/depressurisation associated with petroleum activities, defined as follows:

#### Immediately Affected Area (IAA)

The IAA of an aquifer is the area within which water levels are predicted to decline, due to water extraction by petroleum tenure holders, by more than the trigger threshold within three years. The trigger thresholds, as specified in the Water Act, are 5 m for consolidated aquifers (such as sandstone) and 2 m for unconsolidated aquifers (such as alluvial deposits).

#### Long-term Affected Area (LAA)

The LAA of an aquifer is the area within which water levels are predicted to fall, due to water extraction by petroleum tenure holders, by more than the trigger thresholds at any time in the future. The trigger thresholds, as specified in the Water Act, are 5 m for consolidated aquifers (such as sandstone) and 2 m for unconsolidated aquifers (such as alluvial deposits).

Note: A decline of the water level in a bore of more than the trigger threshold is considered to increase the potential risk of impairment to the water supply from the ongoing petroleum production activities.

The UWIR concluded that the groundwater extraction associated with oil and gas production is limited in volume and current activities are not expected to have significant impacts on the groundwater resources used by the community, with the possible exception of two areas of localised impact (Production Lease (PL) 33 and PL35).





Section 10.0 of the UWIR summarised the existing monitoring programs and proposed a basis for a groundwater monitoring strategy and an early monitoring program. The groundwater monitoring strategy outlined the rationale and ranking for groundwater monitoring options, and also outlined standard monitoring analyte suites and groundwater monitoring infrastructure. The UWIR was considered when undertaking the WBBA and also while preparing this GWMP, as it is the primary regulatory compliance document for groundwater management.

This GWMP should be read in conjunction with the UWIR.

#### 1.4.2 Water Bore Baseline Assessment Report

The objective of the WBBA is to collect baseline data with regards to the existence, construction, condition and accessibility of water bores (so-called "Water Act", 'private' or 'farmers' bores) and, when possible, aquifer data including water level, water quality, and water extraction (pumping rate and scheduled use). These assessments are intended to characterise groundwater conditions prior to production. In the case of the Cooper-Eromanga Basins, where operations have been ongoing for 40+ years, this aspect is less relevant as current "baseline" conditions may reflect the influence of historical petroleum production. However, it still provides a basis for future comparison of groundwater conditions, particularly with regard to potential impacts from petroleum production.

Water bores have been identified within Santos' SWQ tenements for assessment and classified as one of three priorities:

- Priority 1 bores within leased areas *inside* a 2 km radius of production wells,
- Priority 2 bores within leased areas but *outside* a 2 km radius of a production well; and,
- Priority 3 bores *outside* of the established lease but within Santos' tenement boundaries.

(It should be noted that fieldwork for the Priority 1 and 2 bores is complete; fieldwork to identify Priority 3 bores is currently in progress with WBBA data scheduled to be compiled by September 2013.)

The WBBA (Priority 1 and 2 bores) report concluded the numbers of bores that *actually* exist within the area of interest is less than what is indicated in the DEHP groundwater database and in the project brief.

The observations indicate significant data gaps between the DEHP database (used in preparing the UWIR), Santos' records and the actual existence of bores. Many historical records reviewed were not relevant, while data quality contained in other records is considered questionable. In general, reliable historic and bore construction records are limited and records indicating the aquifer in which bores are screened are absent.

Criteria have been established in an effort to assign potential bore suitability for future groundwater monitoring. In general, baseline data is limited and 76 bores were considered not suitable or 'poor' for on-going monitoring purposes. Fifteen (15) bores were considered 'fair' for monitoring and their details are summarised in Table 1. However, even 'fair' bores are generally absent of reliable screened interval data.

Two bores highlighted in the UWIR as being within potential impact zones, were visited as part of the WBBA (Priority 1), with observations summarised below:

#### 5032: Whim Well

Location was visited; however, the bore was not found.





#### 5033: Coothero Water Bore

The bore was visited and a groundwater sample collected. The bore is artesian and completed with a valve head; however, a pressure gauge is not installed so the piezometric level of the screened aquifer(s) is unknown. Bore construction records have not been received by Golder (including the well depth or screened aquifer) and therefore the bore's suitability as a monitoring point is of limited value. However, it is included in the interim monitoring network due to being potentially impacted and has potential to be valuable upon further field investigation.

Eight other bores were observed to be currently used by private landowners (Table 2). Based on WBBA criteria, these bores are not considered to be suitable for ongoing monitoring. However, some of these may be considered appropriate for monitoring use as part of the GWMP network and are discussed further (see Section 4.3).

Due to the uncertain and unverified quality of historic bore construction records, bores considered to be 'fair' for monitoring purposes would benefit from further field verification works prior to the commencement of monitoring.

Based on the data collected, Golder recommended the following strategy:

- Priority 3 WBBA should be completed, as planned.
- Investigation works should be undertaken to verify bore construction records and confirm the actual suitability of bores for monitoring.





#### SANTOS - COOPER BASIN OIL & GAS FIELDS - GWMP

| Suitability<br>for<br>Ongoing<br>Monitoring | Santos<br>Priority       | Bore ID | Name                                             | DEHP<br>RN | Santos<br>Permit | Measure<br>d Water<br>Depth<br>(m<br>btoc**) | Reported<br>Bore Depth<br>(m)* | Target Aquifer (from<br>DEHP)* |
|---------------------------------------------|--------------------------|---------|--------------------------------------------------|------------|------------------|----------------------------------------------|--------------------------------|--------------------------------|
| Fair                                        | 1                        | 5029    | Keegan's Bore                                    | 0          | PL 78            | -                                            | 48.0                           | (not in DEHP<br>database)      |
| Fair                                        | 1                        | 5057    | Wolgolla 1 Road Bore                             | 0          | PL 88            | -                                            | 68.6                           | -                              |
| Fair                                        | 3                        | 5025    | Fork Tree Bore                                   | 0          | ATP<br>259P      | -                                            | 123.4                          | -                              |
| Fair                                        | (not in<br>initial list) | 5058    | Wolgolla 1 Road Bore B                           | 0          | PL 88            | -                                            | 39.2                           | -                              |
| Fair                                        | 1                        | 5014    | Ballera 2 Bore                                   | 23565      | PL 61            | -                                            | 2613.4                         | (no data)                      |
| Fair                                        | 1                        | 5016    | Ballera 1 Bore                                   | 0          | PL 61            | 31.86                                        | 89.0                           | -                              |
| Fair                                        | 1                        | 5026    | Vega North 1 Supply Bore                         | 0          | PL 131           | 9.21                                         | 116.5                          | -                              |
| Fair                                        | 1                        | 5037    | Jackson 6A                                       | 23321      | PL 23            | -                                            | 1265.2                         | (no data)                      |
| Fair                                        | 1                        | 5039    | Jackson Land Sludge Farm<br>Water Bore           | 0          | PL 23            | 19.44                                        | <50.0                          | -                              |
| Fair                                        | 1                        | 5042    | Naccowlah South 2                                | 23219      | PL 25            | -                                            | 1749.0                         | (no data)                      |
| Fair                                        | 1                        | 5048    | Barrolka Bore 2                                  | 0          | PL 112           | 17.50                                        | 114.0                          | -                              |
| Fair                                        | 2                        | 5028    | Irtalie 1                                        | 23570      | PL 36            | -                                            | 1914.6                         | (no data)                      |
| Fair                                        | 3                        | 5063    | Durham Downs Bore R2                             | 0          | ATP<br>259P      | -                                            | 60.0                           | -                              |
| Fair                                        | (not in<br>initial list) | 5040    | Jackson Bioremediation Area<br>Monitoring Bore 1 | 0          | PL 23            | 20.19                                        | <50.0                          | -                              |
| Fair                                        | (not in<br>initial list) | 5041    | Jackson Bioremediation Area<br>Monitoring Bore 2 | 0          | PL 23            | -                                            | <50.0                          | -                              |

#### Table 1: Water Bores assessed as potentially suitable for ongoing monitoring during WBBA works

\*Reported data from records including DEHP database and historic documents and has not been measured in the field.

\*\* btoc = below top of casing

- Data not obtained





| Priority | WBBA<br>ID | Bore Name               | DEHP RN | Santos'<br>Permit | Latitude<br>D.DDD | Longitude<br>D.DDD | Measured<br>Water<br>Depth<br>(m btoc*) | Head Type | Bore<br>Depth<br>(m)<br>(source: DEHP<br>database) |
|----------|------------|-------------------------|---------|-------------------|-------------------|--------------------|-----------------------------------------|-----------|----------------------------------------------------|
| 1        | 5011       | Palara Bore             | 6057    | PL 59             | 141.6050278       | -27.4107500        | - (not<br>measured)                     | Windmill  | 243.80                                             |
| 1        | 5075       | Mt Margaret No 14       | 9096    | PL 170            | 143.2446600       | -27.0444600        | -                                       | Windmill  | 129.60                                             |
| 1        | 5077       | Walla Wallan Bore 5     | 6373    | PL 295            | 143.4021900       | -26.8459600        | 15.40                                   | Windmill  | 156.70                                             |
| 2        | 5069       | Mt Margaret No 20       | 10565   | PL 295            | 143.3630310       | -26.8817580        | -                                       | Windmill  | -                                                  |
| 2        | 5074       | Cherry Cherry Bore 1    | 6369    | PL 39             | 143.4002100       | -26.9949200        | -                                       | Windmill  | 285.40                                             |
| 2        | 5076       | Tarbat Job No 1947      | 12036   | PL 295            | 143.3123900       | -26.8317400        | 30.40                                   | Windmill  | 209.80                                             |
| 2        | 5087       | Grahams Bore            | 14955   | PL 110            | 141.0342850       | -28.2851030        | -                                       | Mono Pump | 94.80                                              |
| -        | 5086       | Moon Field Road<br>Bore | 0       | ATP<br>259P       | 141.0346780       | -28.1448710        | -                                       | Mono Pump | -                                                  |

Table 2: Priority 1 and 2 bores observed to be used by third parties (private users) during WBBA works

\* btoc = below top of casing



## 2.0 OBJECTIVES OF THE GWMP

# 2.1 Preamble

Based on decades of field measurements of formation pressures and the ongoing nature of operations in the Cooper and Eromanga Basins, Santos engineers are confident that water pressure gradients through the Cadna-owie Formation, Hooray Sandstone, and Hutton Sandstone are not indicative of large scale reduction in formation pressures throughout the area of interest (Pers.Comm., N. Lemon et al., Santos, 2012).

The database of formation pressure will, as part of this interim GWMP, be compiled, reviewed, and analysed. It is anticipated to provide strong evidence that hydrostatic pressure in the major production zones in the Hutton Sandstone, Cadna-owie Formation and Hooray Sandstone is higher than in the overlying hydrostratigraphic units. If formation pressure gradient data analysis results are as expected, then Santos anticipates there is little risk to the current local private bores.

# 2.2 **Objectives**

The primary objective of groundwater monitoring activities (and this GWMP) is to assess potential impacts to groundwater in order to:

- protect the environment from potentially adverse impacts; and
- protect local private bore production from reduced yield y and assess whether private bores have potentially been impacted from petroleum production activities (Water Act). The Water Act defines water level drawdown *bore trigger threshold* as follows:
  - 5 m decline for consolidated aquifers such as sandstone;
  - 2 m decline for unconsolidated aquifers such as shallow alluvium; and
  - 0.2 m for active springs.

Other objectives of this GWMP are as follows:

- Describe the area of interest to be monitored by the network, including:
  - a hydrogeological conceptual model (HCM); and
  - a hydrostratigraphic summary of relevant aquifers and formations.
- Present the interim groundwater monitoring strategy;
- Present interim water monitoring activities including the interim groundwater monitoring network;
- Present a schedule for reporting of results (in line with "Annual Reporting" obligations).
- Present the response actions if trigger threshold levels are exceeded (including a verification investigation to assess whether the threshold exceedance is the result of petroleum activities).

This GWMP is *not* designed to meet obligations or conditions outlined in specific Environmental Authorities (EAs) or Management Plans.

# 2.3 Limited Period of Applicability

This interim version of the GWMP has a limited applicability period of 18 months from the date of acceptance of the plan by DEHP. During this time, the monitoring requirements outlined in this interim GWMP will be completed in order to better assess an ongoing groundwater monitoring strategy. The relevant results of other works and tasks underway by Santos with regard to groundwater management will be incorporated into the next revision of this plan.



# 3.0 SITE DESCRIPTION AND HYDROGEOLOGY

Information regarding topography and drainage, aquifer recharge and discharge, groundwater quality and climate is contained within the UWIR, which should be read in conjunction with this GWMP.

# 3.1 Hydrogeological Conceptual Model (HCM)

The Cooper and Eromanga basins are two chronologically successive stacked basins. The Cooper Basin is often considered by geologists as not being part of the GAB. However, the upper Formations of the Cooper Basin are included in the Queensland GAB regulation (GAB Resource Operations Plan [ROP], GAB Water Resource Plan [WRP]). The Eromanga Basin is one of the main basins of the GAB; it is laterally extensive and covers the whole of the Cooper Basin. The connection between the two basins is geologically marked by a major discontinuity.

Both the Cooper Basin and Eromanga Basin are multi-layered sedimentary systems comprising alternating layers of sandstone, shale, mudstone and siltstone. The sandstone formations of the Eromanga Basin are generally recognized as water bearing units and where they are of appreciable extent and thickness are defined as aquifers, which yield significant quantities of groundwater to water bores and springs.

The siltstones, shales and mudstones are low permeability rocks and are regionally considered to be aquitards. However, transmissive sandstone beds can be found amongst the mudstones and siltstones, some of them forming water-bearing zones that can yield limited groundwater sources to low yield bores.

The formations can be laterally continuous and are hydraulically connected; however, this may not always be the case due to the variability in the composition of these sedimentary units.

For management purposes, the GAB is subdivided into Groundwater Management Areas (GMA) as defined in the *GAB Hydrogeological Framework for the GAB WRP Area* (DEHP, 2005). Each area is further divided into Groundwater Management Units (GMUs). The identification of GMUs allows for administration of access to water and water entitlements.

# 3.2 Hydrostratigraphy

Santos' tenements are contained mainly within the *Central Management Area* (GMA16) extending into the western part of *Warrego West Management Area* (GMA 17).

The main aquifers and aquitards units are presented on Table 3**Error! Reference source not found.**. The main aquifer groupings, in terms of production of groundwater, include:

- The shallow aquifers of the Quaternary and Tertiary alluvium formations;
- The deeper GAB aquifers of the Eromanga Basin (water supply for irrigation, stock watering and drinking water, and groundwater extraction associated with the production of oil);
- The deeper aquifers of the Cooper Basin (groundwater extraction associated with the production of gas; no known water supply bores installed to these depths).

Access to suitable groundwater resources at shallower depths has resulted in limited water supply development of the main aquifers of the Eromanga Basin. The aquifers of the Cooper Basin are much deeper and are only accessed for the production of gas.

Hydrostratigraphy can only be described in detail for the formations of the Eromanga Basin using information from the DEHP database or from the literature. Insufficient information is available to provide a detailed description of the hydrostratigraphy of the Cooper Basin formations. The descriptions in this report are partially based on information provided by Santos' engineers and geologists based on their experience in the area of interest. Santos' interpretations of formation hydraulic properties occasionally differ from regional interpretations in published literature; however, the technical opinions of Santos staff are important as they have conducted much of the significant investigation of the Cooper Basin.





| GMA Unit                         |                | Unit                                   |                                                                 | Sı | ub-unit                          | Equivalent Formation other parts of the GAE                                                |  |
|----------------------------------|----------------|----------------------------------------|-----------------------------------------------------------------|----|----------------------------------|--------------------------------------------------------------------------------------------|--|
|                                  |                | Gler                                   | ndower Formation                                                |    |                                  |                                                                                            |  |
|                                  |                | Winton Formation<br>Mackunda Formation |                                                                 |    |                                  |                                                                                            |  |
|                                  |                |                                        |                                                                 |    |                                  |                                                                                            |  |
|                                  |                |                                        | ru Mudstone                                                     |    |                                  |                                                                                            |  |
| Central 1 -                      |                | Тоо                                    | lebuc Formation                                                 |    |                                  | Surat Siltstone                                                                            |  |
| Warrego West<br>1                |                | Wal                                    | lumbilla Formation                                              |    | oreena Member<br>oncaster Member | Wallumbilla Formation                                                                      |  |
| Central 2 -<br>Warrego West      |                | Cad                                    | na-owie Formation                                               | Μ  | yandra Sandstone<br>ember        | Cadna-owie Formation,<br>Bungil formation,                                                 |  |
| 2                                | _              |                                        |                                                                 |    | ower Cadna-owie                  | Gilbert River Formation                                                                    |  |
| Central 3 -<br>Warrego West<br>3 | Eromanga Basin | Ноо                                    | Hooray Sandstone                                                |    | urta Formation<br>amur Sandstone | Hooray Sandstone,<br>Mooga Sandstone,<br>Orallo Formation and<br>Gubberamunda<br>Sandstone |  |
|                                  | С<br>Ш         | Wes                                    | tbourne Formation                                               |    |                                  |                                                                                            |  |
| Central 4 -                      |                | Ado                                    | ri Sandstone                                                    |    |                                  | Injune Creek Group                                                                         |  |
| Warrego West                     |                |                                        | khead Formation                                                 |    | oper Birkhead                    |                                                                                            |  |
| 4                                |                | Birk                                   |                                                                 |    | iddle Birkhead                   |                                                                                            |  |
|                                  |                |                                        |                                                                 |    | ower Birkhead                    |                                                                                            |  |
| Central 5 -<br>Warrego West<br>5 |                | Hutt                                   | on Sandstone                                                    |    |                                  |                                                                                            |  |
| Central 6 -                      |                |                                        |                                                                 |    | oper Poolowanna                  | Precipice Sandstone                                                                        |  |
| Warrego West<br>6                |                | Poolowanna Formation                   |                                                                 | Lc | wer Poolowanna                   |                                                                                            |  |
| MAJOR UNCON                      | IFOR           | ΜΙΤΥ                                   |                                                                 |    |                                  |                                                                                            |  |
|                                  |                |                                        |                                                                 |    | Gilpepee Shale                   | Moolayember                                                                                |  |
| Central 7 -                      |                | ï                                      | Tinchoo Formation                                               |    | Doonmulla Member                 | Formation                                                                                  |  |
| Warrego West<br>7                |                | pamerri<br>iroup                       | Arraburry Formation                                             |    | Wimma Sandstone<br>Member        | Clematis Sandstone                                                                         |  |
|                                  |                | Nap<br>G                               |                                                                 |    | Panning Member                   | Rewan Formation                                                                            |  |
|                                  | <u>_</u>       | _                                      |                                                                 |    | Callamurra Member                |                                                                                            |  |
|                                  | Bas            |                                        | <b>Toolachee Formation</b>                                      | T  |                                  |                                                                                            |  |
|                                  | er             |                                        | Daralingie Formation                                            |    |                                  |                                                                                            |  |
|                                  | Cooper Basin   | dno.                                   | Roseneath Shale                                                 |    |                                  |                                                                                            |  |
|                                  | Ŭ              | ษิ                                     | Epsilon Formation                                               |    |                                  |                                                                                            |  |
|                                  |                | Gilgealpa Group                        | Murteree Shale<br>Patchawarra Formation<br>Tirrawarra Sandstone |    |                                  |                                                                                            |  |
|                                  |                | lge                                    |                                                                 |    |                                  |                                                                                            |  |
|                                  |                | Ū                                      |                                                                 |    |                                  |                                                                                            |  |
|                                  |                |                                        | Merrimelia Formation                                            |    |                                  |                                                                                            |  |
|                                  | Mair           | or Aqu                                 |                                                                 |    |                                  | 1                                                                                          |  |
|                                  |                |                                        |                                                                 |    |                                  |                                                                                            |  |

#### Table 3: Hydrostratigraphy of the Area of Interest (UWIR, 2012)





#### 3.2.1 Quaternary and Tertiary Alluvium

The Quaternary and Tertiary alluvium formations cover a large portion of the area of interest; they are often associated with the flat topography of the flood plains and are absent where the Winton Formation outcrops.

The shallow, and often surficial, Quaternary and Tertiary sediments are typically unconfined and form the water table aquifer where they are present. Insufficient groundwater elevation data is available for the Quaternary formations to define the level of connectivity.

The Glendower Formation is the primary aquifer for the Tertiary sediments within the area of interest. The Glendower Formation consists of consolidated sediments comprising sandstones, sandy siltstones and minor conglomerate and mudstones (Australian Stratigraphic Database, Geosciences Australia). The Australian Stratigraphic Database identifies the Whitula Formation as overlying the Glendower Formation; however, the significance of the Whitula Formation in the area of interest is unknown.

Groundwater flow generally follows the topographical profile with the limitations imposed by the fluvial nature of the sediments. As previously reported in the UWIR, the hydraulic gradient is very low. Groundwater quality is variable. Salinity of these aquifers is brackish, with electrical conductivity (EC) values ranging from 3,000 to 7,000  $\mu$ S/cm (based on data from the DEHP database).

#### 3.2.2 Winton Formation (Water-Bearing Unit)

The Winton Formation is considered to be an aquifer since it supplies a number of stock and domestic bores. The depth to the Winton Formation and its hickness (based on DEHP groundwater database) is illustrated in the maps presented in the UWIR (Golder, 2012). The top of the Winton Formation is (according to the DEHP groundwater database) typically encountered in the first 50 m below ground surface (bgs) and its thickness can reach up to 970 m.

Santos' geology team do not consider the Winton Formation to be a significant aquifer in SWQ; at best, they consider it a water bearing unit. Although in much of Queensland the Winton Formation is a significant aquifer, the quality of the Winton Formation as an aquifer appears to diminish westward from central Queensland to SWQ and into South Australia (SA) where it is more appropriately defined as a water-bearing unit (Pers. Comm. N. Lemon, Santos, November 2011). The top and bottom of the Winton are so poorly defined that it is difficult to be confident that water production currently assigned to the Winton Formation comes from the overlying Tertiary (Eyre Formation in SA) or the underlying Mackunda Formation. This is further supported in SA by the findings of Gravestock and al. (1995).

Whether or not the Winton Formation is continuously present in the area of interest, water quality from this unit, based on information from the DEHP database, is of fair to poor and is quite variable. The water quality reported for the Winton Formation is typically brackish to saline with EC values ranging from 900 to 13,000  $\mu$ S/cm. The direction of groundwater flow in this aquifer is generally to the south west.

#### 3.2.3 Upper Cadna-owie Formation (Aquifer)

The Cadna-owie Formation is considered to be a major GAB unit. Its upper section, the Wyandra Sandstone, is an aquifer; however, its thickness is limited across SWQ. The Lower Cadna-owie is considered an aquitard.

The proportion of productive sandstone aquifers in this unit is much lower than that in the underlying Hooray Sandstone and the spatial variability even greater. The Wyandra Sandstone is recognised as the productive layer of the formation. It consists of permeable shallow marine sandstone, which is most extensive in the eastern part of the Cadna-owie Formation (BRS, 2000).

The few data points available in the DEHP groundwater database seem to indicate fresh to slightly brackish water quality within the Wyandra Sandstone. Insufficient water level information is available to describe water flow patterns and groundwater elevations in order to create a hydrogeological map.





Historically, this unit has been described as non-artesian; however the DEHP groundwater database identifies a few artesian bores in the Wyandra Sandstone. As described in the objectives section of this GWMP, formation pressure data will be reviewed to help better define artesian or non-artesian zones, hydraulic gradients, water levels, and other hydrogeological conditions, if possible.

#### 3.2.4 Hooray Sandstone (Aquifer)

The Hooray Sandstone is a major GAB formation; in the area of interest it is also considered to be a major aquifer. Oil reservoirs and a minor gas reservoir are also contained with this unit.

Two sub-units are identified in the Hooray Sandstone:

- The Murta Formation, equivalent in other GAB basins to the Mooga and Gubberamunda Sandstones (significant aquifer formations); however in the area of interest it is considered to be an aquitard. The main confining unit is a siltstone bed at the base of the Murta Formation which is laterally extensive across the Cooper Basin. Oil and some gas reservoirs are found in the Murta Formation. The McKinlay Member, which belongs to the Murta Formation, is not always present in SWQ and contains minor oil reservoirs.
- The Namur Sandstone is an aquifer and the major water bearing unit of the Hooray Sandstone. Oil is also found in this unit.

The water quality in the Hooray Sandstone is generally fresh to slightly brackish, with EC values (DEHP database) ranging from 675 to 3,930  $\mu$ S/cm. The EC values are generally consistent over time as a few bores have several salinity measurements recorded over a 40 year period.

A number of water-bearing zones within the Hooray Sandstone may be artesian. Groundwater bores completed in this unit are generally concentrated to the south east of the area of interest. No water level and salinity data are available within Santos' tenements.

The UWIR findings indicate that the groundwater flow direction is to the south east and that generally the water salinity is fresh to slightly brackish.

The Hooray Sandstone seems to be an aquifer of higher yield than the overlying aquifers and a number of town water supply bores are completed within the Hooray Sandstone.

#### 3.2.5 Westbourne Formation, Adori Sandstone and Birkhead Formation

Little hydrogeological information is available on the Westbourne Formation, Adori Sandstone and Birkhead Formation in the area of interest.

The Westbourne Formation is generally considered to be an aquitard (confining bed) of homogeneous character (lacustrine deposits associated with a large transgression). However, in the south east section of the area of interest, a number of private bores are completed in the Westbourne Formation, possibly in some of the minor sandstone beds of the formation.

The Adori Sandstone is an aquifer in the area of interest; however, insufficient information is available to characterise it further.

The Birkhead Formation is a succession of non-continuous confining beds and water bearing sandstone units.

Water quality data for these formations is not available in the DEHP database. Santos operations include produced water from these formations, but water quality data has not been recorded for the produced water.





#### 3.2.6 Hutton Sandstone

The Hutton Sandstone is a significant GAB aquifer. Its depth, however, of approximately 2,000 mbgs in the area of interest, precludes access other than for petroleum activities. The groundwater flow direction is expected to be towards the south west (i.e. consistent with the flow of the major GAB units as described in the literature). Note: there is insufficient water level data on the Hutton Sandstone in the area of interest to characterise groundwater flow further.

No water quality data are available for this formation in the area of interest.

#### 3.2.7 **Poolowanna Formation**

Also referred to as the Basal Jurassic Formation (older name in the geologic literature), the Poolowanna Formation is the equivalent of the Precipice Sandstone (in SE Queensland). Groundwater flow is expected to be to the south west (i.e. consistent with flow of the major GAB units as described in the literature).

No water quality data are available for this formation in the area of interest.



#### 4.0 **GROUNDWATER MONITORING STRATEGY**

This GWMP provides the location, frequency and monitoring type for each monitoring bore. A standard method for the design of this GWMP has been followed using guidelines referenced in Section 7.0. The strategy and monitoring actions presented herein are considered a reasonable starting proposal for this interim GWMP.

Development of the monitoring strategy will be carried out within the three year revision cycle of the UWIR with consideration of the intervening WBBA results. The interim GWMP as proposed here, will apply for an approximate 18 month period, following approval from DEHP. If warranted, a revised GWMP may follow and again the duration of applicability of that revision would be approximately 18 months, thus bringing it in line with the revision cycle of the UWIR.

#### 4.1 Interim Strategy

The interim groundwater monitoring strategy for Santos petroleum tenements is summarised as follows:

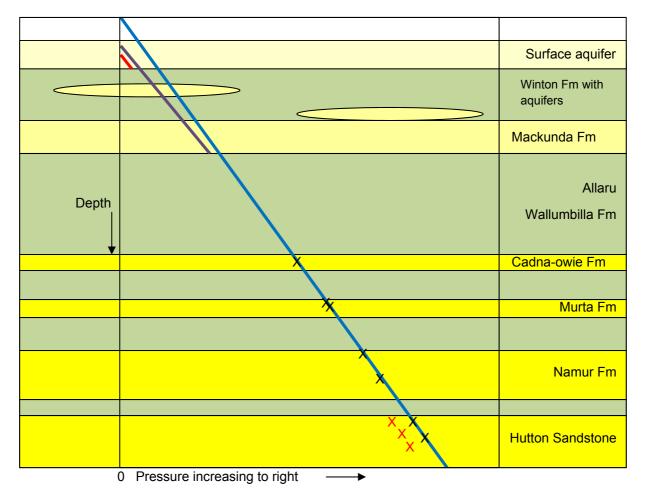
- Compilation and analysis of existing formation pressure data: Compile and review existing formation pressure data across the area of interest to estimate groundwater elevation and pressure trends, hydraulic gradients, and potential zones of impact or evidence of depressurisation in formations that underlie aguifers accessed for water supply. Santos has a database of formation pressures in many of the water-bearing levels within the Eromanga Basin that will be used to define the potential changes to water levels required by the Water Act. This task will include tracking, collection, and analysis of ongoing production well drilling data and will assist in filling data gaps related to formation pressures.
- Undertake interim water monitoring activities: Collection and reporting of baseline data by undertaking water monitoring activities using 15 existing bores.
- Revise the interim GWMP and strategy: Based on the results of previous tasks (bullet points 1 and 2), the GWMP will be reviewed and amended after the interim period, if warranted, During this task the groundwater monitoring strategy will also be revisited, which will include consideration of verification of bore construction along with engineering or construction fieldworks required to further develop the monitoring network, if necessary.
- Revise the UWIR and GWMP: As required by the Water Act, revise the UWIR and GWMP on a three year cycle.

Strategic tasks 1 and 2 are discussed in the following sections.

#### 4.2 **Existing Formation Pressure Data**

Most oil and gas companies, such as Santos, measure formation pressure in a number of water-bearing formations in each well drilled, either by drill stem test (DST), repeat formation tester (RFT) or Formation Micro Tester (FMT). This is performed to assess the likely thickness of the oil or gas column found at any particular level. The assessment is done by comparing the pressure in the hydrocarbon-bearing zone with the expected water pressure, predicted by the water pressure-depth line or gradient. Models for predicting the influence of oil and gas and associated water production at depth require input data on the pressure transmissibility of the formations between oil and gas production zones and aquifers used by private bores. In the case of SWQ, between the main Glendower and Winton aquifers, which account for the majority of groundwater supply in the area of interest, and the petroleum reserves in the Murta, Namur, (Hooray) and Hutton from which oil is produced.

Many wells have had formation pressures measured over many years in the Cadna-owie Formation to establish water pressure-depth lines and this data will be evaluated to assess if depletion from underlying hydrocarbon production zones has influenced the aquifers used by private bore users.


10 April 2013





If no depletion is observed at the Cadna-owie Formation level, then it will be inferred that oil and gas production has not influenced the aquifers above that level. Where water supply bores access the same aquifers as those associated with hydrocarbon production, Santos' formation pressure data will provide a direct indication of the water pressures in that area. The extrapolation of the water gradient to the surface provides an indication of the level to which water will now rise compared to what it would have been in the past. In other words, measured formation pressure can be used to assess the fall in water level in a water supply bore induced by the combined extraction by agricultural and petroleum industries.

Figure 2 below illustrates how each aquifer will have its own natural pressure-depth line, controlled by the level of water recharge to the basin and the salinity of the water. Salinity controls the slope of the line. The surface aquifers (red line for the Tertiary Sediments and Glendower Formation) and the Winton-Mackunda aquifer (brown line) each have their own pressure-depth line.



# Figure 2: General Schematic of Observed Aquifer and Oil Field Pressure Trends (from Pers. Comm. with Dr. N. Lemon, Santos Principal Geologist, 2012)

The aquifers in the Cadna-owie, Murta, Namur and Hutton Sandstone are connected close to the recharge area in eastern Queensland and have similar salinities and the pressures lie on the same pressure –depth line (black Xs in Figure 2). The Murta Formation and Namur Sandstone combine in places and are called the Hooray Sandstone. Extrapolation of the pressures measured, using the FMT tool, to the surface defines the pressure line and determines whether the water will flow to the surface or to what level it will rise in a bore accessing this formation. Pumping for water and oil production can reduce the pressure in the vicinity of that production, as indicated by the theoretical red crosses in the Hutton Formation, thus establishing a new depleted pressure-depth line. If any of the aquitards (shown as green) allow for inter-aquifer water transfer, pressure depletion at depth should register in the overlying aquifers.





Santos will compile and review historical formation pressure data across the area of interest to assess groundwater elevation and pressure trends, hydraulic gradients, and potential zones of impact or evidence of depressurisation in formations that underlie aquifers used for the majority of private and public bores. In addition, Santos will capture, store, assess and report pressure data collected during oil and gas well drilling undertaken during the interim period, in order to assess pressure trends across the oil and gas fields.

# 4.3 Interim Water Monitoring Activities

#### 4.3.1 Aquifers to be Monitored

The UWIR modelling estimates that the aquifers most likely to be impacted by Santos' activities include the shallow Quaternary and Tertiary aquifers, as well as the Cadna-owie Formation-Hooray Sandstone aquifers. Aquifers that are accessed for water supply within the area of interest should be targeted for monitoring. Monitoring of water quality and water levels (or pressures) should focus on the following aquifers:

- Tertiary and Quaternary sedimentary formations to include the Glendower and Winton-Mackunda Formations. The groundwater in these water-bearing units varies from semi-confined to confined. Approximate depths to the tops of these layers are 25 to 50 mbgs with base of the units ranging to over 600 mbgs. (Assumed as applicable to the 2 meter drawdown trigger level until confined aquifer conditions are encountered d in a specific water monitoring bore.)
- Cadna-owie Formation and Hooray Sandstone: Approximate depth to the top of this layer range from 700 to 1,200 mbgs. (Applicable to the 5 meter drawdown trigger level.)

As previously discussed, pressures in the Westbourne Formation, Birkhead Formation and Hutton Sandstone will be recorded during the drilling of oil and gas wells, as described in Section 4.2. Herein, this is considered a separate task and is not discussed further in the context of a 'Water Monitoring Activity'.

The UWIR concluded that the impact of water extraction in the underlying Hutton Sandstone and Cooper Basin does not extend beyond the location of the extraction wells.

### 4.3.2 Interim Monitoring Network

The interim monitoring network consists of the 15 bores (presented in Table 1) classified as 'fair' for monitoring purposes during the WBBA (Priority 1 and 2 Bores). However, the following amendments were made to create the interim monitoring network:

- Certain bores classified as 'fair' have been excluded from the interim monitoring network as follows:
  - Three bores (5039, 5040 and 5041), as they may be influenced by local impacts and are not considered to be regionally representative.
  - A single bore (5026) has been excluded based on geographical location.
  - Two bores (5057 and 5058) have been excluded as they were observed to be dry during WBBA works.
  - A single bore (5042) has been excluded from the interim monitoring network based on the condition of head works.
- A single bore (5033) was included as this was identified in the UWIR as a bore potentially impacted by petroleum activities.
- A single bore (5043) has been included based on geographical location.
- Three additional private bores (5077, 5076 and 5087) which were classified 'poor' have been included as they target single known aquifers (Winton and Glendower Formations), based on DEHP data.



Two additional private bores (5011 and 5074) which were classified 'poor' have been included as they target active private users.

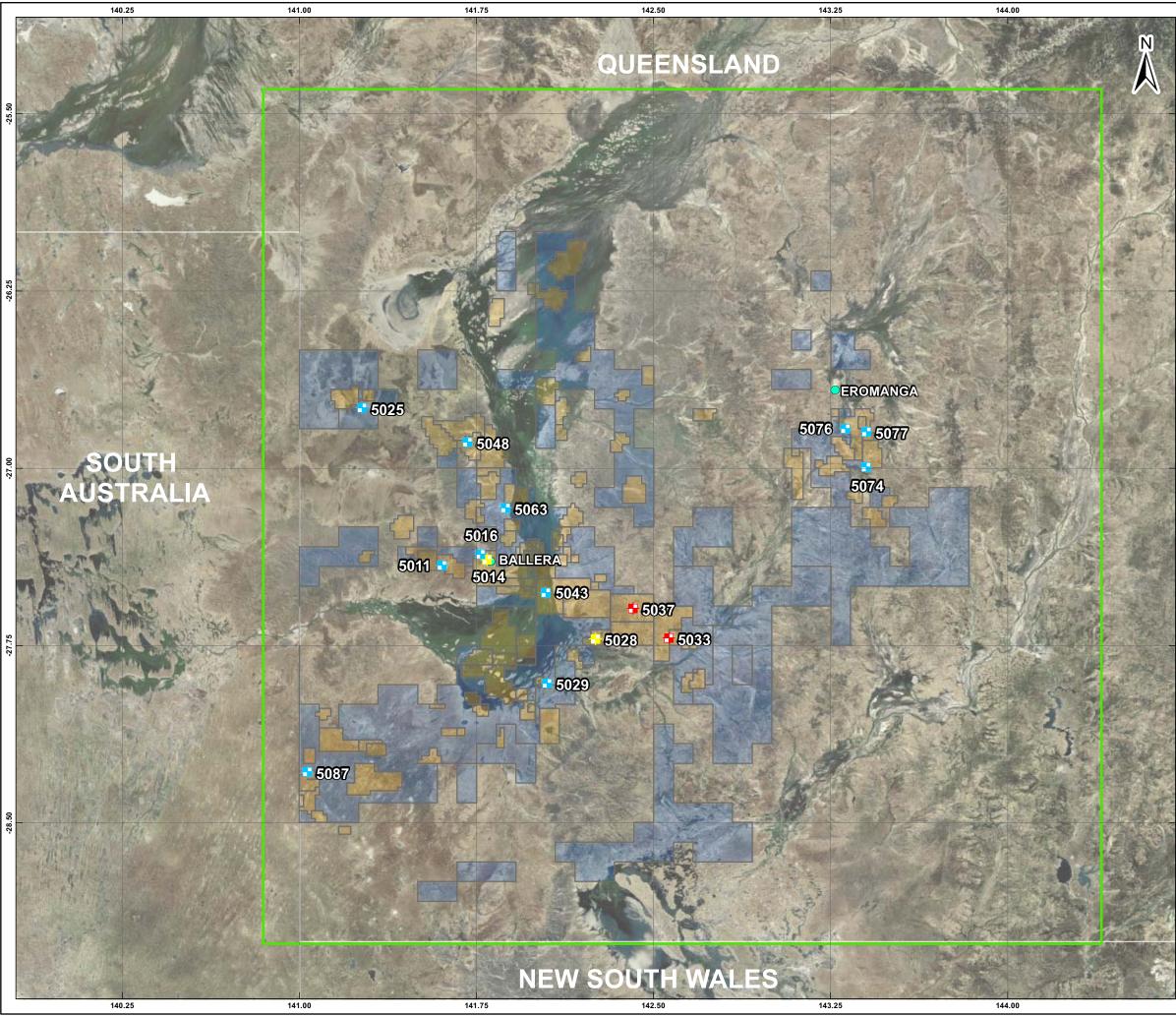
The interim proposed groundwater monitoring network is presented in Table 4. However, undertaking water monitoring activities at these bores is subject to landowner agreement.

The 15 existing bores considered as network candidates meet certain minimal criteria, as follows:

- Criteria described in the WBBA.
- Contained water during WBBA fieldworks.
- Geographical location and proximity to production zones modelled in the UWIR to include the estimated IAA and LAA.
- Despite paucity of bore construction data, a bore's potential to be screened in target aquifers or aquifers of interest.
- Ease of access and safety for monitoring and sampling purposes.
- Potential for network boreholes to undergo headwork improvement to provide future access for water level and/or water sampling equipment.






Table 4: Interim Santos Groundwater Monitoring Network

| WBBA ID | Bore Name            | DEHP<br>RN | Santos<br>Permit | Last Water<br>Depth<br>(m btoc) <sup>1</sup> | *Screen<br>Interval (m)  | *Depth (m) | Comments/ Possible Target<br>Aquifer from DEHP <sup>2</sup> |
|---------|----------------------|------------|------------------|----------------------------------------------|--------------------------|------------|-------------------------------------------------------------|
| 5029    | Keegan's Bore        | -          | PL 78            | -                                            | -                        | 48         | No DEHP data                                                |
| 5011    | Palara Bore          | 6057       | PL 59            | -                                            | No screen<br>(open hole) | 243.80     | No DEHP data                                                |
| 5025    | Fork Tree Bore       | -          | ATP 259P         | -                                            | -                        | 123.4      | No DEHP data                                                |
| 5074    | Cherry Cherry Bore 1 | 6369       | PL 39            | -                                            | No screen<br>(open hole) | 285.40     | No DEHP data                                                |
| 5014    | Ballera 2 Bore       | 23565      | PL 61            | -                                            | No data                  | 1518.5     | Multiple to include<br>Hutton SS<br>(Hot bore water noted)  |
| 5016    | Ballera 1 Bore       | -          | PL 61            | 31.86                                        | -                        | 89         | No DEHP data                                                |
| 5037    | Jackson 6A           | 23321      | PL 23            | -                                            | No data                  | 1265.2     | No DEHP data                                                |
| 5043    | Naccowlah West 4     | 50727      | PL 25            | -                                            | Inconsistent<br>data     | 92         | Winton / Glendower Fm                                       |
| 5048    | Barrolka Bore 2      | -          | PL 112           | 17.5                                         | -                        | 114        | No DEHP data                                                |
| 5028    | Irtalie 1            | 23570      | PL 36            | -                                            | No data                  | 1914.6     | Hutton SS                                                   |
| 5063    | Durham Downs Bore R2 | -          | ATP 259P         | -                                            | -                        | 60         | No DEHP data                                                |
| 5077    | Walla Wallan Bore 5  | 6373       | PL 295           | 15.4                                         | No screen<br>(open hole) | 156.7      | Winton / Glendower Fm                                       |
| 5076    | Tarbat Job No 1947   | 12036      | PL 295           | 30.4                                         | No data                  | 209.8      | Winton / Glendower Fm                                       |
| 5087    | Grahams Bore         | 14955      | PL 110           | -                                            | 86.6 – 89.6              | 94.8       | Winton / Glendower Fm                                       |
| 5033    | Coothero Water Bore  | -          | PL 33            | 9.2                                          | -                        | No Data    | TBD                                                         |

Footnotes:

1) btoc = below top of casing
2) From the DEHP Stratigraphy database and does not imply the bore is actually screened in this aquifer interval.
\*Reported data from records including DEHP database, Queensland Digital Exploration Reports (QDEX) and historic documents and has not been measured in the field.





File Location: S:\Santos\Project\D Production Fig\127666003 - GWMP\002 - GWMP\REV 1 Figures - 17072012\127666003-002-R-F0002-Rev1.mxd INTERIM GROUNDWATER MONITORING PLAN SANTOS COOPER BASIN **OIL & GAS FIELDS,** SOUTHWEST QUEENSLAND

#### SANTOS LTD

## INTERIM GROUNDWATER MONITORING NETWORK

#### LEGEND

- Existing Water Bore Possibly Screened In Tertiary Sediments Winton Formation **.**
- Existing Water Bore Possibly Screened In Hooray Sandstone Canda-Owie Formation
- Existing Water Bore Possibly Screened In Hutton Sandstone
- Production Licence
- Exploration Permit
- Area of Interest
- Township

#### COPYRIGHT bing

(c) 2010 Microsoft Corporation and its data suppliers.

Aerial image sourced from Bing Maps, date sourced 13.03.2012.

State border data sourced from Geoscience Australia, date sourced 21.10.2011.

(C) Copyright Commonwealth of Australia (Geoscience Australia) 1993.

Township data sourced from MapInfo Street Pro.

| 0        | 5 | 10   | 20       | 30  | 40  | 50         | kilometres |
|----------|---|------|----------|-----|-----|------------|------------|
| S        | С | ALE  | E (at A  | (3) | 1:1 | ,7         | 50,000     |
| <u> </u> |   | dina | to Sunto |     |     | <b>D</b> ۸ | 1004       |

DATE: DRAWN:

PROJECT: 127666003 17 JUL 2012 KB CHECKED: BC / DG



**FIGURE 3** 



#### 4.3.3 Monitoring Equipment and Methods

Monitoring requirements are to collect baseline data as a reference as to whether impacts similar to those predicted in the UWIR (Golder, 2012) (or otherwise) to the groundwater systems are occurring. Impacts will be assessed by comparing their magnitude with the background conditions and drawdown trigger thresholds. This GWMP is the second step in acquiring data to establish background conditions. The parameters considered for routine measurement are:

- Water level or piezometric head values; and
- Water quality parameters to include field measurements and laboratory analysis (see Table 5).

Where accessible with existing infrastructure, water level loggers (data loggers with pressure transducers) will be installed in the interim monitoring network bores. Data loggers will be installed at ground surface to record atmospheric pressure data. The data will be downloaded from each data logger during the scheduled quarterly groundwater monitoring event (GME). Where water level data loggers are not practical, a pressure gauge will be installed at the surface.

Where accessible, the interim groundwater network will have dedicated pumps installed in order to expedite GMEs and ensure better quality control of samples. Low flow bladder pumps (or similar) and accessories specified for saline and corrosive water environments will be installed.

The remaining bores will have water levels measured using manual water level probes during the scheduled quarterly GME.

A summary of monitoring methods is contained in Table 6, while further detail on sampling methods will be explained in a Work Plan, as described in Section 6.0.

#### 4.3.4 Groundwater Quality Monitoring Suite

The UWIR defined standard monitoring suites including "Gases" and "Groundwater Base". The purpose of these suites is to streamline groundwater monitoring and assist with consistency of the monitoring activities and collected dataset. During interim water monitoring activities, the groundwater baseline suite will be used to establish baseline conditions, consistent with the UWIR. Once a robust baseline is established and upon subsequent reviews of this GWMP, it may be considered reasonable to reduce the number of parameters measured, or conversely, expand the number of parameters measured, based on field observations or new information.

The groundwater baseline suite consists of a set of field water quality measurements taken with calibrated multi-parameter water quality meters, along with field observations to be made during routine monitoring. Field measurements will be used in conjunction with the laboratory analytical suite which includes a range of water chemistry analytes. This monitoring will enable the definition of the basic groundwater quality characteristics. Table 5 below lists the baseline monitoring suite:





| Table 5: Monitoring Suites Analytes                                                                |
|----------------------------------------------------------------------------------------------------|
| Analytes                                                                                           |
| Colour                                                                                             |
| Gases (C1 – C4) (inc Methane)                                                                      |
| Unionised Hydrogen Sulphide (not NATA Accredited)                                                  |
| Free and Total CO2                                                                                 |
| Free Chlorine                                                                                      |
| Bromide                                                                                            |
| Temperature                                                                                        |
| рН                                                                                                 |
| Conductivity                                                                                       |
| Total Dissolved Solids                                                                             |
| Alkalinity<br>Total Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 |
| Chloride                                                                                           |
| Fluoride                                                                                           |
| Silica                                                                                             |
| Residual Alkali (calc)                                                                             |
| Ionic Balance                                                                                      |
| Major Cations – Ca, Mg, Na, K                                                                      |
| Major Anions – CI, SO <sub>4</sub> ,                                                               |
| Sodium Absorption Ration (SAR)                                                                     |
| Total Hardness (calc)                                                                              |
| Reactive Phosphorus                                                                                |
| Nitrite                                                                                            |
| Nitrate                                                                                            |
| Ammonia as N                                                                                       |
| Total Nitrogen (inc TKN/NOx)                                                                       |
| Total Phosphorus as P                                                                              |
| Total Organic Carbon                                                                               |
| Dissolved Organic Carbon                                                                           |
| Standard Plate Count<br>(21°C & 36oC)                                                              |
| Sulfate reducing bacteria**                                                                        |
| Hg                                                                                                 |
| Total Metals (including digest)<br>As, Ba, Be, Cd, Cr, Co, Cu, Mn, Ni, Pb, V, Zn                   |
| Additional Metals – Fe, Se, B, Sr, Al, Mo, Sn, U, Li                                               |
| Ethanol                                                                                            |
| TPH(C6-C9) & TRH<br>(C6-C10)/BTEX                                                                  |
| TPH (C10-C36) &<br>TRH (C10-C40)/PAH                                                               |
|                                                                                                    |





The fieldwork methodology for gas and groundwater sample collection and a quality assurance and quality control will be included in a Detailed Work Plan, which will be developed prior to monitoring works.

Groundwater samples will be tested at a National Association of Testing Authority (NATA) approved laboratory.

#### 4.3.5 Monitoring Frequency and Period

Starting after the GWMP has received approval by DEHP and during the interim 18 month period of its applicability, groundwater monitoring activities will be undertaken quarterly to collect a baseline dataset, with the monitoring frequency subject to later adjustment.

In a letter from Queensland Government, Energy Resources, Environment and Natural Resource Regulation Manager, Josh Lean, dated 8 May 2012; (*Direction to amend or modify an Underground Water Impact Report of Final Report*) to Santos, monthly 'monitoring' was requested. This interim GWMP proposes that quarterly groundwater quality, manual water level monitoring and download of automated recording will be more efficient and just as effective. This is based on outcomes of the predictive impact modelling conducted as part of the UWIR.

The Cooper-Eromanga Basin groundwater system is a slow acting hydrogeological system. In that regard, it has been modelled that groundwater level/pressure changes over a period of anything less than 3 months will not be meaningfully to measure. Potential impacts are calculated to be minimal, local, and slow in propagating through the aquifer systems, both laterally and vertically. The findings from the UWIR and historical monitoring data support this position.

Monitoring dates may vary, to capture potential seasonal influences. The following interim frequencies for water monitoring activities are as follows:

- Water levels (pressures):
  - Daily recording where automated recording is undertaken;
  - Quarterly for the interim period when manual recording and data collection is undertaken;
  - Longer Term: To be determined thereafter.
- Groundwater quality:
  - Quarterly for the interim period; and
  - Longer Term: To be determined thereafter.

If a trigger level for drawdown is exceeded a detailed response plan will be prepared that conforms to regulatory requirements with regards to verification and reporting, as outlined in Section 5.0.

NOTE: As impacts to underground water may continue over the life of Santos' petroleum activities, groundwater monitoring should be undertaken until after Santos provides a notice of closure for the petroleum tenements. The period of time for which groundwater monitoring will continue after tenement closure will depend on the outcomes from the future relevant UWIR.

#### 4.3.6 Summary of Interim Water Monitoring Activity

The interim strategy includes interim water monitoring activities, as summarised in Table 6 below:





#### SANTOS - COOPER BASIN OIL & GAS FIELDS - GWMP

| WBBA<br>ID | Bore<br>Name                | Manually<br>Measure<br>Water<br>Level | Install<br>Bladder<br>Pump | Field<br>Measure<br>Water<br>Quality | Collect<br>Sample for<br>Laboratory<br>Testing | Install<br>Automated<br>Water<br>Level<br>Device | Comment                                                                         |
|------------|-----------------------------|---------------------------------------|----------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|
| 5011       | Palara<br>Bore              | No                                    | No                         | Quarterly                            | Quarterly                                      | No                                               | Windmill                                                                        |
| 5014       | Ballera 2<br>Bore           | No                                    | No                         | No                                   | No                                             | No                                               | Further<br>inspection only.<br>Hazard<br>assessment of<br>artesian hot<br>water |
| 5016       | Ballera 1<br>Bore           | Quarterly                             | Yes                        | Quarterly                            | Quarterly                                      | Yes                                              | -                                                                               |
| 5025       | Fork Tree<br>Bore           | Quarterly                             | No                         | Quarterly                            | Quarterly                                      | No                                               | -                                                                               |
| 5028       | Irtalie 1                   | No                                    | No                         | Quarterly                            | Quarterly                                      | No                                               | -                                                                               |
| 5029       | Keegan's<br>Bore            | Quarterly                             | Yes                        | Quarterly                            | Quarterly                                      | Yes                                              | Repair head<br>works                                                            |
| 5033       | Coothero<br>Water<br>Bore   | No                                    | No                         | Quarterly                            | Quarterly                                      | Yes                                              | Install pressure<br>gauge, data<br>logger and<br>fittings.                      |
| 5037       | Jackson<br>6A               | No                                    | No                         | No                                   | No                                             | No                                               | Further inspection only.                                                        |
| 5043       | Naccowlah<br>West 4<br>Bore | Quarterly                             | Yes                        | Quarterly                            | Quarterly                                      | Yes                                              | Fieldwork to<br>modify head<br>works                                            |
| 5048       | Barrolka<br>Bore 2          | Quarterly                             | Yes                        | Quarterly                            | Quarterly                                      | Yes                                              | -                                                                               |
| 5063       | Durham<br>Downs<br>Bore R2  | Quarterly                             | Yes                        | Quarterly                            | Quarterly                                      | No                                               | Fieldworks to<br>modify head<br>works                                           |
| 5074       | Cherry<br>Cherry<br>Bore 1  | No                                    | No                         | Quarterly                            | Quarterly                                      | No                                               | Windmill                                                                        |
| 5076       | Tarbat Job<br>No 1947       | Quarterly                             | No                         | Quarterly                            | Quarterly                                      | No                                               | Windmill                                                                        |
| 5077       | Walla<br>Wallan<br>Bore 5   | Quarterly                             | No                         | Quarterly                            | Quarterly                                      | No                                               | Windmill                                                                        |
| 5087       | Grahams<br>Bore             | Quarterly                             | No                         | Quarterly                            | Quarterly                                      | No                                               | -                                                                               |

#### Table 6: Summary of Interim Water Monitoring Activities

- = no comment





# 5.0 **REPORTING REQUIREMENTS**

Water monitoring analytical data will be reviewed and analysed following each monitoring event on a quarterly basis. Groundwater Monitoring Assessment Reports will be submitted to Santos and DEHP annually as part of the "Annual Returns" obligations for monitoring data reporting.

**Quarterly factual updates**, which compare water level to drawdown trigger thresholds, will be prepared by qualified environmental and groundwater technical staff and submitted to Santos.

The **Annual Report** will also be prepared by qualified environmental and groundwater technical staff and peer reviewed by senior authorised, technical personnel. The Annual Report will address, at a minimum:

- A summary of the previous 12 months monitoring data with a comparison of the current data to previous results and drawdown trigger threshold levels and water quality guidelines;
- An evaluation/explanation of data from each monitoring location;
- Proposed changes to monitoring strategy, goals and changes to site conditions; and
- Action(s) proposed or taken to minimise the environmental risk from any trigger exceedance identified by the monitoring program.

Reporting of historical and recent formation pressure data and assessment of trends, as discussed in Section 4.2, will be undertaken by appropriately qualified staff and peer reviewed by senior authorised, technical personnel. This report will accompany the Annual Report.

### 5.1 Response Actions if Private Bore Impacts Occur

The Annual Report will, if applicable, also contain the response actions taken by Santos if the drawdown trigger threshold levels are exceeded that are determined to be the result of petroleum activities. If trigger thresholds are exceeded, the following actions will be implemented:

- Repeat sampling and/or field measurement to confirm the extent of drawdown or available water column;
- Identify the specific extent of the impact and the bore(s)s impacted;
- Establish whether the trigger level that has been exceeded has resulted in impairment of the bore function such that it is unfit for its intended purpose;
- Establish the primary and secondary factors contributing to the decrease in water levels;
- Provide written notification to each landowner and lessee/ occupier that is, has been or is reasonably likely to be affected by the event; and
- Provide written notification to DEHP.

# 5.2 **Private Bore Impacts Confirmation**

In the event that further assessment indicates a bore owner has been unduly impacted as a result of petroleum activities, either in terms of a significantly reduced bore yield (quantity), or degradation of water quality such that it is unsuitable for its intended use, the following "make good" actions will be considered in consultation with the bore owner and regulatory authorities, in order of preference:

 Re-setting the pump at a deeper level within the bore to access further available water column or replace the pump with a more efficient type;





- Installation of a replacement bore, if the condition of the original bore is such that reconditioning and/or deepening of the bore is not possible, or if an alternative location on a bore owner's property is less affected by operations;
- Provision of a replacement water supply of suitable quality to the bore owner to compensate for loss of yield in their water supply bore (this may be treated associated water); or
- Provide financial compensation to the bore owner, equivalent to the loss incurred due to the diminished bore yield or water quality (e.g. loss of agricultural productivity).

Alternative options may be available on a site-by-site basis, such as capping and piping of flowing artesian bores to increase water pressure. In general, Santos will negotiate with the bore operator and/ or the bore owner to establish a suitable course of action.





## 6.0 ADDITIONAL DOCUMENTS

Prior to groundwater sampling and monitoring field works, a Sampling and Analysis Plan (SAP) will be developed for the area of interest. The method of water sampling required will comply with that set out in the most recent version of the Department of Environment and Resource Management's (now DEHP) *'Monitoring and Sampling Manual 2009 – Environmental Protection (Water) Policy,* Version 2, September 2010" as amended from time to time.

Further guidance on groundwater and surface-water sampling protocols are contained in *Groundwater* Sampling and Analysis – A Field Guide (Geoscience Australia, 2009) and the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 2000). The SAP will address the following topics:

- field methods procedure and QA/QC program;
- parameters to be measured;
- location of sampling points;
- field sampling procedures;

- sampling event logistics;
- site access requirements;
- laboratory data quality assurance and control plan; and
- Santos data management procedure for sample results.

To coordinate with the SAP, a Detailed Work Plan will be developed for fieldworks and will include the following elements:

Health and Safety, Environment Plan

The health and safety, environment plan (HaSEP) for activities at the site will be developed in consultation with the Santos employees and contractors undertaking the work and forms part of the work plan. The HaSEP is a working document and is subject to continual review and update. The HaSEP will present general requirements for works at the site.

Land Access Agreement

Santos previously compiled known bore ownership information during WBBA works. For future works, contact (by phone and email or letter) with land owners (if applicable) will be made indicating their borehole has been included in the groundwater monitoring network. If private bore owners agree to the use of their bores, then they will be notified when works are scheduled to be undertaken. Land access will be formally handled by Santos and activities will not be undertaken without prior landowner agreement. At a minimum, the plan will address the following items:

- Technical Specification (if required); when installing and operating field equipment.
- Completion of applicable permits to allow field works to lawfully proceed.
- Sampling team and training requirements.
- Logistics Plan to include mobilisation of staff, subcontractors, equipment and samples personnel.



#### SANTOS - COOPER BASIN OIL & GAS FIELDS - GWMP

# 7.0 **REFERENCES**

DERM (DEHP), 2005 a, GAB Hydrogeological Framework for the GAB WRP Area, QLD Department of Environment and Resource Management (Department of Environment and Heritage Protection)

DERM (DEHP), 2007, Water Monitoring Data Collection Standards, Queensland Department of Environment and Resource Management (Department of Environment and Heritage Protection).

Geoscience Australia, 2009, Groundwater Sampling and Analysis – A Field Guide Geoscience Australia, Australian Government

Golder, 2011a, Underground Water Impact Report for Santos Cooper Basin Oil and Gas Fields, SW QLD (Reference 117636010-3000-001-Rev-1) [UWIR]. Golder Associates Pty Ltd.

Golder, 2011b, Santos South West Queensland, Regional Water Bore Baseline Assessment Work Plan (Reference 117666006-001-R-Rev0), Golder Associates Pty Ltd.

Golder, 2012, Santos South West Queensland, Regional Water Bore Baseline Assessment Report (Priority 1 and 2 Bores) (Reference 117666006-019-R-Rev0), Golder Associates Pty Ltd

QLD, 2011, Queensland Water Act 2000 (Reprinted in June 2011) Office of the Queensland Parliamentary Counsel

QLD, 2012, Letter to Santos: Direction to amend or modify an Underground Water Impact Report of Final Report. From Josh Lean, Energy Resources, Environment and Natural Resource Regulation Manager, Queensland Government

QWC, 2012, Surat Underground Water Impact Report, Consultation Draft, Prepared by: Coal Seam Gas Water, State of Queensland (Queensland Water Commission)

SA EPA, 2006, Guidelines: Regulatory monitoring and testing. Monitoring plan requirements, South Australia Environmental Protection Authority

SA EPA, 2006, Guidelines: Regulatory monitoring and testing. Reporting requirements, South Australia Environmental Protection Authority

SA EPA, 2007, Guidelines: Regulatory monitoring and testing. Groundwater sampling, South Australia Environmental Protection Authority

Standards Australia 1988, AS/NZS 5667.11:1998 Water quality - Sampling - Guidance on Sampling of Groundwaters





# 8.0 LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the limitations in Appendix A.



# **Report Signature Page**

#### **GOLDER ASSOCIATES PTY LTD**

Senior Environmental Consultant

Principal Hydrogeologist

DG;BMC/MP;RKH;LJ/kp

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

i:\hydro\2012\127666003 - santos gwmp\correspondence\correspondence out\127666003 002 groundwater monitoring plan\127666003-002-r-rev3\_gwmp.docx

Golder

sociates



SANTOS - COOPER BASIN OIL & GAS FIELDS - GWMP





#### LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

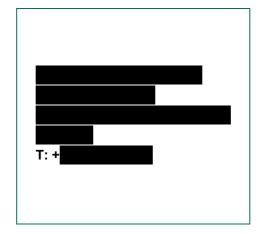
Conditions may exist which were not detected given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between assessment locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time the information is collected. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments, designs, and advice provided in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

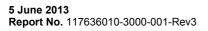

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document. At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

#### Africa

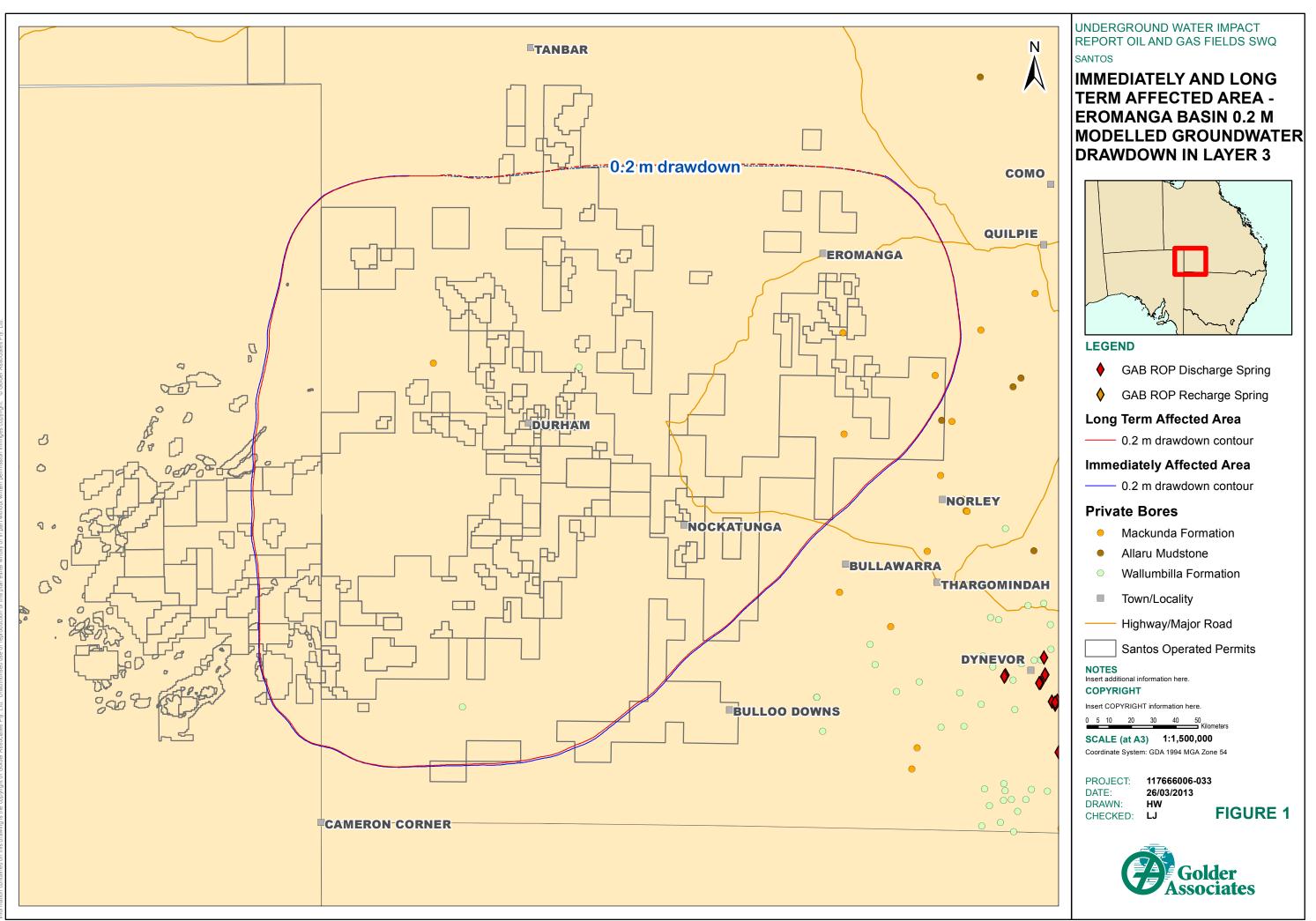
Asia Australasia Europe North America South America



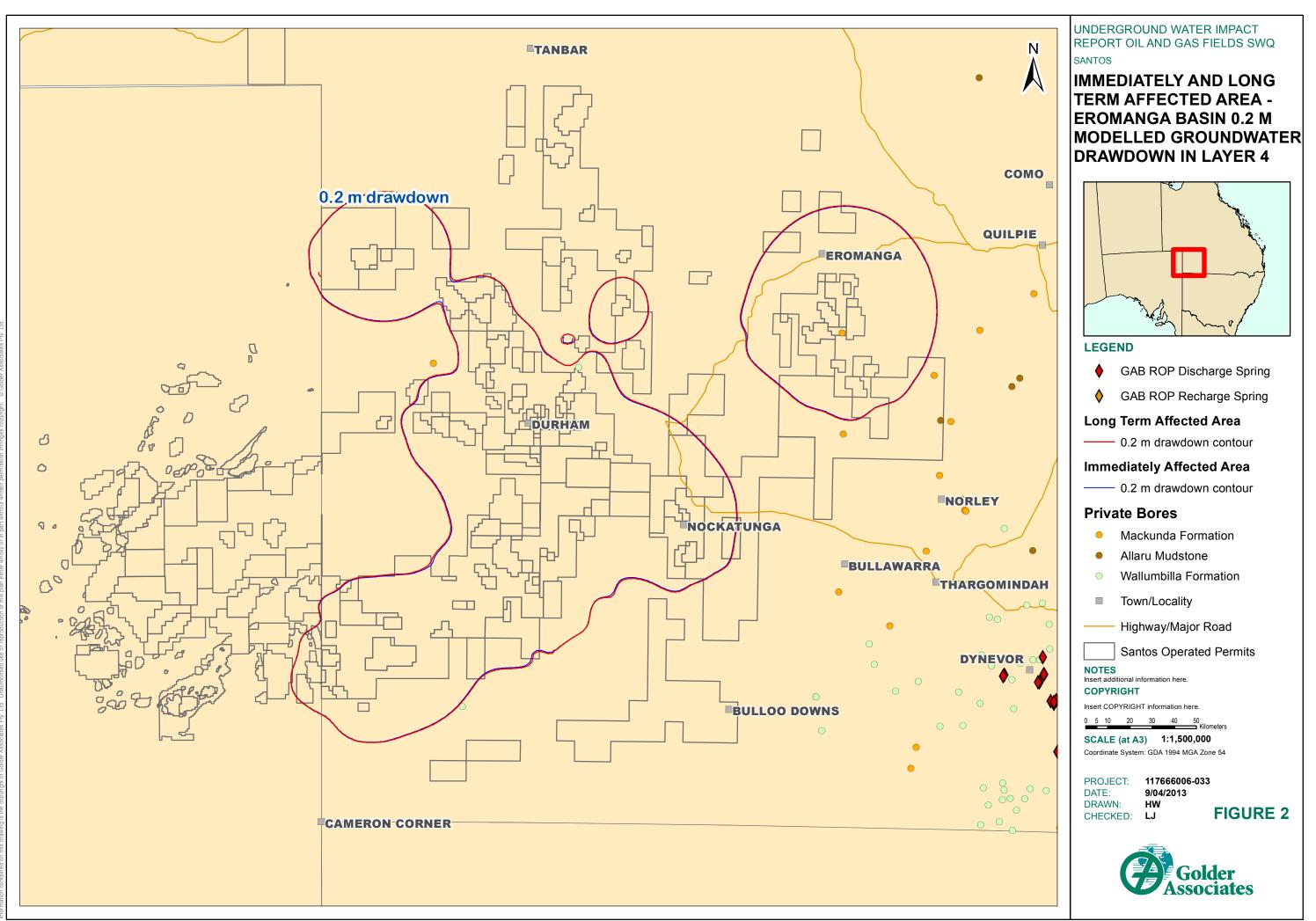
www.golder.com





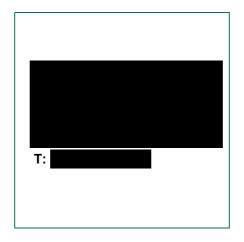

# **APPENDIX I**


Maps Indicating the 0.2m Drawdown Trigger Threshold for Model Layers 3 and 4








File Location: J:/hyd/2011/117636010 Santos\_Cooper Basin O&G & Moonie Oil -official folder in BRISBANE/Task 3000- Cooper Basin UWIR technical/UWIRamendmentsMarch2013/GIS-FIGURES/117666006\_033-RevA-F001-ERO-QLQ-IM-L3\_A3.mxd



At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

#### Africa Asia Australasia Europe North America

www.golder.com



Appendix B: South-West Queensland UWIR 2018 Annual Groundwater Monitoring Report, LBWCo (2019) Appendix C: Underground Water Impact Reports for Santos' Cooper Basin Oil and Gas Fields, SW QLD (Santos, 2016)